当前位置:文档之家› 线性代数————第3章:线性方程组

线性代数————第3章:线性方程组

线性代数————第3章:线性方程组
线性代数————第3章:线性方程组

线性代数————第3章:线性方程组

一、例题解析:

1.单项选择题

(1)向量组[][][][]

αααα1234110100111001====,,,,,,,,,,,的极大线性无关组是( )。

A. αα12,

B. αα24,

C. ααα134,,

D. ααα123,, 解:因为向量组ααα123,,线性无关,而向量组ααα134,,线性相关,所以原向量组的极大线性无关组是ααα123,,。

正确答案:D

(2)设线性方程组的增广矩阵为?

?

?????

??

???--000

0103006211041231,则此线性方程组的一般解中自

由元的个数为( )。

A. 1

B. 2

C. 3

D. 4

解:因为方程组中未知量个数是4,增广矩阵的秩)(B A r =3,所以 一般解的自由元个数 = 方程组中未知量个数 - )(B A r = 4-3=1 所以,线性方程组的一般解中自由元的个数为1。

正确答案:A (3)n 元齐次线性方程组0=AX 有非零解的充分必要条件是( )。

A. n A r =)(

B. n A r >)(

C. n A r <)(

D. )(A r 与n 无关 解:n 元齐次线性方程组0=AX 有非零解的充分必要条件是n A r >)( 正确答案:C

(4)设线性方程组B AX =的两个解21,X X )(21X X ≠,则下列向量中( )一定是B AX =的解。

A. 21X X +

B. 21X X -

C. 212X X -

D. 122X X - 解:因为B B B AX AX X X A =-=-=-22)2(1212,

所以122X X -是线性方程组B AX =的解。 正确答案:D

2. 填空题

(1)一个向量组中如有零向量,则此向量组一定线性 。 解:设0, m αα,,1 为一组n 维向量,取00≠k ,01===m k k ,则

0k 0 +m m k k α++α 11= 0

由定义可知,向量组0, m αα,,1 线性相关。 正确答案:相关

(2)线性方程组B AX =中的一般解的自由元的个数是2,其中A 是54?矩阵,则方程组增广矩阵)(B A r = 。

解:因为一般解的自由元个数 = 方程组中未知量个数 - )(B A r

所以,)(B A r = 5-2=3。 正确答案:3

(3)设向量=1α,)523(,)101(,)321(2'='='βα则+=1αβ 2α

解:因为k 2α=1αβ-=)202(',所以k = 2。

正确答案:2

(4)若线性方程组??

?=+=-102121x x x x λ无解,则λ____。

解:

因为 )(B A =?????

?-10111λ?

?????+-→101011λ 当1-=λ时,1)(=A r ,2)(=B A r ,所以方程组??

?=+=-10

2121x x x x λ无解。

正确答案:1-=λ

3.计算题

(1) 求向量组=1α)100

1(',)0010(2'=α,)1111(3'=α,

)0111(4'=α,)1011(5'=α的秩和向量组的一个极大线性无关组。

解:

=),,,,(54321ααααα????????????-→????????????0100001100111101110110101011001111011101 =∴),,,,(54321αααααr 4,且向量组的一个极大无关组为4321,,,αααα。

注:向量组的极大无关组不唯一,如:本向量组的极大线性无关组也可以是

5321,,,αααα,但向量组的极大无关组的个数是唯一的。本向量组的极大无关组的个数是4。

(2) 当b a ,取何值时,线性方程组

??????

?=-+=+=-+=++b

x x x x x a x x x x x x 3213232132145363231

有解?在有解的情况下求全部解。

解:因为

????????????-----→????????????------→?????????

???--=20000003610111

1561036103610111114536103231111)(a b a a b a b a B A 当2,0==b a 时,方程组有解,且一般解为

??

?+-=-=36253231x x x x (其中3x 是自由元)

令03=x ,得到一个特解为[]'

-=0320X

相应齐次线性方程组的一般解为

??

