当前位置:文档之家› STC12C5A60S2精确软件延时程序

STC12C5A60S2精确软件延时程序

STC12C5A60S2精确软件延时程序

单片机STC12C5A60S2

精心整理 单片机STC12C5A60S2 在众多的51系列单片机中,要算国内STC 公司的1T 增强系列更具有竞争力,因他不但和8051指令、管脚完全兼容,而且其片内的具有大容量程序存储器且是FLASH 工艺的,如STC12C5A60S2单片机内部就自带高达60KFLASHROM,这种工艺的存储器用户可以用电的方式瞬间擦除、改写。而且STC 系列单片机支持串口程序烧写。显而易见,这种单片机对开发设备的要求很低,开发时间也大大缩短。写入单片机内的程序还可以进行加密,这又很好地保护了你的劳动成果。重要的一点STC12C5A60S2目前的售价与传统51差不多,市场供应也很充足。是一款高性价比的单片机 /低功耗/集成 1.2.电压:3.4.5.6.,可设可达到(8.9.10.; 11.外部掉电检测电路:在P4.6口有一个低压门槛比较器,5V 单片机为 1.32V ,误差为+/-5%,3.3V 单片机为1.30V ,误差为+/-3%; 12.时钟源:外部高精度晶体/时钟,内部R/C 振荡器(温漂为+/-5%到+/-10%以内)1用户在下载用户程序时,可选择是使用内部R/C 振荡器还是外部晶体/时钟,常温下内部R/C 振荡器频率为:5.0V 单片机为:11MHz ~15.5MHz ,3.3V 单片机为:8MHz ~12MHz ,精度要求不高时,可选择使用内部时钟,但因为有制造误差和温漂,以实际测试为准; 13.共4个16位定时器两个与传统8051兼容的定时器/计数器,16位定时器T0和T1,没有定

时器2,但有独立波特率发生器做串行通讯的波特率发生器再加上2路PCA模块可再实现2个16位定时器; 14.2个时钟输出口,可由T0的溢出在P3.4/T0输出时钟,可由T1的溢出在P3.5/T1输出时钟; 15.外部中断I/O口7路,传统的下降沿中断或低电平触发中断,并新增支持上升沿中断的PCA 模块,PowerDown模式可由外部中断唤醒,INT0/P3.2,INT1/P3.3,T0/P3.4,T1/P3.5,RxD/P3.0,CCP0/P1.3(也可通过寄存器设置到P4.2),CCP1/P1.4(也可通过寄存器设置到P4.3); 置到 20.装: (均可 VCC GND P0 写“1”时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FLASH编程时,P0口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部电位必须被拉高; P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入“1”后,电位被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收; P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚电位被内部上拉电阻拉高,且作为输入。作为输入时,P2口的

C语言延时程序

C51精确延时程序 一、、看了网上延时程序的帖子挺多,我也说点。 用keil调试, void yanshi( uint n ) { uchar data i="0"; for(i=0;i<N;I++); return; } 延时时间=12*(n*12+17)/fosc 用keil测时功能很容易得到这个关系,很精确,偏差不过几us. 可以自己编一些延时程序,也可以很方便的得到关系式,只是系数不同. 二、、//我看到的地方也是从别的地方转贴,所以我不知道原作者是谁,但相信这么成熟的东西转一下他也不会见意。看到了个好帖,我在此在它得基础上再抛抛砖! 有个好帖,从精度考虑,它得研究结果是: void delay2(unsigned char i) { while(--i); } 为最佳方法。 分析:假设外挂12M(之后都是在这基础上讨论) 我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据: delay2(0):延时518us 518-2*256=6 delay2(1):延时7us(原帖写“5us”是错的,^_^) delay2(10):延时25us 25-20=5 delay2(20):延时45us 45-40=5 delay2(100):延时205us 205-200=5 delay2(200):延时405us 405-400=5 见上可得可调度为2us,而最大误差为6us。 精度是很高了! 但这个程序的最大延时是为518us 显然不 能满足实际需要,因为很多时候需要延迟比较长的时间。 那么,接下来讨论将t分配为两个字节,即uint型的时候,会出现什么情况。

