当前位置:文档之家› 超氧阴离子自由基的测定

超氧阴离子自由基的测定

超氧阴离子自由基的测定
超氧阴离子自由基的测定

超氧阴离子自由基的测定

试剂:65 mmol·l-1 PBS(磷酸盐缓冲液),10mmol·l-1盐酸羟胺,α-萘胺,乙醚,黄胺,三氯甲烷

材料:叶片

第一步:称取2 g叶片,加入6ml 65 mmol·l-1 PBS(pH 7.8),冰浴研磨成匀浆,

四层纱布过滤,5000×g(4℃)离心10 min。取1 ml上清液加入0.9 ml上述缓冲液和0.1 ml 10mmol·l-1盐酸羟胺,25 ℃温浴20 min。然后取0.5 mlα-萘胺,于25℃下反应20 min,最后加入同体积乙醚充分摇动,1 500×g离心5 min,取粉红色水相测定530 nm的OD值。同时做NO2-标准曲线,将[NO2-]乘以2得[O2-·],结果以O2-·nmol·min-1·mg-1protein 表示。

第二步:

实验组空白调零组

PBS 0.5 0.5

盐酸羟胺0.1 0.1

摇匀,25℃水浴加热10min

实验组空白调零组

提取液0.5 0

PBS 0 0.5

摇匀,37℃水浴加热20min

实验组空白调零组

黄胺 1 1

α-萘胺 1 0.5

摇匀,37℃水浴加热20min

实验组空白调零组

三氯甲烷 3 3

10000r/min 离心3min(5000r/min 6min)

取粉色水相(上层)测定A530

A530(NO2ˉ)=A(实验组)—A(空白调零组)

备注:

提取液:称取2 g叶片,加入6ml 65 mmol·l-1 PBS(pH 7.8),冰浴研磨成匀浆,四层纱布过滤,5000×g(4℃)离心10 min,收集得到的上清液。

超氧自由基清除能力测定法-操作图解

超氧自由基(·O2-)的清除能力测定法(连苯三酚自氧 化法) (适用于:SOD及各种抗氧化剂) 操作图解 具体方法 1 溶液配制 1.1 Tris溶液(0.1mol/L):1.21 gTris(三羟甲基氨基甲烷,M.W. 121.1)+100 mL蒸馏水。 1.2 HCl溶液(0.1mol/L):取0.1 mL浓盐酸,加蒸馏水稀释到6 mL。 1.3 Tris-HCl缓冲液(0.05mol/L,pH7.4,含1mmol/L Na2EDTA) 40 mL0.1 mol/L Tris溶液+ x mL0.1 mol/L HCl溶液+15.2 mg Na2EDTA,混合,稀释到80 mL。用pH 计测量,pH应为7.4。用棕色瓶保存在冰箱内(最多保存三天) 。(以上为一个样品的用量)用前稍热至室温,再测pH值,符合要求即可。 1.4 60 mmol/L连苯三酚溶液(溶于1 mmol/L盐酸中) 取0.1mol/L HCl溶液(见1.2项)20μL,用蒸馏水稀释到2 mL,得1 mmol/L盐酸溶液(用pH计测量,pH=2.5-3.0)。再往里加连苯三酚14.6 mg (M。W.126.1 ),即得。(当天有效,以上为1个样品的用量)。 2 测试液 2.1连苯三酚溶液:取2950μL Tris-HCl缓冲液加入到石英比色皿中,再加约50μL连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次A值(325nm),至300秒(5min)时为止。(空白参比:Tris-HCl 缓冲液) ΔA=A325nm,300s - A325nm,30s。由于ΔA值反映了生成·O2的初始浓度,所以,对于同一批实验而言,此时的ΔA值必须相等。此时的ΔA为ΔA0。 3.2 样品溶液:取xμL样品溶液加入到大石英比色皿中,再加(2950-x)μL Tris-HCl缓冲液,再加50μL 连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次(A值,325nm),至300秒时为止。(空白参比:Tris-HCl缓冲液) ΔA=A325nm,300s - A325nm,30s。此时的ΔA为ΔA样。 3 计算公式

超氧阴离子产生速率测定

超氧阴离子产生速率测定 羟氨氧化法 (王爱国,罗广华.植物的超氧物自由基与羟胺的反应[J].植物生理学通讯,1990,(6):55-57) 一、原理 植物组织器官的衰老总是伴着细胞内膜结构的破坏,表现为细胞内的电解质大量渗漏出来。很多研究结果表明,细胞衰老过程中膜的破坏是由细胞中(特别是线粒体和叶绿体)产生的自由基(如O2·ˉ、OH·、O2等)使膜脂中的不饱和脂肪酸发生过氧化作用而造成的。膜脂过氧化作用中产生的自由基,它不仅能连续诱发膜脂过氧化作用,而且还可以使蛋白质脱H+而产生蛋白质自由基,使蛋白质分子发生链式聚合,从而使细胞膜变性,最终导致细胞损伤、衰老和死亡。 二、材料、仪器设备与试剂 (一)材料 植物叶片、花瓣等器官 (二)仪器设备 低温高速离心机、微量加样器(1mL、20uL)、精密电子天平、分光光度计、试管、 研钵、剪刀、镊子、烧杯、试管架 (三)试剂 (1)0.05 mol·L-1磷酸缓冲液PH=7.8(0.66304g的NaH2PO4.2H2O和16.3849g的 Na2HPO4.12H2O定溶1000mL,校正PH) (2)10m mol·L-1盐酸羟胺(NH2OH·HCl,69.49,溶于水)0.3475g定溶到500mL,(冷) (3)17m mol·L-1对氨基苯磺酸(C6H7NO3S 173.19 1.4721g) 或者(C6H7NO3S·H2O 191.21 1.6253g)定溶到500mL,(冷,磁) (4)7m mol·L-1α-萘胺,0.5012g定溶到500mL,(乙醇溶解,定溶,溶解完全) 三、试验步骤 (1)制做亚硝酸根标准曲线 2mL系列浓度的NaNO2(5,4,3,2,1,0.5μg/L)加入4mL对氨基苯磺酸和4mLa-萘胺于25℃保温20min,然后测定OD530以[NO2-]和测得的OD530值互为函数作图,制的亚硝酸根标准曲线 (2)取0.2g植物材料,加入1.0mL 0.05 mol·L-1磷酸缓冲液(PH7.8)于冰浴研磨