?-==323

165x x x x (其中3x 是自由元)

令13=x ,得[]'-=1651X ,}{1X 为一个基础解系。

方程组的全部解为110X k X X +=(其中k 1

是任意常数)。

(3) 解线性方程组 x x x x x x x x x x x x x x x x 123412341234123421

5320342221+--=-+--=-++=-++-=??

?????

解 先写出增广矩阵][B A ,再用初等行变换将其逐步化成阶梯形矩阵,即

][B A =???????

??

???--------1112

2241130235111211②①③①④①+-+-+?→???()()

132

?

?

????

???

???---------1334057740

1114011211

③②

④②++-?→???()

1????????????--------222006660

01114011211④③+?→???()1

3?

?

?????

?????-----00000

666001114011211

最后一个增广矩阵表示的线性方程组为

x x x x x x x x x 1234234342141666+--=---=+=???

?

? 将最后一个方程乘1

6,再将x 4项移至等号的右端,得

x x 341=-+

将其代入第二个方程,解得

212=x 再将x x 23,代入第一个方程组,解得 2141+-=x x

因此,方程组(3.3)的解为

???

??+-==+-=1

212143241x x x x x

其中x 4可以任意取值。令x 4=1,得方程组的一个特解:x 112=-

,x 21

2=

x 30=,x 41=,或表示为X=(

x 112=-

,x 21

2=,x 30=,14=x ,)’

相应齐次方程组的一般解为

???

??-==-=43

2410x

x x x x x 4为自由未知量,令x 4=1,得一个基础解系

X 1=(-1,0,-1,1)’ 因此方程组的全部解为

???????????

?+-+-=????????????k k k x x x x 121214321=?

?????

??????+????????????--0121211101k

(4) 设齐次线性方程组0=AX 的一般解为

??

???

-=-=4

3231

23

21x x x x x (其中43,x x 是自由元)

求此齐次线性方程组的一个基础解系并求通解。

解:由方程组中一般解??

???-=-=4

3231

23

21x x x x x (其中43,x x 是自由元)

令0,243==x x ,得=1X []'

-02

31

令1,043==x x ,得=2X []'-1010。

{}21,X X 是方程组的一个基础解系。

方程组的通解为=X 2211X k X k +,其中21,k k 是任意常数。 (5).设非齐次线性方程组AX=B的增广矩阵(A┆B)经过初等行变换得到如下矩阵

当λ为何值时,方程组有解,并求出它的一般解.

解:当λ=5时,方程组有解,且有无穷解

将阶梯形矩阵继续化为行简化的阶梯形矩阵得:

????? ??---???→?500003735024121)(λ初等行变换

B A ????

??

?

?

??-?→?????

? ??--000005357531054565101000003735024121???--=4

31614x x x

一般解为: 其中x 3 , x 4为自由元.

4.证明题

设向量组,1αm αα,,2 ,如果,1α)(,,2m s s <αα 线性相关,证明,1αm αα,,2 必线性相关。

证明: 因为向量组1αs αα,,,2 线性相关,故存在一组不全为0的数,,,,21s k k k 使 02211=+++s s k k k ααα

于是存在不全为0的数,,,,21s k k k s m -0,,0,0

使得00012211=+++++++m s s s k k k ααααα 成立,由相关性定义知1αm

αα,,,2 必线性相关。 二、对照练习 1.单项选择题 (1)。设向量α1=(1,1,1),α2=(1,1,0),α3=(1,0,1),

α4=(0,1,1),则向量组α1,α2,α3,α4共有( )个不同的线性极大无关组.

A 1 B 2 C 3 D 4 (2).一个向量组中的极大线性无关组( )

A 个数唯一 B 所含向量个数唯一 C 个数不唯一 D 所含向量个数不唯一 (3).设线性方程组的增广矩阵是

则这个方程组解的情况是( ). A 有唯一解 B

有3个解 C 有无穷多解 D 无解 (4).线性方程组AX=B无解,则( ).