软件延时

2软件延时 在对数字温度传感器DS18820操作中,用到延时有:15 μs、90μs、270 μs、540 μs等。这些延时短暂,占用CPU时间不是太多,所以比较适合软件延时方法。通过汇编语言编写程序,很容易控制时间,我们知道每条语句执行时间,每段宏执行时间及每段子程序加调用语句所消耗时间。因此,要用C语言编制出较为精确延时程序,就必须研究该段C程序生成汇编代码。 循环结构延时:延时时间等于指令执行时间与指令循环次数乘积,举例来讲,对如下延时程序进行实验分析。 void delay(unsigned int time){ while(time一一){}; 在main()中调用延时函数delayr(n);得到延时时间是多少,需要在MSP430单片机集成编译环境IAR Em—bedded Wclrkbeneh IDE 3.10A中编制测试。 使用C430写好一段可执行代码,在其中加入延时函数,并在主函数中调用,以delay(1OO)为例。设置工程选项Options,在Debugger栏中将Drivet选为Simulator,进行软件仿真。在仿真环境C—SPY Debugger中,从菜单View中调出Disassembly和Register窗口,前者显示编程软件根据C语言程序编译生成汇编程序,在后者窗口中打开CPU Register子窗体,观察指令周期计数器CYCLE —COUNTER。可以看到,delay()编译得到如下代码段: delav: 001112 OF4C mov.w R12,R15 OOlll4 0C4F mov.w R15.R12 001116 3C53 add.w #0xFFFF.R12 001118 0F93 tst.w R15 00111A FB23 jne deIay 单步执行,观察CYCI正COUNTER,发现每执行一条指令,CYCLECOUNTER值加1,说明这5条指令各占用1个指令周期,循环体while()每执行一次需要5个指令周期,加上函数调用和函数返回各占用3个指令周期,delay(100)延时了5×100 6—506个指令周期。只要知道指令周期,就能容易计算出延时时长了。延时函数因循环语句和编译器不同,执行时间也有所不同,依照上述方法具体分析,可以达到灵活编程目。 MSP430指令执行速度即指令所用周期数,这里时钟周期指主系统时钟MCLK周期。单片机上电后,如果不对时钟系统进行设置,默认800 kHzDCOCLK为MCLK和SMCLK 时钟源,LFXTl接32768 Hz晶体,工作在低频模式(XTS=O)作为ACLK时钟源。CPU指令周期由MCLK决定,所以默认指令周期就是1/800 kHz=1.25μs。要得到lμs指令周期需要调整DCO频率,即MCLK=1 MHz,只需进行如下设置:BCSCTLl=XT20FF RSEL2; //关闭XT2振荡器,设定DCO频率为1 MHz DCOCTL=DCO2 //使得单指令周期为lμs

STC12C5A60S2单片机的AD转换

A/D转换测试程序(ADC查询方式) #include “stc12c5a.h”//头文件在STC公司主页上下载 #include ”intrins.h” //与STC12C5A60S2单片机ADC相关的寄存器说明// Sfr ADC_CONTR = 0xBC;//AD转换控制寄存器 Sfr ADC_RES = 0xBD;//AD转换结果寄存器高 Sfr ADC_RESL = 0xBE;//AD转换结果寄存器低 Sfr P1ASF = 0x9D;//P1口模拟转换功能控制寄存器 Sfr AURX1 = 0xA2;//AD转换结果存储方式控制位 #define ADC_POWER 0x80 //ADC电源开 #define ADC_FLAG 0x10 //ADC结束标志位 #define ADC_START 0x08 //ADC启动控制位设为开 #define ADC_SPEEDLL 0x00 //设为540个时钟周期ADC一次 #define ADC_SPEEDL 0x20 //设为360个时钟周期ADC一次 #define ADC_SPEEDH 0x40 //设为180个时钟周期ADC一次 #define ADC_SPEEDHH 0x60 //设为90个时钟周期ADC一次 void AD_init(void); void delay(unsigned int a); unsigned int AD_get(unsigned char n); float AD_work(unsigned char n); void main() { unsigned char i; AD_init(); while(1) { for(i=0;i<8;i++) { AD_work(i); delay(20); } } } unsigned int AD_get(unsigned char n) //第n通道ADC采样函数 { unsigned int adc_data; ADC_RES = 0; //清零 ADC_CONTR=ADC_POWER|ADC_SPEEDLL|n|ADC_START;//打开AD转换电源、