超氧阴离子清除实验

·O2ˉ自由基清除实验 (1) 实验原理 黄嘌呤氧化酶 黄嘌呤+H2O+O2尿酸+H2O2+·O2ˉ 即黄嘌呤氧化酶在有氧条件下催化黄嘌呤转化为尿酸,同时产生超氧阴离子自由基(·O2ˉ)。·O2ˉ与NBT结合后呈蓝色,样品清除能力越大,与NBT结合的·O2ˉ越少,溶液的颜色越浅。 (2)试剂 Xanthine(黄嘌呤): (C5H4N4O2 ), MW=152.1, 6.084mg/100mL(0.4mmol/l) 实际配制:1.216mg/10mL,与NBT等体积混合使用 Xanthine oxidase(黄嘌呤氧化酶)贮液: 1 unit/mL , (溶解酶的溶液要高压灭菌!防止蛋白酶对酶的降解!) 0.05 unit/mL,每次取200uL稀释到4mL(PBS溶解) NBT: (Nitro blue tetrazolium chloride氯化硝基四氮唑蓝), MW=817.65, 黄色19.6236mg/100mL(0.24mmol/l) 实际配制3.925mg/10mL,与Xanthine等体积混合使用 PBS(0.01mol/L,pH=8.0): NaCl 8g, KCl 0.2g, Na2HPO4(无水) 1.44g, KH2PO4 0.24g, 800mL水,用NaOH(1M)调pH到8.0,定容到1000mL。 实际配制500mL。高压灭菌,室温保存。 PBS(0.01mol/L,pH=7.4): 配制同上 Ascorbic acid: MW=176.12 母液为1mg/mL 先两倍逐级稀释5个浓度 实际配制见记录本! HCl(1M): MW=36.5 310ul/10ml.(36% HCl密度1.18g/ml) 实际配制:800uL浓盐酸+9mL水,于塑料管中4℃保存。 NaOH(1M): MW=40 0.4g/10mL, 存于冰箱 (3) 测定方法 超氧阴离子自由基清除能力的测定参照Bae等人的方法略加改进。样品溶液1-5mg/ml 起始浓度,用于水或50%乙醇溶液。 Bae, S.W., Suh, H.J., 2007. Antioxidant activities of ve different mulberry cultivars in Korea.

超氧阴离子自由基检测试剂盒(磺胺比色法)

超氧阴离子自由基检测试剂盒(磺胺比色法) 简介: 超氧阴离子自由基作为生物体代谢过程中产生的一种自由基,可攻击生物大分子,如脂质、蛋白质、核酸和聚不饱和脂肪酸等,使其交链或者断裂,引起细胞结构和功能的破坏,与机体衰老和病变有很密切的关系,清除超氧阴离子自由基的研究已经得到了广泛的关注。 Leagene 超氧阴离子自由基检测试剂盒(磺胺比色法)又称超氧阴离子清除能力检测试剂盒,其检测原理是利用羟胺氧化的方法可以检测生物体系中超氧阴离子自由基(O 2-),即超氧阴离子自由基(O 2-)与羟胺反应生成NO 2-,在一定范围内颜色深浅与超氧阴离子自由基(O 2-)成正比,根据NO 2-反应的标准曲线将A 530换算成NO 2-浓度,再依据上述关系式即可计算出O 2-浓度。该试剂盒主要用于测定植物组织中的超氧阴离子自由基含量或超氧阴离子清除能力。该试剂盒仅用于科研领域,不宜用于临床诊断或其他用途。 组成: 自备材料: 1、 蒸馏水 2、 实验材料:植物组织(大豆、绿豆、玉米等叶片)、血液、组织样本等 3、 研钵或匀浆器 4、 离心管或试管 5、 低温离心机 6、 恒温箱或水浴锅 7、 比色杯 8、 分光光度计 操作步骤(仅供参考): 编号 名称 TO1123 50T Storage 试剂(A): NO 2-标准(1mM) 1ml RT 试剂(B): O 2- Lysis buffer 125ml RT 试剂(C): 羟胺溶液 30ml RT 试剂(D): 氨基苯磺酸显色液 30ml 4℃ 避光 试剂(E): 萘胺显色液 30ml 4℃ 避光 使用说明书 1份

