当前位置:文档之家› 兴奋性递质和抑制性递质的作用机理

兴奋性递质和抑制性递质的作用机理

兴奋性递质和抑制性递质的作用机理
兴奋性递质和抑制性递质的作用机理

兴奋性递质和抑制性递质的作用机理

2012-02-18 23:09:56| 分类:高中生物(新人教|字号订阅

一、递质的类型

兴奋作用的神经递质:如乙酰胆碱、去甲肾上腺素、5羟色胺。

抑制作用的神经递质:如多巴胺、甘氨酸、γ-氨基丁酸等。

二、递质的作用对象

兴奋和抑制的对象不一定,如果该神经递质存在于突触间隙,则作用对象是神经细胞,若是存在于神经末梢,则作用对象是肌肉细胞。

三、递质的作用机理:

1.兴奋性递质作用机理:

突触小泡释放兴奋性化学递质,这些兴奋性化学递质与后膜受体结合,提高膜对Na十、K十、CI-,特别是 Na十的通透性增加,膜电位降低,局部去极化,即产生兴奋性突触后电位。兴奋性突触后电位加大到一定程度时,就导致突触后神经元产生扩布性兴奋,传到整个突触后神经元。

2.抑制性递质作用机理:

同样是突触前神经元轴突末梢兴奋,但释放到突触间隙中的是抑制性递质。此递质与突触后膜特异性受体结合,使离子通道开放,提高膜对钾离子、氯离子,尤其是氯离子的通透性,使突触后膜的膜电位增大(如由-70毫伏增加到-75毫伏)、出现突触后膜超极化,称为抑制性突触后电位,持续时间也约10毫秒。此时,突触后神经元不易去极化,不易发生兴奋,表现为突触后神经元活动的抑制。

如上图所示,甘氨酸能使突触后膜的Cl-通道开放,使Cl-内流,可使突触后膜的膜外正电位更高,静息电位加强,下一个神经元更难以产生兴奋,即使下一个神经元受到抑制。

抑制性递质

英文: inhibitory neurotransmitter

抑制性突触的神经递质。在中枢神经系统中有γ- 氨基丁酸,甘氨酸和去甲肾上腺素等。但是,有如乙酰胆碱在神经肌肉接头处是兴奋性递质和在心脏的迷走神经末端是抑制性递质那样,化学递质是兴奋性还是抑制性,并不是由物质决定的,而是取决于它所作用的突触下膜的离子通透性和细胞内的离子浓度(主要是氯离子)。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

兴奋性氨基酸受体阻断剂

兴奋性氨基酸(Excitatory amino acid,EAA)是广泛存在于哺乳类动物中枢神经系统的正常兴奋性神经递质,参与突触兴奋传递,学习记忆形成以及与多种神经变性疾病有关。缺血、缺氧、创伤、中毒等因素能触发中枢神经系统的EAA过度兴奋,在能量代谢失衡的基础上,异常堆积,产生神经毒性作用。急性颅脑损伤后脑内EAA的浓度变化与脑损伤的程度有关。本文综述了EAA的生物学基础、毒理作用机制、影响因素,及对神经系统的损伤机制和近年来国内外的研究现状。 1 兴奋性氨基酸及其受体 兴奋性氨基酸是广泛存在于哺乳类动物中枢神经系统的正常兴奋性神经递质,参与突触兴奋传递,学习记忆形成以及与多种神经变性疾病有关。在胚胎时期海马神经上皮中即存在向海马结构中分化的兴奋性氨基酸前体细胞,随着其层次结构出现,这些前体细胞不断分化、迁移并定居于各层之间,尤以锥体层和颗粒层最多。EAA包括谷氨酸(Glu)、天冬氨酸(Asp)、N-甲基-D-天冬氨酸(NMDA)、亮氨酸等。其中谷氨酸(Glu)是中枢神经系统内含量最高的一种氨基酸,Glu在中枢神经系统的分布不均,以大脑皮层、小脑、纹状体的含量最高,脑干、下丘脑次之。脊髓中含量明显低于脑干,但有其特异分布,背根含量高于腹根,背侧灰质含量高于腹侧灰质。因此,有人推测Glu为初级感觉传入纤维的兴奋性递质。NMDA是通过改变Asp 的结构而合成的EAA,兴奋作用可达Glu的100倍。