KeilC51程序设计中几种精确延时方法

Keil C51程序设计中几种精确延时方法 2008-04-03 08:48 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs 的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( ); _NOP_( ) _NOP_( );

STC12C5A60S2单片机课程设计报告

一、课程设计基本情况介绍 1.1课程设计的基本目的与任务 本课程设计旨在驾驭本专业学生理论指导实践能力以及电子产品工程设计与开发能力。本实践课所要达到的主要目的是: 1、通过本次课程设计,是对学生综合能力的检,提高学生综合运用专业知识,强化单片机 应用系统设计与防震能力。 2、本次课程设计是在生产实习所完成的“单片机核心板+电子钟模块+MP3模块+RFID模块+无线传输模块+GPS模块+脉搏传感模块”的基础上设计该硬件系统的工作程序。 1.2课程设计的基本内容 1、在生产实习设计单片机硬件系统的基础上,设计相应的应用软件系统。 2、在LCD1602上显示学号程序设计。 3、基于DS1302的实时时钟软件设计。 4、基于DS18B20的温度测量软件设计。 5、基于TL1838A的红外遥控解码软件设计。 6、设计应用软件系统框图和流程图,完成所设计软件的调试。 1.3课程设计的教学要求 1、通过资料查阅及学习了解单片机应用系统的软件设计方法及单片机编程、软硬件联机调 试技巧。 2、独立设计并编写下列应用程序: (1)LCD1602学号显示程序; (2)DS1302实时时钟程序; (3)DS18B20温度测量程序; (4)TL1838A红外遥控解码程序; 3、独立完成所设计程序与硬件系统的联机仿真。 二、整机系统框图(硬件、软件) 该设计方案是以STC12C5A60S2单片机为核心,采用LCD液晶屏幕显示模块、实时时钟模块、温度测量模块、红外遥控解码等模块所构建的系统,能在LCD1602液晶屏上显示当前的日期(年、月、日)、时间(时、分、秒)数据、当前环境温度值和红外遥控解码值。用户可通过遥控器或单片机核心板上的按键来进行日期和时间的设置。本系统设计大部分功能由软件来实现,电路简单明了,系统稳定性也得到大大提高。 1、总体硬件设计框架图: 2、总体软件设计框架图 /////// 三、整机硬件电路原理图(见99SE图) 1、核心板电路原理图 2、蜂鸣器驱动电路 3、按键电路 4、单片机复位电路 5、LCD1602液晶显示电路 6、电子钟模块接口电路 四、软件系统设计思想 //////////// 五、系统软件资源分配表(调试程序、工作程序) ////////////// 六、显示学号的调试程序流程图、程序源代码