1、准备样品: ①植物样品:取正常或逆境下的新鲜植物组织,清洗干净,擦干,切碎,迅速称取预冷的O2-Lysis buffer后冰浴条件下匀浆或研磨,4℃离心,上清液即为超氧阴离子自由基提取液,4℃保存备用。 ②血浆、血清和尿液样品:血浆、血清按照常规方法制备后可以直接用于本试剂盒的测定,4℃保存,用于超氧阴离子自由基的检测。 ③高活性样品:如果样品中含有较高浓度的超氧阴离子自由基,可以使用O2- Lysis buffer 进行恰当的稀释。 2、配制系列NO2-标准溶液:取出NO2-标准(1mM)恢复至室温后,以NO2-标准(1mM) 按下表继续稀释: 加入物(ml) 1 2 3 4 5 6 NO2-标准(1mM)0.01 0.02 0.03 0.04 0.05 0.06 蒸馏水0.99 0.98 0.97 0.96 0.95 0.94 NO2-含量(μM) 10 20 30 40 50 60 3、O2-加样:按照下表设置空白管、标准管、测定管,溶液应按照顺序依次加入,并注意 避免产生气泡。如果样品中的超氧阴离子自由基浓度过高,可以减少样品用量或适当稀释后再进行测定,样品的检测最好能设置平行管。 加入物(ml) 空白管标准管测定管 蒸馏水1—— 系列NO2-标准(1-6号管) — 1 — 待测样品——0.25 O2- Lysis buffer ——0.25 羟胺溶液——0.5 混匀,25℃水浴孵育。 氨基苯磺酸显色液0.5 0.5 0.5 萘胺显色液0.5 0.5 0.5 混匀,30℃水浴孵育。 4、O2-测定:以空白调零,分光光度计(1cm光径比色杯)检测标准管、测定管530nm处吸光度(A标准、A测定)。 计算: 以系列NO2-标准(1-6号管)含量(μM)为横坐标,以对应的吸光度为纵坐标,制作标准曲线,根据测定管的吸光度进而计算NO2-含量。根据如下公式计算具体样品中超氧阴离子

植物生理学实验

口试部分 实验一多酚氧化酶(PPO)活性的测定 实验原理:多酚氧化酶是植物体内普遍存在的一种非线粒体内的末端氧化酶。他可以把酚类物质如单酚、邻苯二酚、邻苯三酚、对苯二酚等氧化为氧化为相应的醌类物质。醌类物质对病原微生物起抑制作用或杀伤作用,具有一定的抗病能力。因此,在感病的植物体中,PPO 活性都具有不同程度的提高,以抵抗病原体进一步侵染健康的植物组织。此外,PPO对食品和饮料生产也会产生重大影响,它影响其品质,特别是在制作绿茶、红茶、烤烟和水果类饮料的过程中更为突出。所以,准确测定PPO活性,具有重要的生理和现实意义。多酚氧化酶是一种含铜的氧化酶,在有氧的条件下,能使酚氧化产生醌,PPO反应在3分钟内呈直线上升,其后反应速度变慢,因而在研究时,用分光光度在3分钟内于410纳米波长下测其吸光度,即可计算出PPO的活力和比活力。 思考题:1、粗酶液提取中丙酮和磷酸缓冲液的作用,提取液为什么要预冷:丙酮是有机溶剂,能提取PPO,磷酸缓冲液为了保持酶活性,预冷降低酶活。 2、为什么要先在37度下恒温,再加酶液:使酶和底物处于最适状态。 实验二硝酸还原酶(NR)活性的测定 实验原理:硝酸还原酶是植物氮代谢中的关键酶,植物吸收的硝酸根,首先通过硝酸还原酶的催化,还原成亚硝酸根(NADPH+NO3-NR-NO2+NAD+H2O)。亚硝酸根可用磺胺显色法测定,即在酸性条件下,亚硝酸根与对氨基苯磺酸发生重氮反应,生成的重氮化合物又与盐酸萘乙胺生成红色偶氮化合物,可在520纳米下比色测定。 思考题1、为什么标准液与样品液的测定要在同一条件下:亚硝酸的磺胺比色法显色速度受温度和酸度等因素影响。 2、NR活性测定时取材为什么要进行一段时间的光和作用:进行光合作用积累一定糖类,否则酶活偏低。 3、测量酶活是为什么要在暗处:光下光反应会将形成的亚硝酸根转变成铵根,影响结果。 4、如果实验材料酶活过低怎么办:可在取样的前几天,用50mmol/l硝酸钾加在培养液中,以诱导硝酸还原酶的生成。 5、为什么要严格控制时间:本实验要是酶在最适条件下测酶活,要严格控制时间。 磺胺、盐酸萘乙二胺和硝酸钾的作用:在酸性条件下,亚硝酸根与对氨基苯磺酸发生重氮反应,生成的重氮化合物又与盐酸萘乙胺生成红色偶氮化合物,硝酸钾作为酶促反应的底物,亚硝酸钠用于制作标准曲线的梯度亚硝酸浓度。 6、粗酶液提取中丙酮和磷酸缓冲液的作用:磷酸缓冲液为了保持酶活性。 实验三电导法测定植物细胞膜透性 实验原理:植物组织在受到各种不利环境条件危害时,细胞膜的结构和功能首先受到伤害,细胞膜透性增加,其外渗液中的电解质的含量比正常组织的外渗液含量增加,组织受伤害越严重,电解质的含量增加的越多。用电导仪测定外渗液电导值的变化,可反映出质膜受伤害的程度,也可反映植物的抗逆程度。 思考题:1、在处理材料时,为什么要用真空泵抽气:以抽出细胞间隙空气,缓慢放入空气中,水即渗入细胞间隙。 2、为什么要清洗电导电极和温度传感器以及其他玻璃器皿:由于电导值变化非常灵敏,稍有杂质就会产生很大误差,因此所用的玻璃器皿均需多次冲洗干净。 3、抗逆性强的植物材料外渗液中的电导率高还是低,为什么?电导值与抗性成反比。 实验四植物光合与呼吸速率的测定 实验原理:由异原子组成的偶极距的气体分子,如CO2、CO、H2O、SO2、NO、NH3和CH4等,都有红外吸收带,其中CO2、H2O的吸收率最大,可用红外线分析法测定。CO2的吸收峰分别在2.69、2.77、4.26、14.09um,其中只有4.26um的吸收带不与水的吸收带重