A 秩(A)<秩(A┆B) B 秩(A)>秩(A┆B) C 秩(A)=秩(A┆B) D 秩(A)=秩(A┆B)+1 (5).对于向量组α1,α2,…,αs ,因为有0α1+0α2+…+0αs =0,则

α1,α2,…,αs 是( )向量组. A 全为零向量 B 线性无关 C 任意 D 线性相关

2.填空题 (1).已知α1=(t, 0, 1),α2=(0, t 2+1, 0), α3=(-1, 0, t -2)线性相关,则t= . (2).向量组α1=(1,-2,0,1),α2=(2,5,-1,1),

α3=(-3,-3,1,-2)的极大线性无关组所含向量的个数是 . (3).设n 元n 个方程的线性方程组AX=B ,如果r(A)=n ,其相应齐次方程组 AX=0 解. (4).线性方程组Am ×n Xn ×1=Bm ×1(m>n)有唯一解的充要条件是 . (5).若X0是线性方程组AX=B的一个解,X1 ,X2是所对应的齐次线性方程组 AX=0的一个基础解系,则方程AX=B的全部解是 . 3.计算题 (1).设有向量组

?????

?? ??-----82000410007811050321

α1=(1,0,1,-1)' α2=(-1,2,1,-1)' α3=(0,1,1,-1)' α4=(-1,3,-2,-2)' 求它的秩和一个极大线性无关组.

(2).设有线性方程组 ,当λ为何值时,方程组有解,并求出它的一般解.

(3).已知非齐次线性方程组的一般解为

其中x 3 ,x 4为自由元,求相应齐次线性方程组的基础解系. (4) 解线性方程组 x x x x x x x x x x x x 123123123123234

235743992588+-=+-=+-=+-=??

?????

(5) 解线性方程组 x x x x x x x x x 1231231231242253

++=-+-=+-=???

??

(6) 判别下列齐次方程组是否有非零解? x x x x x x x x x x x x x x x x 123412341234123437802544037230412160+--=+++=----=+--=??

?????

(7) 判别下列方程组是否有解?若有解,是有唯一解还是有无穷多解?

(ⅰ) x x x x x x x x x x x x 1231231231232311

7236324+-=---+=-+=-++=??

?????

(ⅱ)

x x x x x x x x x x x x 1231231231232311

27236325+-=---+=-+=-++=??

?????

(ⅲ) x x x x x x x x x x x x 12312312312323117236325+-=---+=-+=-++=??

?????

(8).求方程组的通解 4.证明题 ???

???

?-=++=4

324313

121427x x x x x x ?????=+-+=+-+=++-λ4321

43214321114724212x x x x x x x x x x x x ?????=+--=+++-=-+-1

442202122432143214321x x x x x x x x x x x x

设321,,ααα是线性无关的,证明, 313221,,αααααα+++也线性无关.

参考答案:1。 (D, B,D ,A ,C ) 2.(1)1 ,(2)2 ,(3)只有零 ,(4)r (A)=r (A┆B)=n , (5)X=X0+k1X1+k2X2) 3.(1)α1,α2,α4或α1,α3,α4 (2)λ=5 (其中x 3,x 4自由未知量), (3)X1=(7,4,2,0)' X2=(12,-1,0,3)')

(4) x x x 1233

21===???

??

,(5)原方程组无解,(6)齐次方程组只有零解

(7)无解,无穷多解,唯一解。

(8) X=(5/6,1,0,-1/6)'+k(-3,-5,0,1)'

???