Keil纯软件延时程序

keil调试延时程序 2007-11-25 22:20 时间的单位换算 1秒=1000毫秒(ms) 1毫秒=1/1,000秒(s) 1秒=1,000,000 微秒(μs) 1微秒=1/1,000,000秒(s) 1秒=1,000,000,000 纳秒(ns) 1纳秒=1/1,000,000,000秒(s) 1秒=1,000,000,000,000 皮秒(ps) 1皮秒=1/1,000,000,000,000秒(s) 参考资料:资料 用定时器延时,有时候显得有点麻烦,我们不如考虑软件精确延时,软件延时无非就是利用for或while多重循环。以前用到延时函数时,都是从网上下载别人写好的延时子程序。延时5ms,400ms,1s,……,这些延时函数的函数名中都清清楚楚地标明了延时的时间,可我一直不知道这些函数是如何编写的,确切地说,是如果根据延时时间来确定循环次数的。如果是纳秒级的延时,可以通过示波器来观察波形,或者反汇编一下,计算一下指令执行时间,但如果延时时间相对较长,示波器便无能为力了。这几天好好看了一下Keil调试,发现Keil 的功能实在是太强大了。利用Keil uVersion的调试就可以写出精确的软件延时程序。以下是我的简单小结,文中所有程序都是在Xtal=11.0592MHZ下测试。 比如我需要一个400ms的延时,随便写了个两重循环,外层循环5次,内层循环暂且设为5000: void Delay400Ms(void){ uchar i=5; unint j; while(i--){ j=5000; //通过keil调试来确定循环次数 while(j--); } } 在main函数中调用Delay400Ms(): void main() {

STC12C5A60S2单片机各个模块程序代码

// CLKOUT2 时钟初始化 // //*********************************// void CLKOUT_init(void) { WAKE_CLKO = 0x04; //Bit2-BRTCLKO 允许 P1.0 配置为独立波特率发生器的时钟输 出 //BRT 工作在1T 模式下时的输出频率 =Sysclk/(256-BRT)/2 //BRT 工作在12T 模式下时输出频率 =Sysclk/12/(256-BRT)/2 AUXR = 0x14; //Bit4-BRTR 允许独立波特率发生器运行 〃Bit2-BRTx12 BRT 工作在1T 模式下 BRT = 0xff; // 更改该寄存器的值可实现对输出的时钟频率进行分频 } #else /* 条件编译CLKOUT0寸钟输出*/ //*********************************// void CLKOUT_init(void) { WAKE_CLKO = 0x03; // 允许将 P3.4/T0 脚配置为定时器 0 的时钟输出 CLKOUT0 //* *************************************************************************** // // // // // // // // // // // // // // STC12C5A60S2 可编程时钟模块 说明:STC12C5A60S2单片机有三路可编程时钟输出 CLKOUTO/TO/P3.4 CLKOUT1/T1/P3.5 、CLKOUT2/P1.0 涉及寄存器:AUXR 辅助寄存器)、WAKE_CLKO(钟与系统掉电唤醒控制寄存器 ) BRT( 独立波特率发生器定时器寄存器 ) 程序说明: 本程序可选实现 P3.4输出CLKOUT0寸钟、P3.5输出CLK0UT1时钟 P1.0 输出CLK0UT2寸钟 ////** ************************************************************************ **// #include #include //#define Port_BRT // // 如果想测试独立波特率发生器时钟输出请打开此句 若想测试CLKOUT 和CLKOUT 请注释此句 #ifdef Port_BRT /* 条件编译独立波特率发生器时钟输出 */ //* ******************************* */ / //* ******************************* *// // CLKOUT0时钟和CLKOUT 初始化 //

单片机延时程序分析

上一次课中,我们已经知道,程序中的符号R7、R6是代表了一个个的RAM单元,是用来放一些数据的,下面我们再来看一下其它符号的含义。 DELAY:MOV R7,#250 ;(6) D1:MOV R6,#250 ;(7) D2:DJNZ R6,D2 ;(8) DJNZ R7,D1 ;(9) RET ;(10) 〈单片机延时程序〉 MOV:这是一条指令,意思是传递数据。说到传递,我们都很清楚,传东西要从一本人的手上传到另一本人的手上,也就是说要有一个接受者,一个传递者和一样东西。从指令MO V R7,#250中来分析,R7是一个接受者,250是被传递的数,传递者在这条指令中被省略了(注意:并不是每一条传递指令都会省的,事实上大部份数据传递指令都会有传递者)。它的意义也很明显:将数据250送到R7中去,因此执行完这条指令后,R7单元中的值就应当是250。在250前面有个#号,这又是什么意思呢?这个#就是用来说明250就是一个被传递的东西本身,而不是传递者。那么MOV R6,#250是什么意思,应当不用分析了吧。 DJNZ:这是另一条指令,我们来看一下这条指令后面跟着的两个东西,一个是R6,一个是D2,R6我们当然已知是什么了,查一下D2是什么。D2在本行的前面,我们已学过,这称之为标号。标号的用途是什么呢?就是给本行起一个名字。DJNZ指令的执行过程是这样的,它将其后面的第一个参数中的值减1,然后看一下,这个值是否等于0,如果等于0,就往下执行,如果不等于0,就转移,转到什么地方去呢?可能大家已猜到了,转到第二个参数所指定的地方去(请大家用自已的话讲一下这条语句是怎样执行的)。本条指令的最终执行结果就是,在原地转圈250次。