如何清除体内自由基

如何清除体内自由基 消除体内自由基,应该要了解自由基的来源,从外界到身体内部的代谢一起中和性的描叙不要单方面的讲叙体内各种酶与自由基之间的关系 人体内的自由基有两个来源:其一是来自环境,如环境污染、食品污染、过度的紫外线照射和各种辐射、杀虫剂、室内外废气、吸烟、二手烟、酗酒、工作压力、生活不规律等等,都会直接导致人体内产生过多的自由基(活性氧);食品添加剂、食用脂肪和熏炸烤肉、某些抗癌药物、安眠药、抗生素、有机物腐烂物、塑料用品制造过程、油漆干燥挥发、石棉粉尘、空气污染、化学致癌物、大气中的臭氧等也都能诱发人体内产生自由基。 其二是来自体内,人体内组织细胞的新陈代谢也会产生自由基,这是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞,而被破坏的细胞则又再转而侵害更多健康的细胞,如此恶性循环从而导致人体的衰老和疾病的发生。另外,组织器官损伤后的缺血一段时间后又突然恢复供血(即重灌流),如心肌梗塞、脑血栓、外伤、外科手术后,自由基会大量生成。正常人体有一套清除自由基的系统,但这个系统的力量会因人的年龄增长及体质改变而减弱,致使自由基的负面效应大大增强,引起多种疾病发病率的提高。活性氧自由基对人体的损害实际上是一种氧化过程。因此,要降低自由基的损害,就要从抗氧化做起。 听说过抗氧化剂吗?它对人体的健康可是有着密切的关系。既然自由基不仅存在于人体内,也来自于人体外,那么,降低自由基危害的途径也有两条:一是,利用内源性自由基清除系统清除体内多余自由基;二是发掘外源性抗氧化剂——自由基清除剂,阻断自由基对人体的入侵。 大量研究已经证实,人体内本身就具有清除多余自由基的能力,这主要是靠内源性自由基清除系统,它包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化物酶等一些酶和维生素C、维生素E、还原型谷胱甘肽、β-胡萝卜素和硒等一些抗氧化剂。酶类物质可以使体内的活性氧自由基变为活性较低的物质,从而削弱它们对肌体的攻击力。酶的防御作用仅限于细胞内,而抗氧化剂有些作用于细胞膜,有些则是在细胞外就可起到防御作用。这些物质就深藏于我们体内,只要保持它们的量和活力它们就会发挥清除多余自由基的能力,使我们体内的自由基保持平衡。 要降低自由基对人体的危害,除了依靠体内自由基清除系统外,还要寻找和发掘外源性自由基清除剂,利用这些物质作为替身,让它们在自由基进入人体之前就先与自由基结合,以阻断外界是自由基的攻击,使人体免受伤害。在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。目前,国内外已陆续发现许多有价值的天然抗氧化剂。如β-胡萝卜素(维生素A)、维生素C、维生素E、番茄红素、辅酶q10、等等。此外,我国很多中草药植物中的有效成分都是天然抗氧化剂,例如,银杏黄酮、甘草黄酮等,另外还有巴西菇、灰树花、茯苓、黄芪、丹参、银杏、枸杞、灵芝、人参......。 吃什么可以减少体内自由基 在正常的生命过程中,自由基为维持生命所必需。体内自由基不断产生,也不断地被清除,两者 处于动态平衡之中,使之维持在一个正常的生理水平上。自由基在生物体内具有参与吞噬病原体,参 与前列腺素和凝血酶原的合成、解毒,参与体内部分生化反应和胶原蛋白的合成,调节细胞增殖与分化,参与机体免疫和环核苷酸的生物合成,以及生殖和胚胎发育等重要的生理功能。但是当自由基过 量时,自由基在机体内损伤蛋白质、核酸和生物膜,导致细胞凋亡,并参与许多疾病的发病过程。 由基清除剂即抗氧化剂清除机体自由基,保护机体免受氧化损害中起重要作用。因此,近年来对 自由基清除剂的研究备受关注。多吃点抗氧化剂食物有利于减少体内多余自由基。 方法/步骤 1.全面复方自由基清除剂:葡茶多酚胶囊。适当吃葡茶多酚可以全面清除体内多余自由

自由基及检测方法

ESR 电子顺磁共振(EPR)或称电子自旋共振(ESR)现象最早发现于1944年。它利用具有未成对电子的物质在磁场作用下吸收电磁波的能量使电子发生能级间的跃迁的特征,对顺磁性物质进行检测与分析。 自旋捕集方法是将不饱和的抗磁性化合物(自旋捕集剂)加入反应体系,与反应体系中产生的各种活性高、寿命短的自由基结合形成相对稳定的自旋加合物,以适于ESR检测其原理是利用适当的自旋捕捉剂与活泼的短寿命自由基结合,生成相对稳定的自旋加合物,可以用电子自旋共振波谱法检测自旋加合物的数量,利用自旋加合物的数量来计算原来自由基的多少。 H: V: ESR测自由基是怎么被检测的(细胞,组织,溶液?体内,体外?) (MGD)2 - Fe2 +,是含有10mmol·L- 1MGD 和2mmol·L- 1FeSO4的溶液。 体外捕集:处死后取组织(血液、细胞),加入捕集剂,ESR测定 体内捕集:腹腔注射捕集剂,处死取组织(血液、细胞),ESR测定 腹腔注射几乎没有检测到自由基信号,或者信号很弱,而处死后样品加捕获剂则可以检测到自由基信号。 通用捕获剂 典型的自旋捕捉剂是亚硝基化合物或氮氧化合物,把足够量的自旋捕捉剂加入到产生自由基的体系中,自旋捕获剂就会快速地和任何出现的自由基反应,最后给出稳定的可检测的氮样氧自由基加合物。所形成的自由基加合物的ESR 谱上有被捕自由基基因给出的超精细分裂,可鉴别被捕自由基通用自旋捕获剂所形成的自由基加合物对自由基结构变化相当敏感, ESR 技术检测O-2 O-2可以与1,2-二羟基苯-3,5-二磺酸钠(Tiron)(钛铁试剂)快速反应生成一种称之为“Tiron 半醌自由基”的自旋加合物,比较稳定,可在室温下应用电子顺磁共振波谱仪(EPR)进行检测,从而解决了生理条件下水溶液中寿命极其短暂的O-2·的定性和定量问题 ESR 技术检测·OH DMPO作自由基捕获剂对自由基结构变化相当敏感,可以提供自由基结构的详细信息。它与·OH产生的自旋加合物的ESR谱表现出特别容易识别的特征谱线。在溶液中容易形成的自我捕集产物二聚体自由基不会干扰实验结果。 ESR 技术检测血红蛋白结合的一氧化氮 在组织或血液中,一氧化氮大多与氧或过渡金属反应生成了硝酸盐或亚硝酸盐以及一氧化氮与金属的配合物。一氧化氮与血红蛋白的结合速率常数非常高,而且能够得到有特征的ESR 波谱。利用这一性质,我们可以用血红蛋白作为一氧化氮的捕集剂检测一氧化氮自由基。但是,HbNO 极易氧化,这就限制了这种方法在富氧条件下的应用。 ESR 技术检测生物体系产生的一氧化氮 一氧化氮与含金属蛋白反应产生的亚硝酰的金属配合物,往往会抑制细胞中许多重要的酶,对细胞产生毒害作用。目前应用较多的捕集剂的有Fe2+- (DETC)2,它可与一氧化氮形成稳定的单亚硝酰-铁配合物MNIC,给出特征的ESR 波谱。但由于Fe2+-( DETC)2不溶