????+-=+--=533575354

5651432431x x x x x x

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

线性代数第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解: ∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4 T T =-----=- ∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]T T T αα+=-+-= 2.设 12[2,5,1,3],[10,1,5,10],T T αα== 3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α 解: ∵ 1236325αααα=+- [6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24], T T T T =+--= ∴ [1,2,3,4].T α= 3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ====L 时, 11220m m k k k ααα+++=L 成立, 则向量组12,,m αααK 线性相关 解:不正确.如:[][]121,2,3,4T T αα==,虽然 12000,αα+=但12,αα线性无关。 (2) 如果存在m 个不全为零的数12,,,,m k k k L 使 11220,m m k k k ααα+++≠L 则向量组12,,,m αααL 线性无关。 解: 不正确. 如[][]11121,2,2,4,1,2,T T k αα====存在k 使 121220,,.αααα+≠但显然线性相关 (3) 如果向量组12,,,m αααL 线性无关,则其中任何一个向量都 不能由其余向量线性表出. 解: 正确。(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m αααL 线性相关,与题没矛盾。 (4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。 解:不正确。例如:[][][]1230,0,0,0,1,0,0,0,1,T T T ααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。 (5) 如果向量β可由向量123,,ααα线性表示,即: 112233,k k k βααα=++则表示系数 123,,k k k 不全为零。 解:不正确。例如:[][][]120,0,0,1,0,0,0,1,0,T T T βαα=== []31230,0,1,000T αβααα==++,表示系数全为0。 (6) 若向量12,αα线性相关,12,ββ线性无关,则1212,,,ααββ线性相关.

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数练习册第三章答案(本)

第三章 行列式及其应用 §3-1 行列式的定义 一、填空题。 1、行列式a b c d =__ad bc -___;112 2 13141 ---=____-24____. 2、行列式 1 111 1 21 21 2 00 000 a a a a b b c c d d =______0_____. 3、已知行列式1111111 1 11111111 D -= -----,则32M =___4__;32A =___-4__. 4、已知排列2145697m n 为奇排列,则m =__8_;n =__3_. 5、4阶行列式中含1331a a 且符号为负的项是____ 13223144a a a a -____. 二、选择题。 1、方程01 1 0001x x x =的实根为__C___. (A )0; (B )1; (C )-1; (D )2. 2、若n 阶行列式中零元素的个数大于2n n -,则此行列式的值为__A__. (A )0; (B )1; (C )-1; (D )2. 3、排列396721584的逆序数为__C__. (A )18; (B )19; (C )20; (D )21 4、n 阶行列式001 020 00 D n = 的值为__D ___. (A )!n ; (B )!n -; (C )(1)!n n -; (D )(1)2 (1) !n n n --.

5、行列式312111321111x x x x x --中4 x 的系数为__A____. (A )-1; (B )1; (C )2; (D )3. 三、计算下列行列式 1、12 1 10001- 解:33 312 121 10(1)(1)1 11 001 r +--=-按展开 2、 1010120012301234 解:444321010 101 1200 4(1)120 1230 123 1234101 412024 003 r r +--=按c 展开 3、 11321011 23011 002 -- 解:

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数与概率统计及答案

线性代数部分 第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 5. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 6.设行列式 n a a a a =22 2112 11 , m a a a a =21 2311 13 ,则行列式 23 2221131211--a a a a a a 等于() A. m n - B.)(-n m + C. n m + D.n m - 二、填空题 1. 行列式=0 100111010100111.

2.行列式010...0002... 0......... 00 0 (10) 0 0 n n = -. 3.如果M a a a a a a a a a D ==333231 232221 131211 ,则=---=32 32 3331 2222232112121311133333 3a a a a a a a a a a a a D . 4.行列式= --+---+---1 1 1 1 111111111111x x x x . 5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为 . 6.齐次线性方程组??? ??=+-=+=++0 0202321 2 1321x x x kx x x x kx 仅有零解的充要条件是. 7.若齐次线性方程组?? ? ? ?=+--=+=++0 230520232132321kx x x x x x x x 有非零解,则k =. 三、计算题 2.y x y x x y x y y x y x +++; 3.解方程 00 11 01110111 0=x x x x ; 6. 111...1311...1112... 1 ... ...... 1 1 1 ...(1)b b n b ----

线性代数习题[第三章]-矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆 (2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ?? ??=--?? ??-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ?? ?? ??=???? ?? L L L L L L L 01,2,,i i a b i n ≠? ? ??=?? L 2.设12312323k A k k -?? ??=--?? ??-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3) ()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