STM32延时函数

#include #include "delay.h" ////////////////////////////////////////////////////////////////////////////////// //使用SysTick的普通计数模式对延迟进行管理 //包括delay_us,delay_ms //***************************************************************************** *** //V1.2修改说明 //修正了中断中调用出现死循环的错误 //防止延时不准确,采用do while结构! ////////////////////////////////////////////////////////////////////////////////// static u8 fac_us=0;//us延时倍乘数 static u16 fac_ms=0;//ms延时倍乘数 //初始化延迟函数 //SYSTICK的时钟固定为HCLK时钟的1/8 //SYSCLK:系统时钟 void delay_init(u8 SYSCLK) { SysTick->CTRL&=0xfffffffb;//bit2清空,选择外部时钟HCLK/8 fac_us=SYSCLK/8; fac_ms=(u16)fac_us*1000; } //延时nms //注意nms的范围 //SysTick->LOAD为24位寄存器,所以,最大延时为: //nms<=0xffffff*8*1000/SYSCLK //SYSCLK单位为Hz,nms单位为ms //对72M条件下,nms<=1864 void delay_ms(u16 nms) { u32 temp; SysTick->LOAD=(u32)nms*fac_ms;//时间加载(SysTick->LOAD为24bit) SysTick->VAL =0x00; //清空计数器 SysTick->CTRL=0x01 ; //开始倒数 do { temp=SysTick->CTRL; } while(temp&0x01&&!(temp&(1<<16)));//等待时间到达 SysTick->CTRL=0x00; //关闭计数器 SysTick->VAL =0X00; //清空计数器 } //延时nus //nus为要延时的us数.

delay延时教程

delay延时教程(用的是12MHz晶振的MCS-51) 一、 1)NOP指令为单周期指令 2)DJNZ指令为双周期指令 3)mov指令为单周期指令 4)子程序调用(即LCALL指令)为双周期指令 5)ret为双周期指令 states是指令周期数, sec是时间,=指令周期×states,设置好晶振频率就是准确的了 调试>设置/取消断点”设置或移除断点,也可以用鼠标在该行双击实现同样的功能 二、编程最好: 1.尽量使用unsigned型的数据结构。 2.尽量使用char型,实在不够用再用int,然后才是long。 3.如果有可能,不要用浮点型。 4.使用简洁的代码,因为按照经验,简洁的C代码往往可以生成简洁的目标代码(虽说不是在所有的情况下都成立)。 5.在do…while,while语句中,循环体内变量也采用减减方法。 三、编辑注意: 1、在C51中进行精确的延时子程序设计时,尽量不要或少在延时子程序中定义局部变量,所有的延时子程序中变量通过有参函数传递。 2、在延时子程序设计时,采用do…while,结构做循环体要比for结构做循环体好。 3、在延时子程序设计时,要进行循环体嵌套时,采用先内循环,再减减比先减减,再内循环要好。 四、a:delaytime为us级 直接调用库函数: #include// 声明了void _nop_(void); _nop_(); // 产生一条NOP指令 作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。 eg:可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C 文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( );