超氧阴离子自由基荧光探针法检测及其应用研究

网络出版时间:2012-12-19 08:52 网络出版地址:https://www.doczj.com/doc/c46394411.html,/kcms/detail/11.2206.TS.20121219.0852.010.html 2012-11-20 超氧阴离子自由基荧光探针法检测及其 应用研究 赵永强1,2,林洪1,李来好2,*,杨贤庆2,郝淑贤2,张牧天3 (1.中国海洋大学食品科学与工程学院,山东青岛 266003; 2.中国水产科学研究院南海水产研究所,农业部水产品加工重点实验室,国家水产品加工技术研发中心,广 东广州 510300; 3. 北京师范大学-香港浸会大学联合国际学院,广东珠海 519085) 摘要:该研究以2-氨基吡啶与吡啶-2-甲醛为原料,经亲核取代反应合成了一种新型荧光探针:2-(2’-吡啶 亚胺甲基)吡啶(2-APC),所得目标产物经熔点测定、元素分析、红外光谱与核磁共振波谱等方法表征确认。 利用2-APC与超氧阴离子自由基(O2·-)发生荧光淬灭反应的原理,建立了一种测定邻苯三酚自氧化体系 产生O2·-的方法,该方法反应体系最佳条件为:反应pH=8.2;反应温度T=40℃;反应时间t=40 min。测 定条件为:λex=295 nm、λem=365nm,狭缝宽度5 nm。邻苯三酚在0.4×10-6~8.0×10-6 mol?L-1浓度范围内 与相对荧光强度呈良好线性关系,线性回归方程为y=37.567x+55.581,R2=0.9834。应用该方法对L-抗坏 血酸清除O2·-能力进行评价,结果表明L-抗坏血酸清除O2·-的IC50值为0.182 mmol?L-1。 关键词:超氧阴离子自由基;荧光探针;合成;应用 Fluorescence Probe Method for Superoxide Anion Radical Detection and its Application Study ZHAO Yong-qiang 1,2,LIN Hong1,LI Lai-hao2,*,YANG Xian-qing2,HAO Shu-xian2,ZHANG Mu-tian (1. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P.R.China; 2.Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, P.R.China; Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519085, P.R.China) Abstract:A novel fluorescence probe 2-APC was synthesized by 2-aminopyridine and 2-pyridinecarbaldehyde based on nucleophilic substitution reaction in this study. The reaction product was characterization by melting test, elemental analysis, infrared spectrum and 1HNMR. A fluorescence probe method for superoxide anion radical detection was established. The optimum conditions of this reaction system were as follows, pH, temperature and time of reaction system was 8.2,40 oC and 40 min respectively. The conditions of fluorimetric determination were as follows, λex=295 nm, λem=365nm and the slit width was 5 nm. In the range from 0.4×10-6 M to 8.0×10-6 M, relative fluorescence intensity (y) and pyrogallol concentration (x) were shown a good linear relationship, y=37.567x+55.581,R2=0.9834. Superoxide anion radical (O2·-) scavenging activity of L-ascorbic acid was evaluated using the above mentioned method, the results showed that the IC50of L-ascorbic was 0.182×10-3mol?L-1. Key words:superoxide anion radical, fluorescence probe, synthesis, application 中图分类号:O657.34 文献标识码:A 文章编号: 活性氧是需氧生物细胞进行正常代谢的产物,生物体生命代谢过程中通过非酶反应与酶反应不断产生各种活性氧自由基,如超氧阴离子自由基(superoxide anion radical, O2·-)、过氧化氢(hydrogen peroxide, 收稿日期:2012 基金项目:国家科技支撑计划项目(2012BAD28B00);国家现代农业产业技术体系(CARS-49);国家海洋局海 洋公益性行业科研专项(201005020;2013418018);茂名市科技计划项目(2011A01002) 作者简介:赵永强(1985—),男,博士研究生,研究方向为水产品加工及贮藏工程。E-mail:zhaoyq1122@https://www.doczj.com/doc/c46394411.html, *通信作者:李来好(1963—),男,研究员,博士,研究方向为水产品加工与质量安全。E-mail:laihaoli@https://www.doczj.com/doc/c46394411.html,