第三章线性代数方程组

第3章 线性代数方程组 3.1.1 矩阵秩的定义 定义1 矩阵A 的k 阶子式 在n m ?矩阵A 中任取k 行,k 列()()n m k ,m in 1≤≤,位于这k 行,k 列交叉点处的元素按原来次序组成的行列式,称为A 的一个k 阶子式。 定义2矩阵A 的秩 设在矩阵A 中有一个不等于零的r 阶子式D ,且所有的r +1阶子式(如果有的话)全等于零,那么D 称为矩阵A 的最高阶非零子式,数r 称为矩阵A 的秩,记为)(A rank ,简记为()A r 。 定义3 满秩阵 设A 为n 阶方阵,若()A r =A ,则称A 为满秩阵。 3.1.2 矩阵秩的性质 (1)()();A r A r T = (2)()(),A r A r =λ其中0≠λ; (3)()0=A r 等价于0=A ; (4)()()n m A r n m ,m in ≤?; (5)设A ,B 为同阶矩阵,则 ()()()B r A r B A r +≤+ (1) 设A 为n m ?矩阵,B 为s n ?矩阵,则 ()()()() ()()()n B r A r AB r B r A r AB r -+≥≤,min 特别当AB =0时,()()n B r A r ≤+成立。 (7)()()()()()()B r A r B D A r B r A r B C A r B r A r B A r +≥?? ????+≥??????+=??????0000 3.1.3 矩阵秩的有关结论 (1)初等变换不改变矩阵的秩,即 若A ∽B,则()()B r A r =

(2)矩阵乘上一个可逆阵不改变原矩阵的秩,即当A 可逆时,有 ()()B r AB r =;()()B r BA r = (3) 设A 为n 阶方阵,则其转置伴随阵的秩为 () ()()()?? ? ??-≤-===2 011 *n A r n A r n A r n A r (4)设A 为方阵,则()n A r A =?≠0。 3.1.4 矩阵秩的求法 (1)用定义求矩阵的秩。 (2)用初等变换法求矩阵的秩。 (3)用性质求矩阵的秩。 (4)用有关结论求矩阵的秩。 (5)用齐次线性方称组的基础解系讨论矩阵的秩。 3.1.5 系数矩阵可逆的线性代数方程组的求解 问题:求b Ax =的解,其中0≠A 。 方法(1) 克莱娒法则 ()n i A D x i i ,2,1== ,其中i D 为右端列b 取代A 的第i 列所构成的行列式。 方法(2)逆矩阵法 b A x 1 1 --=,其中A A A *1 =-或用()()1-?→?A I I A 行求1 -A 。 方法(3) G 法 将增广矩阵()b A 经过行初等变换化为行梯形阵,回代求解。 方法(3)G -J 法 将增广矩阵()b A 经过行初等变换化为行标准形后得解。 3.1.6 齐次线性方程组 0=?x A n m (1)齐次线性方程组有解的条件 0=x 为0=Ax 的平凡解。 当()n A r =时,0=Ax 只有零解。 ()n A r 时,0=Ax 有含()A r n -个参数的无穷多组解。 注0=Ax 有非零解()n A r ?。 (2)齐次线性方程组解的求法

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A 1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1 ,3)T T T =--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223?????? ? ? ? ? ? ?+-=+- ? ? ?-- ? ? ?-??????ααα1251613109491512561037???????? ? ? ? ? ? ? ? ?=+-= ? ? ? ?--- ? ? ? ?--???????? . 2.从以下方程中求向量α 1233()2()5()-++=+αααααα, 其中123(2,5,1,3),(10,1,5,10),(4,1 ,1,1).T T T ===-ααα 解 由方程得1233322550-++--=αααααα, 1232104651112 632532515118310124???????? ? ? ? ? ? ? ? ?=+-=+-= ? ? ? ?- ? ? ? ?????????αααα 故12 34?? ? ?= ? ??? α,即(1,2,3,4)T =α. 3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα 4.证明: 包含零向量的向量组线性相关. 证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有 12110α0αα00α0α0,0i i s k k -++++++++=≠ 而0,0,,0,,0,,0k 不全为0,故向量组线性相关. 5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关. 6.判断下列向量组的线性相关性

考研线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数第三章(答案)