STC12C5A60S2编程

ADC #include #include//51基本运算(包括_nop_空函数) #include"ad.h" #include"uart.h" unsigned char code dispcode[11]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x7f}; void AD_Configurate (uchar ChannelNum) { uchar AD_FLAG=0; //存储A/D转换标志 ChannelNum &= 0x0f; //选择ADC的个接口中的一个(0111 清高位) ADC_CONTR = 0x40; //ADC转换的速度(XX0 0000 其中XX控制速度,请根据数据手册设置)_nop_(); ADC_CONTR |= ChannelNum; //选择A/D当前通道 _nop_(); ADC_CONTR |= 0x80; //启动A/D电源 delay(1); //使输入电压达到稳定(ms即可) } unsigned int ReadADV alue (void) { unsigned char AD_FLAG=0; //存储A/D转换标志 ADC_CONTR |= 0x08; //启动A/D转换(1000 令ADCS = 1) _nop_(); _nop_(); _nop_(); _nop_(); while (AD_FLAG ==0)//等待A/D转换结束 { AD_FLAG = (ADC_CONTR & 0x10); //0001 0000测试A/D转换结束否 } ADC_CONTR &= 0xE7; //1111 0111 清ADC_FLAG位, 关闭A/D转换, return(ADC_RES*4+ADC_RESL);//返回A/D转换结果(位ADC数据高位在ADC_RES中,低位在ADC_RESL中) } void DigitalTube(unsigned long number) { P2=0xef; //1110 1111 P0=dispcode[number%10]; //显示number的个位 delay(7); P2=0xdf; //1101 1111 P0=(dispcode[number/10%10]); //显示number的十位 delay(7); P2=0xbf; //1011 1111 P0=(dispcode[number/100%10]); //显示number的百位

用单片机实现延时(自己经验及网上搜集).

标准的C语言中没有空语句。但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。这在汇编语言中很容易实现,写几个nop就行了。 在keil C51中,直接调用库函数: #include // 声明了void _nop_(void; _nop_(; // 产生一条NOP指令 作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。 在选择C51中循环语句时,要注意以下几个问题 第一、定义的C51中循环变量,尽量采用无符号字符型变量。 第二、在FOR循环语句中,尽量采用变量减减来做循环。 第三、在do…while,while语句中,循环体内变量也采用减减方法。 这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。 下面举例说明: unsigned char i; for(i=0;i<255;i++; unsigned char i; for(i=255;i>0;i--;

其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令: MOV 09H,#0FFH LOOP: DJNZ 09H,LOOP 指令相当简洁,也很好计算精确的延时时间。 同样对do…while,while循环语句中,也是如此 例: unsigned char n; n=255; do{n--} while(n; 或 n=255; while(n {n--}; 这两个循环语句经过C51编译之后,形成DJNZ来完成的方法, 故其精确时间的计算也很方便。 其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。 unsigned char i,j for(i=255;i>0;i--

51单片机延时模块程序

51单片机独立模块 一、延时模块 1、for循环延时 void delayms(UINT8 ms) { UINT8 x,y; for(x=ms;x>0;x--) for(y=112;y>0;y--); } 2、while循环延时 void delayms(UINT8 ms) { UINT8 x; while(ms--) for(x=112;x>0;x--); } 3、精确的单片机常用延时函数:(c代码误差0us 12M)(1)、延时0.5ms void delay0.5ms(void) //误差 0us { unsigned char a,b; for(b=71;b>0;b--) for(a=2;a>0;a--); } (2)、延时1ms void delay1ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=142;b>0;b--) for(a=2;a>0;a--); } (3)、延时2ms void delay2ms(void) //误差 0us { unsigned char a,b; for(b=4;b>0;b--) for(a=248;a>0;a--); _nop_; //if Keil,require use intrins.h } (4)、延时3ms void delay3ms(void) //误差 0us