潘铜华 超氧阴离子的组织定位

超氧阴离子的组织定位 园艺学院潘铜华 1 前言 【目的】探索超氧阴离子在植物组织中的分布情况,了解超氧阴离子的对植物的影响,学会超氧阴离子含量测定及超氧阴离子组织定位的方法。【意义】超氧阴离子的组织定位是目前国内外许多科研人员正在探索的新方向,国内此方向的研究成果尚存在空白,了解超氧阴离子的组织定位有利于我们下一步的科研进展。【原理】Met+核黄素→超氧阴离子(光下)超氧阴离子+NBT→NBT(蓝色),超氧阴离子+NBT+E(酶)→NBT(淡蓝色) 2. 材料与方法 2.1 材料 新鲜小白菜(切下叶片) 2.2 实验方法 2.2.1 取一颗新鲜的小白菜,剪下上面4片叶片,洗净后放在桌面上一一拍照,然后一起拍照。 2.2.2 将叶片放入250ml烧杯中,加入反应液(含0.1%的NBT,10mmol/L的Nan3的PBs6.4 50ml)中,抽真空20min.,此过程重复2次。 2.2.3 取出叶子,放入固定液中,暗中放置1小时,将烧杯放入100摄氏度水浴中若干分钟以使叶片褪色为黄色。 2.2.4 加入95%的乙醇固定照相,分别对每片叶片拍照及对总体拍照。 3结果如果如下图所示: 3.1实验前小白菜叶片照片: 3.2实验后相应小白菜叶片照片:

4 讨论: 活性氧自由基如超氧阴离子等是与植物的衰老、胁迫伤害等生理过程密切相关的自由基,而植物体内同时存在清楚活性氧的酶系如SOD、 POD 、CAT等,能清除活性氧对植物生理产生的破坏。正常情况下活性氧与清除酶系处于动态平衡关系。逆境胁迫下活性氧自由基含量增加。活性氧能使NBT变蓝,而植物体内消除活性氧的酶系如SOD等能降低活性氧的浓度而使NBT蓝色变淡。在活性氧一定的情况下,颜色越浓说明超氧阴离子浓度越多,反之越少。由图可知,植物叶片颜色更浓的部分超氧阴离子含量更多。 小白菜的维管束是运输有机物的主要通道之一,超氧阴离子会抑制有机物向库的运输,因而在小白菜的维管束周围活性氧的含量更高。 5 实验注意事项: 5.1实验中的很多药品是致癌性药品,在实验过程中务必使人体的任何部位与药品的直接接触,必要时一定要带上手套、口罩,穿实验服等,以免造成不必要的人身伤害。 5.2实验药品不能浪费,适量最好。试验药品用的越多产生的污染就就严重。同时,浪费试验药品也是不爱护公共财产的表现。 5.3叶片最好使用同一颗小白菜的叶片,这样他们的其他条件更趋一致,实验结果更准确。 5.4 拍照时可选纯黑、大红、白色三种北京,拍出的照片效果更好。 5.5 实验时间务必把握好,及时做好实验记录与结果,查询资料,了解实验的一些研究进展。

胞内羟基自由基和超氧阴离子自由基测定

活性氧(ROS)在许多致病过程中起关键作用,包括致癌作用、炎症、缺血再灌注损伤和信号转导。目前开发的几种方法包括电子自旋共振法和化学荧光法。其中,荧光检测在高灵敏度和实验方便性方面是优越的。细胞溶质Ca2+的荧光指示剂,极大地促进了细胞中Ca2+依赖性信号转导的实验研究。然而,几种用于检测ROS的荧光探针(包括2,7-二氢二氢荧光素(DCFH))可与各种ROS(超氧化物,过氧化氢等等)发生反应。此外,DCFH易于自氧化,导致暴露在光下时荧光自发增加。因此,将这些探针视为检测细胞中特定的氧化物质(例如过氧化氢)是不合适的。 胞内羟基自由基测定机理: 2-[6-(4-羟基)苯氧基-3H-黄嘌呤-3-酮基-9-基]苯甲酸(HPF)被设计并合成为新型荧光探针,用于检测选择性高活性氧(hROS),即羟基。这种新开发的ROS指示剂HPF比二氯二氢荧光素二乙酸酯(H2DCFDA)具有更高的特异性和稳定性,因此被广泛用于更精确的胞内ROS 定性测量。 尽管HPF本身几乎不发荧光,但HPF选择性地和剂量依赖性地在与hROS反应时产生强荧光化合物,但不与其他活性氧物质(ROS)反应。因此,通过单独使用HPF,可以将hROS 与过氧化氢,一氧化氮和超氧化物区分开来。此外,HPF对光诱导的自动氧化具有抗性。 胞内羟基自由基测定方法: 在本研究中,用PBS洗涤500 μL藻类培养物,并在黑暗条件和室温下于10 μM HPF (Invitrogen,美国)的终浓度下温育40 min。用PBS洗涤一次后,通过FL1通道检测胞内羟基自由基水平。 胞内超氧阴离子自由基测定机理: 一种名为二氢乙锭(DHE)的荧光素被广泛用于测量细胞内超氧阴离子自由基。DHE可自由透过活细胞膜进入细胞内,并被细胞内的ROS氧化,形成氧化乙啶,氧化乙啶可掺入染色体DNA中,产生红色荧光。根据活细胞中红色荧光的产生,可以判断细胞ROS含量的多少和变化,二氢乙啶在细胞内主要被超氧阴离子型ROS氧化,用流式细胞仪可直接观察。 胞内超氧阴离子自由基测定方法: 在本研究中,用PBS洗涤1 mL藻类培养物,并在黑暗条件和室温下于20 μM DHE(Invitrogen,美国)的终浓度下温育30 min。用PBS洗涤一次后,通过FL2通道检测胞内超氧阴离子自由基水平。