目前已知的EAA受体可分为两大类:NMDA受体和非NMDA受体。非NMDA受体包括AMPA(α-氨基-3-羟基-5-甲基-4-异 唑丙酸)受体、KA(海人藻酸)受体、QA(使君子酸)受体、代谢型受体和L-AP4受体等。NMDA和AMPA为离子型受体,主要作用于Ca 2+ 、Na + 通道。NMDA受体对Ca 2+ 通道的开放受甘氨酸的抑制性调节,并可被Mg 2+ 以电压依赖方式阻断。KA、QA受体开放单价离子通道,允许Na + 、Cl - 、H 2 O进入细胞内,促使神经元肿胀坏死。代谢型受体通过G - 蛋白偶联,调节细胞膜离子通道和酶活性,与神经元的异常放电有关。有研究发现[9],NMDA受体主要介导皮肤的伤害性传入,非NMDA受体主要介导肌肉和内脏的伤害性传入。皮肤和肌肉的伤害性传入分别诱发释放更多的门冬氨酸和谷氨酸可能是这种差别的主要原因之一。NMDA受体的不同调节位点在伤害性信息传递中有密切的协同作用。 2 兴奋性氨基酸的毒理作用机制 正常情况下,EAA主要存在于神经末梢的突触囊泡内,末梢去极化时释放到突触间隙,作用于突触后膜的特异受体,完成兴奋性突触传递及其它生理作用。释放入突触间隙的EAA除刺激突触后膜的EA A受体发挥生理效应外,绝大部分可经EAA能神经末梢重摄取而回收,少部分可被胶质细胞所摄取。EAA的重摄取主要依靠突触前膜上的EAA转运体来完成,此转运体是Na + 依赖性的,即转运过程必须依赖细胞外的Na + 。缺血、缺氧、创伤、中毒等因素触发中枢神经系统的EAA过度兴奋,在能量代谢失衡的基础上,异常堆积,促

中枢神经递质有哪些

一、中枢神经递质有哪些?有何功能?与疾病有关? (一)乙酰胆碱;生物胺类(多巴胺、去甲肾上腺素、肾上腺素、5-羟色胺、组胺);氨基酸类(γ-氨基丁酸(GABA)、甘氨酸、门冬氨酸、谷氨酸);肽类(神经肽);气体分子(NO)。 (二)功能和相关病症 A.乙酰胆碱 a.功能:1、镇痛和针刺镇痛2、觉醒与睡眠3、学习和记忆4感觉、运动和植物神经中枢活动5、心血管活动的调节。6、参与相互作用 b、相关病症:精神分裂症、强迫症、抑郁症、恐惧症、植物神经紊乱、焦虑症、精神障碍、躁狂症。 B.生物胺类 1、多巴胺(DA) a功能:调节肌紧张、躯体运动、情绪、精神活动以及内分泌活动有密切关系,对大脑的整体兴奋作用、对胃肠功能的调节、在药物依赖中的作用。 b.相关病症:失眠症、焦虑症、抑郁症、恐惧症、精神障碍、躁狂症。 2.去甲肾上腺素(NE) a.功能:调节心血管功能。脑循环的调节、学习记忆、精神活动、觉醒和睡眠、体温调节、心血管活动的调节。 b. 相关病症:精神分裂、失眠症、焦虑症、神经官能症、植物神经紊乱、躁狂症、恐惧症、老年健忘症。 3.肾上腺素 功能:参与血压与呼吸的调控 相关病症; 4.5-羟色胺(5-HT) 功能:产生镇痛作用、调节睡眠、调节体温、调节性活动、维持精神稳定、对皮层诱发电位有抑制作用、神经内分泌。 相关病症:抑郁症、恐惧症、神经衰弱、焦虑症、躁狂症、精神分裂症、精神障碍、心理障碍。 5、组胺 功能:影响睡眠、影响荷尔蒙的分泌、调节体温、影响食欲、影响记忆力形成.、肠道平滑肌收缩降低血压。 相关病症:失眠症、焦虑症、精神分裂症、抑郁症、神经衰弱、神经官能症、精神障碍。 C.氨基酸类 1. γ-氨基丁酸(GABA) 功能:GABA是抑制性递质,维持脑内兴奋抑制的平衡,功能低下会导致脑内抑制功能不足,引起头痛、焦虑、紧张不安、暴躁易怒等情况。 相关病症:精神分裂症、失眠症、焦虑症、神经官能症、躁狂症、恐惧症、精神障碍。 2.甘氨酸