{ unsigned char a,b; for(b=111;b>0;b--) for(a=12;a>0;a--); } (5)、延时4ms void delay4ms(void) //误差 0us { unsigned char a,b,c; for(c=7;c>0;c--) for(b=8;b>0;b--) for(a=34;a>0;a--); } (6)、延时5ms void delay5ms(void) //误差 0us { unsigned char a,b; for(b=19;b>0;b--) for(a=130;a>0;a--); } (7)、延时10ms void delay10ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=38;b>0;b--) for(a=130;a>0;a--); } (8)、延时15ms void delay15ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=238;b>0;b--) for(a=30;a>0;a--); } (9)、延时20ms void delay20ms(void) //误差 0us { unsigned char a,b; for(b=215;b>0;b--) for(a=45;a>0;a--); _nop_; //if Keil,require use intrins.h

stc12C5A60S2内部AD应用

系统说明:本人想用STC12C5A60S2自带的A/D对电源电压进行检测(暂定3.3V),晶振:12M,电压从P1.0口输入,检测后的电压值在1602上进行显示,附上硬件大致原理图,硬件部分是照STC12C5A60S2芯片资料上设计,大家看看有错没? 硬件原理简图(原文件名:clip_image001.gif) 程序的A/D部分也是从官网资料上搬下来的,只自己稍微改了一下对读取到的A/D转换结果的数据处理,液晶部分是前阵子写的搬过来的。大家帮我看看哪出问题了? 程序如下: #include #include "intrins.h" #define uchar unsigned char #define uint unsigned int uchar Vo; //A/D转换后换算的电压值 /*Declare SFR associated with the ADC */ sfr ADC_CONTR = 0xBC; //ADC control register sfr ADC_RES = 0xBD; //ADC high 8-bit result register sfr ADC_RESL = 0xBE; //sfr ADC_LOW2 = 0xBE; //ADC low 2-bit result register sfr P1ASF = 0x9D; //P1 secondary function control register /*Define ADC operation const for ADC_CONTR*/ #define ADC_POWER 0x80 //ADC power control bit #define ADC_FLAG 0x10 //ADC complete flag 模数转换结束标志位 #define ADC_START 0x08 //ADC start control bit 模数转换启动控制位 //转换速度控制位SPEED0和SPEED1,共四种状态,对应四种转换速度 #define ADC_SPEEDLL 0x00 //540 clocks #define ADC_SPEEDL 0x20 //360 clocks #define ADC_SPEEDH 0x40 //180 clocks #define ADC_SPEEDHH 0x60 //90 clocks uchar tCount;

单片机写延时程序的几种方法

单片机写延时程序的几种方法 1)空操作延時(12MHz) void delay10us() { _NOP_(); _NOP_(); _NOP_(); _NOP_(); _NOP_(); _NOP_(); } 2)循環延時 (12MHz) Void delay500ms() { unsigned char i,j,k; for(i=15;i>;0;i--) for(j=202;j>;0;j--) for(k=81;k>;0;k--); }

延時總時間=[(k*2+3)*j+3]*i+5 k*2+3=165 us 165*j+3=33333 us 33333*i+5=500000 us=500 ms 3)計時器中斷延時(工作方式2) (12MHz) #include; sbit led=P1^0; unsigned int num=0; void main() { TMOD=0x02; TH0=6; TL0=6; EA=1; ET0=1; TR0=1; while(1) { if(num==4000) { num=0;

led=~led; } } } void T0_time() interrupt 1 { num++; } 4)C程序嵌入組合語言延時 #pragma asm …… 組合語言程序段 …… #pragma endasm KEIL軟件仿真測量延時程序延時時間

這是前段事件總結之延時程序、由於不懂組合語言,故NO.4無程序。希望對你有幫助!!! 對於12MHz晶振,機器周期為1uS,在執行該for循環延時程式的時候 Void delay500ms() { unsigned char i,j,k; for(i=15;i>;0;i--) for(j=202;j>;0;j--) for(k=81;k>;0;k--); } 賦值需要1個機器周期,跳轉需要2個機器周期,執行一次for循環的空操作需要2個機器周期,那么,對於第三階循環 for(k=81;k>;0;k--);,從第二階跳轉到第三階需要2機器周期,賦值需要1個機器周期,執行81次則需要2*81個機器周期,執行一次二階for循環的事件為81*2+1+2;執行了220次,則(81*2+3)*220+3,執行15次一階循環,則 [(81*2+3)*220+3]*15,由於不需要從上階跳往下階,則只加賦值的一個機器周期,另外進入該延時子函數和跳出該函數均需要2個機器周期,故