超氧阴离子含量测定

植物体内超氧阴离子自由基含量的测定 一、原理 在生物体中,氧作为电子传递的受体,得到单电子时,生成超氧阴离子自由基(?-2O )。 利用羟胺氧化的方法可以测定生物系统中超氧阴离子含量。超氧阴离子自由基与羟胺反应生成NO 2-, 在对氨基苯磺酸和α-萘胺的作用下,生成对苯磺酸-偶氮-α-萘胺(红色)。该红色产物在530nm 波长处有专一吸收峰。根据NO 2-显色反应的标准曲线将样品测得的A 530换算成定NO 2-的浓度,再根据反应式直接进行超氧阴离子化学计算,得出超氧阴离子浓度。 反应式如下: NH 2OH + 2?-2O + H + → NO 2-+ H 2O 2 + H 2O 三、材料及仪器设备 1. 材料:小白菜。 2. 仪器设备:高速冷冻离心机;分光光度计;研钵;试管;移液管;试管架;移液管架;洗耳球等。 四、实验步骤 1、标准曲线制备 标准液稀释100倍后,按上述表格顺序添加试剂,每一种试剂摇匀。然后至于30℃培养箱中保温30分钟,显色反应后测定A530,以 NO 2-为横坐标,A530为纵坐标,绘制标准曲线。 2、超氧阴离子制备 称取1g 样品放入冰浴的研钵中,加入少量PBS (pH7.8)5ml, 研磨成匀浆,定容10ml ,在8000r/min ,4℃下离心10min ,取上清液备用。 3、超氧阴离子的测定 -

25℃保温20min - 上述反应液(ml) 2.0 对氨基苯磺酸(ml) 2.0 α-萘胺(ml) 2.0 30℃恒温箱中保温30min 4、含量计算 从标准曲线中计算出测定液对应NO2-的浓度,并换算成超氧阴离子的浓度(X),再算出超氧阴离子的含量。 超氧阴离子的含量(μg-1FW)=2X·V t·n/g·FW·V s V t为样品提取液总体积;n为稀释倍数;V s为显色时取样品体积;X为从标准曲线上计算出的浓度。 五、实验结果 5.1 标准曲线 y = 19.025x R2 = 0.97314 5.2 样品测定 样品A530=0.046 NO2-的浓度=0.046/19.025=0.0024ug/ml 超氧阴离子的含量(μg·g-1FW)=2X·V t·n/g·FW·V s=2*0.0024*10*6/(1*2)=0.144 六、注意事项 如果样品中含有大量叶绿素将干扰测定,可在样品液与羟胺温浴后,加入等

清除自由基能力的研究概况

清除自由基能力的研究概况 陶涛 (西南林业大学林学院农学(药用植物)昆明 650224) 摘要:自由基及其诱导的氧化反应是导致生物衰老和某些疾病如癌症、糖尿病、一心血管疾病等的重要因素。乳酸茵作为一种高效、低毒的生物源天然抗氧化荆,正逐步受到食品、制药、化工等领域的广泛关注。就目前国内外常用的乳酸茵抗氧化活性的筛选方法、乳酸茵抗氧化机理的国内外研究进展及未来的发展趋势作一综述。 关键词:自由基;乳酸茵;抗氧化. Study on the scavenging ability of lactic acid bacteria on free radical bstract:Free radical and its inducing oxiditative reaction may CaUSe biological doat and certain diseases such as Cancers,diabetes and the cat- diovascular.The lactic acid baaeria as one ofbiological SOUrCeS oxidation inhibitor is becoming more and more popular in the fields offood.,drug manufacture and chemical industry.This article mainly reviews the screening methods for antioxidative of lactic add bacteria among domestic and foreign countries,the advance of the research progress in lactic add bacteria antioxidative and r∞earch trends in future. 引言 氧化过程可以提供能量.对大多数生物体来说,是维持生命必不可少的一个能量转化过程。但过多的氧化过程会对生物大分子引起损伤.氧化损伤主要是由于自由基和过氧化产物作用于人体而产生的。 自由基(free radicals)27..称游离基.为人体氧化代谢过程中形成含有一个不成对电子的原子或原子团。人体的自由基主要包括超氧阴离子自由基(o2)、

清除氧自由基

1、超氧负离子 黄嘌呤-黄嘌呤氧化酶系统产生超氧负离子产生超氧负离子 黄嘌呤、黄嘌呤氧化酶、 清除超氧自由基负离子O2- 徐艳,曲婷婷. 甘草消除氧自由基的体外研究[J]. 食品研究与开发,2006,(8). 2、1.2.2NBT 光还原反应中主要试剂的配制 1.2.2.1 测试缓冲液: 0.026 mol/LMet- 磷酸钠缓冲液具体配制方法: 首先配制0.1 mol/LpH7.8Na2HPO4- NaH2PO4缓冲液 a 称取Na2HPO4·12H2O( MW=358.14) 3.581 4 g 于100 mL 小烧杯中, 加少量蒸馏水溶解后, 移入100 mL容量瓶中, 用蒸馏水定容至刻度。 b 称取NaH2PO4·2H2O(MW=156.01)0.780 g 于50 mL小烧杯中, 加少量蒸馏水溶解后, 移入50 mL 容量瓶中, 用蒸馏水定容至刻度。 c 量取91.5 mL a 液与8.5 mL b 液混合后, 该液即为0.1 mol/LpH7.8 磷酸钠缓冲液。 d 称取L- Met( MW=149.2) 0.194 1 g 于50 mL 小烧杯中, 用少量0.1 mol/LpH7.8 磷酸钠缓冲液溶解后, 移入50 mL 容量瓶中, 用0.1 mol/LpH7.8 磷酸钠缓冲液定容至刻度。 1.2.2.2 NBT( 氯化硝基四氮唑蓝) 的配制(7.5×10-4mol/L) 称取NBT( MW=817.7) 0.061 3 g 于50 mL 小烧杯中, 用少量蒸馏水溶解后, 移入100 mL 容量瓶中, 用蒸馏水定容至刻度。 1.2.2.3 核黄素溶液(2×10-5 mol/L) a.称取EDTA( MW=292) 0.002 92 g 于50 mL 小烧杯中, 用少量蒸馏水溶解。 b.称取核黄素( MW=376.36) 0.073 5 g 于50 mL 小烧杯中, 用少量蒸馏水溶解。合并 a 液和 b 液, 移入100 mL 容量瓶中, 用蒸馏水定容至刻度( EDTA0.1 mmol,核黄素2 mmol)。贮于冰箱中, 避光保存, 用时稀释100 倍。 1.2.3 甘草提取物溶液的配制 1.2.3.1 甘草酸溶液的配制 称取甘草酸0.05 g 用少量稀醇(10 %乙醇溶液)溶解后, 移入50 mL 容量瓶中, 用稀乙醇定容至刻度, 即为 1 g/ mL 的甘草酸溶液。 1.2.3.2 甘草次酸溶液的配制 称取甘草次酸0.05 g 用少量稀醇(10 %乙醇溶液)溶解后, 移入50 mL 容量瓶中, 用稀乙醇定容至刻度,即为 1 g/mL 的甘草次酸溶液。 1.2.3.3 甘草总黄酮组溶液的配制