第三章 矩阵的初等变换与线性方程组 一、填空题 1、 设???? ?? ? ??=n n n n n n b a b a b a b a b a b a b a b a b a A 2 1 2221 212111,其中),,2,1(,0,0n i b a i i =≠≠,则=)(A R ____ 2、 设n 阶矩阵A 的各行元素之和均为零,且=)(A R n -1,则线性方程组AX =0 的通解为________ 3、 设四阶方阵的秩为2,其伴随矩阵的秩为_______ 4、 设?????? ? ??=---112 11 22 221 21n n n n n n a a a a a a a a a A ,??????? ??=n x x x X 21,???? ??? ??=111 B ,其中 ),,2,1,,(n j i j i a a j i =≠≠,则线性方程组B AX =的解是________ 5、 已知????? ? ?=10 0210 002 P ,??? ? ? ? ?=20 0020 001A ,则=-1001)(AP P ________ 6、 设A ,B 均为n 阶矩阵AB =0,且A +B=E,则=+)()(B R A R _________ 7、 设矩阵n m A ?的秩为r ,P 为m 阶可逆矩阵,则)(PA R =________ 8、 矩阵??? ?? ??--34031302 1201 的行最简形矩阵为___________ 9、 矩阵??? ? ? ? ?----17 4 03430 1320的行最简形矩阵为__________ 10、 从矩阵A 中划去一行得到矩阵B ,则)(______)(B R A R 从矩阵A 中增加一行得到矩阵B ,则)(______)(B R A R

线性代数第三章课后习题

习题三 (A ) 1. 用矩阵的初等变换把下列矩阵A 化为行阶梯形矩阵、行最简形矩阵及标准形矩阵: (1) 112332141022-?? ?= ? ???(2)111113 1320461135-?? ?- ?= ? ???(3)2451212211 1212136363--? ? ? -- ?= ? -- ?---?? 2.设A 123012425? ? ?=- ? ???,010(1,2)100001? ? ?= ? ???E ,100(3,2(5))010051?? ? = ? ??? E . 试求(1,2)E A ;(1,2)AE ;(3,2(5))E A . 3.用初等变换求下列方阵的逆矩阵: (1) A 101110012?? ?=- ? ??? (2)A 211124347--?? ?=- ? ?-??(3)A 1111022200330004?? ? ?= ? ??? 4.用初等变换解下列矩阵方程: (1) 设A 101110120? ? ? = ? ???,102102-?? ?= ? ??? B ,且AX =B ,求X . (2)设A 220213010? ? ?= ? ??? ,且+AX =A X ,求X . 5.设矩阵A 122324111222-?? ?=-- ? ?-?? ,计算A 的全部三阶子式,并求()R A . 6.在秩为r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?请举例说明. 7.从矩阵A 中划掉一行得到矩阵B ,问A ,B 的秩的大小关系怎样? 请举例说明. 8.求下列矩阵A 的秩: (1) 310211311344?? ? =-- ? ?--??(2 )1121224230610304-?? ?- ?= ?- ?-??(3)1221 12480 22423336064--? ? ? - ?= ?-- ?--?? (4) 112205123λλλ-?? ?= ? ?-?? (5) 111 111λ λλ?? ? = ? ???

线性代数第五章习题答案

思考题5-1 1. 1123123100,000=?+?+?=?+?+?a a a a 0a a a . 2.不一定。例如,对于123101,,012?????? ===???????????? a a a ,它们中的任两个都线性无关,但 是123,,a a a 是线性相关的。 3. 不一定。也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。 4. 不一定。例如,对于12121100,;,0012-???????? ====???????????????? a a b b 。12,a a 和12,b b 这两个 向量组都线性相关,但1122,++a b a b 却是线性无关的。 5. 向量组121,,,,n n +a a a a 线性无关。根据定理5-4用反证法可以证明这一结论。 习题5-1 1.提示:用行列式做。 (1)线性无关。 (2)线性相关。. 2. 0k ≠且1k ≠。 3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。 设[]12,,,,T n b b b =b 则1122.n n b b b =+++b e e e 4. 证法1:因为A 可逆,所以方程组=Ax b 有解。根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关. 证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。 5. .证: (1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0 由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。 (2)若P 可逆,则1-=A P B 。由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。 注:该题也可根据性质5-6和性质5-3来证明。 6. 证:由A 可逆知,A 的列向量组线性无关。根据定理5-6,增加两行后得到的矩阵B 的列向量组也线性无关.