STC12C5A60S2 + DS18B20 程序

STC12C5A60S2 + DS18B20 程序 #include < STC12C5A60S2.h > #include < intrins.h > #define uchar unsigned char #define uint unsigned int bit presence ; //****************************************************************************************** *********// sbit DQ = P1^6 ; //定义DS18B20端口DQ sbit LED_A =P4 ^ 4; //设置LED点阵屏连接的I/O口 sbit LED_B =P0 ^ 6; //设置LED点阵屏连接的I/O口 sbit LED_C =P3 ^ 0; //设置LED点阵屏连接的I/O口 sbit LED_D =P3 ^ 2; //设置LED点阵屏连接的I/O口 sbit LED_E =P3 ^ 3; //设置LED点阵屏连接的I/O口 sbit LED_F =P4 ^ 5; //设置LED点阵屏连接的I/O口 sbit LED_G =P4 ^ 7; //设置LED点阵屏连接的I/O口 sbit LED_DP =P3 ^ 1; //设置LED点阵屏连接的I/O口 sbit LED1= P2^7 ; //定义LED数码管位脚 sbit LED2= P4^6 ; sbit LED3= P0^7 ; sbit LED4= P1^7 ; //****************************************************************************************** *********// unsigned char data temp_data[2] = {0x00,0x00} ; unsigned char data display[5] = {0x00,0x00,0x00,0x00,0x00} ; unsigned char code ditab[16] = {0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04, 0x05,0x06,0x06,0x07,0x08,0x08,0x09,0x09} ; unsigned char code mytab[4] = {0xF9,0xB0,0x92,0x99} ;//纯粹用来测试,可删除 //****************************************************************************************** *********// const uchar tab[]={ /* 根据共阴极字型编码表获取0~9,A~B字型代码*/ 0x3f,0x06,0x5b,0x4f,//0~3 0x66,0x6D,0x7D,0x07,//4~7 0x7F,0x6F,0x77,0x7C,//8~b 0x39,0x5E,0x79,0x71,//c~f 0x00//mie }; //****************************************************************************************** *********// const uchar tab1[]={ /* 根据共阳极字型编码表获取0~9,A~B字型代码*/ 0xC0,0xF9,0xA4,0xB0,//0~3 0x99,0x92,0x82,0xF8,//4~7 0x80,0x90,0x88,0x83,//8~b

c语言中的精确延时程序举例

c语言中的精确延时程序举例 我在网上到看了一些关于延时的讨论,其中有篇文章51单片机Keil C 延时程序的简单研究,作者:InfiniteSpace Studio/isjfk 写得不错,他是用while(--i);产生DJNZ 来实现精确延时,后来有人说如果while里面不能放其它语句,否则也不行,用do-while就可以,具体怎样我没有去试.所有这些都没有给出具体的实例程序来.还看到一些延时的例子多多少少总有点 延时差.为此我用for循环写了几个延时的子程序贴上来,希望能对初学者有所帮助.(晶振12 MHz,一个机器周期1us.) 一. 500ms延时子程序程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0; j--) for(k=81;k>0;k--); } 产生的汇编: C:0x0800 7F0F MOV R7,#0x0F C:0x0802 7ECA MOV R6,#0xCA C:0x0804 7D51 MOV R5,#0x51 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET 计算分析: 程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m: R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us 三层循环: R7*(m +3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us 循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us 延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms 计算公式:延时时间= [(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--) for(k=150;k>0;k--); } 产生的汇编

相关主题
文本预览
相关文档 最新文档