超氧阴离子自由基清除

一.实验原理: 该方法利用NADH-PMS-NBT为超氧阴离子(O2·-)生成系统,超氧阴离子清除剂能减少NBT 的蓝色。通过检测560nm处吸光值可判断体系中还原物质的还原能力。 二.实验仪器:分光光度计 三.实验试剂: 一:液体40mL×1瓶; 二:液体1mL一瓶; 三:粉剂一支; 四:粉剂一支; 五:1mg/mL芦丁标准品,1mL 四.溶液配制: 一工作液:用时加双蒸水360mL,也就是10倍稀释,得到400mL试剂一工作液; 二工作液:用赠送的棕色瓶配制。试剂二工作液由试剂二加上100mL试剂一工作液配得,现配现用,注意避光; 三工作液:试剂三工作液由试剂三溶解于100mL试剂一工作液配得,现配现用; 四工作液:粉剂一支。用50mL双蒸水溶解,摇匀后,取10mL,加入90mL试剂一,配成试剂四工作液,现配现用,用赠送的棕色瓶盛装。注意避光,配好的试剂请于2小时内用完。五工作液:阳性对照,按需配制,-20℃保存。 五.实验步骤: 测定吸光值。

六.清除能力计算: 超氧阴离子自由基清除(%)=[空白孔吸光值-(测定孔吸光值-对照孔吸光值)]/空白孔吸光值*100 注: 1 如未做对照孔,可以将其视作为0; 2 阳性对照求值时将其视作测定孔进行计算即可。 七.注意事项: 1. 如样品中色素物质不是分析对象,建议先通过SEP C18柱进行脱色处理,处理后样品可不做对照孔; 2. 如不确定样品的超氧阴离子自由基清除能力,可先做不同浓度的稀释液进行摸索,并选择适宜浓度进行测定,高浓度下,浓度与清除率间并不线性相关。 3. 试剂三建议全程冰上操作。试剂四切记避光保存,特别是配制后,且应尽快用完。建议在做好一切其它准备工作后再配制试剂四应用液。试剂四正常颜色为黄色,强光照射下,5-10分钟内会变为绿色,随后变为蓝色,变色后试剂不可再用! 4. 试剂二、三应用液和样品混匀后再加入试剂四,次序颠倒会导致不显色。 5. 部分物质会导致显色加深,导致求得的抑制率是负值,如遇到此类现象请先确定该物质是否具有超氧阴离子清除能力,再考虑更换方法,如邻苯三酚自氧化法等进行测试。

植物超氧阴离子自由基含量的测定LT

植物超氧阴离子自由基含量的测定 一、实验目的 了解实验原理,掌握实验技术 二、实验原理 超氧阴离子(O?? 2)能与羟胺反应生成NO3-,反应式为: NH2OH+2O?? 2+H+ = NO2-+H2O2+H2O 其中NO2-进一步反应生成对氨基磺酸、反应后再生成α-苯胺,最后生成红色的偶氮化合物。其中,偶氮化合物在520nm到560nm下有吸收峰,本次实验在530nm下进行比色。 三、实验材料与仪器 植物材料 小麦叶片,荠菜叶片 试剂 NaNO2- AR 100μl;蒸馏水;对氨基酸苯磺酸;α-苯酸;PBS;盐酸羟胺;对氨基苯磺酸;α-苯胺。 仪器 可见光分光光度计,型号V-1100D 四、实验方法 1.标准曲线 1 2 3 4 5 6 7 NO2-标准液(50μg/ml)0 0.2 0.4 0.8 1.2 1.6 2.0 蒸馏水 2.0 1.8 1.6 1.2 0.8 0.4 0 对氨基酸苯磺酸 2.0 2.0 2.0 2.0 2.0 2.0 2.0 α-苯酸 2.0 2.0 2.0 2.0 2.0 2.0 2.0然后置于30o C培养箱中保温30min显色反应测定A530,以NO2-为横坐标,A530值为纵坐标,绘制标准曲线。 2. O?? 2的提取 小麦叶片称取1.0g。加入少量PH7.8的PBS研磨。之后定容到5ml。10000rpm 45o C离心 10min。之后取上清液备用。 注:空白对照直接用上清液显色测本底值NO2-含量。 3.组织中O?? 2测定 (1)NO2-的产生 O?? 2 PBS 盐酸羟胺标样 2.0 1.5 0.5 调零 2.0 2.0 0 之后置于25o C保温20min (2)NO2-显色,调标准线

相关主题
文本预览
相关文档 最新文档