线性代数第三章习题解

线性代数第三章习题解 1. 计算下列行列式: 1) 4 321; 2) 2 2b b a a ; 3) 7 04 0- 解: 1) 26432414 321-=-=?-?=; 2) )(222 2a b ab b a ab b b a a -=-=; 3) 0)4(0707 40=-?-?=-. 2. 计算下列三阶行列式: 1) 241130 4 21--; 2) 320001753-; 3) b a c a c b c b a 解: 1) 将行列式按第一列展开 2) 将行列式按第二行展开 3) 3. 计算下列行列式: 1) 0 00 0000005 5 4433 2222211111b a b a b a e d c b a e d c b a ; 2) x y y x y x y x D n 0 0000 000 00 =; 3) f e d c b a 00000000 解: 1) 将行列式按第一列展开后, 得到的各子式再按第二列展开, 这样展开后的后三列构成的任何三阶子式都至少包括一行0, 因此后三列任何三阶子式均为0, 整个行列式的值D =0. 2) 将行列式按第一列展开得 3) 先对第一列展开, 然后对第二列展开, 得 4. 利用行列式的性质计算下列行列式

1) 2 60 5 232112131412 -; 2) ef cf bf de cd bd ae ac ab ---; 3) 2 2 2 2 2222 2 2222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a 解: 下面都将所求行列式的值设为D . 1) 因为第1行加到第2行以后, 第2行将和第4行相等, 因此行列式的值D =0; 2) 首先从第1,2,3行分别提取公因子a ,d ,f , 再从第1,2,3列提取公因子b ,c ,e , 得 3) 将第2,3,4列都展开, 并统统减去第1列, 得 再将第3列减去2倍的第2列, 第4列减去3倍的第2列, 得 5. 把下列行列式化为上三角形行列式, 并计算其值 1) 1 5 2 3 21353140422 -----; 2) 2 1 6 4 72954 1732152----- 解: 1) 2) 6. 计算下列n 阶行列式 1) 12125 4 3 1432321-n n n 2) a b b b a b a 解: 1) 设此行列式的值为D , 将第2,3,…,n 列均加于第一列, 则第一列的所有元素均为 )1(2 1 321+= ++++n n n , 将此公因式提出, 因此有 再令第n 行减去第n -1行, 第n -1行减去第n -2行, …, 第2行减去第1行, 可得 2) 此题和第3题的2)一样, 因此有n n n b a D 1 )1(+-+= 7. 证明下列行列式 1) ))()((1 11 a c c b b a ab ca bc c b a ---=

居余马线性代数第三章课后习题

第三章 课后习题及解答 将1,2题中的向量α表示成4321,,,αααα的线性组合: 1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T 4T 3T 21T --=--=--===αααααT 2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα 解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得 14321=+++k k k k 24321=--+k k k k 14321=-+-k k k k 14321=+--k k k k 解得.41 ,41,41,454321-=-=== k k k k 所以43214 1 414145ααααα--+= . 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得 02321=++k k k ,04321=+++k k k k , 0342=-k k ,1421=-+k k k . 解得 .0,1,0,14321=-===k k k k 所以31ααα-=.

判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T 3T 2T 1===ααα 4. ()().3,0,7,142,1,3,0,)4,2,1,1(T 3T 2T 1==-=βββ, 解: 3.设存在 321,,k k k 使得0332211=++αααk k k ,即 ??? ??=++=++=+0650320321 32131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关. 4.设存在 321,,k k k 使得0332211=++βββk k k ,即 ?????? ?=++=++=+-=+0 142407203033213212 131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件. 解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性 无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是 0=α. 6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,

相关主题
文本预览
相关文档 最新文档