化学耐腐蚀对照表

GPI规定的材质耐腐蚀对照表 金属塑料支撑架,轴O型环GPI 流量计 化学耐腐蚀性能表 R=推荐 N=不推荐 ×=未知或 无应用青 铜铝黄 铜 锈 钢 锈 钢 C u 6 乙 缩P S E E K ( 化 钨 金 C I t o n T F E P D M F F K M 乙酸(醋)N R N N R R N X N N R N R R R R N X R R R R N R 丙酮R R R R R R N N R R R N R R R R R R R N R R N R 异丁醇R R X R R R R X X R X X R R R R R X R R R R R R 异丙醇R R X R R R R R R R X X R R R R R R R R R R R R 甲醇R R R R R R R X R R R R R R R R R R R N R R R R 氨水-无水N R N R R R R X X N R R R R X R R X R N R R R R 氨水-液体N R X R R R R X R N R R R R R R R X R N R R N R 氢氧化铵N R N R R R R N N N R R R R R R N R R R R R N R 防冻剂R R X X R X R X X N X X X R X R R R X R X R R R 硼酸R N X R R R R R R R R R R X R R R R R R R R R R 丁基乙酸盐(乙酸丁酯)R R R R R R N R R R R R R R R R R R R N R R N R 氯化钙R N X N R R N X R N R R R R R R R R R R R R R R 次氯酸钙N N X N R R R X X N R R R R R R N R R R R R N R 四氯化碳(湿)R N R R R R X X X R R R R X R R X X R X R N N R 碳酸R R N R R R R X R R R R R R R R R X R R R R N R 氯水R N N N N R R X N N N R R N R X R R R R R N N R 氯,无水液体N N N N N N N X X R N R R N R N X N N R R R N R 次氯酸钠漂白剂X N X R R R R R N N N R R R X R N X R R R R N R 清洁剂R R X R R R R R R R R R R R R R X R R R R R R R 菜油R R R R R R R R R R R R R R R R R X R R R N R R 乙醇(酒精)R R R R R R N X R R X X R R R R R X R R R R N R 1, 2-二氯乙烷N R R R R R N X X R R R R R R R R X R R R N N R 乙二醇乙烯R R R R R R R R R R R R R R R R R R R R R R R R 绿化铁N N N N N R R X N N R R R R R R N X R R R R R R 氟里昂113 X X X X X R R X X R R R R R X R R R R R R N R R 燃料油R N R R R R R R R R R R R R R R R X R R R N R R 无铅汽油R R X R R R N R R R R R R R R R R R R R R N R R 庚烷R R R R R R N X X R R R R R R R R X R R R N R R 水压石油(Petro)R R R R R R R R X R N R R R R R R R R R R N R R 水压石油(合成)R R R R R R R R X X X R R R R R R R R R R R N R 盐酸(20%)N N X N N R R R N N N R R N R N N R R R R N X R 盐酸(37%)N N X N N R R X N N N R R R R N N R R R R R R R 盐酸(100%)N N N N N R N N N N N R R R R R N R R R R N N R 氢氟酸(20%)R N X N N R R R N N R R R N X N N R R R R N N R 氢氟酸(100%)R N X R R R N N N N N R R N R N N R R R R N N R 过氧化氢(10%)R R X R R R R R N N R R R R N R N R R R R R N R 过氧化氢(30%)R R X R R R R X N N R R R R N X N R R R R R N R 过氧化氢(100%)R R N R R R R X N N N R R R N X N R R R R N N R 异丙基醋酸盐(乙酸异丙酯)R N X N R R N X X N X N R R R R R X R N R R N R 煤油R R R R R R R R R R R R R R R R R R R R R N R R 酮类R R X R R R N X X N R N R R R R R X R N R R N R

初中化学溶解性表

1.2Mg+O2点燃或Δ2MgO 化学反应现象:剧烈燃烧.耀眼白光.生成白色固体.放热.产生大量白烟应用:白色信号弹

2.2Hg+O2点燃或Δ2HgO 化学反应现象:银白液体、生成红色固体 应用:拉瓦锡实验 3.4Al+3O2Δ2Al2O3 化学反应现象:银白金属变为白色固体 4.3Fe+2O2点燃Fe3O4 化学反应现象:剧烈燃烧、火星四射、生成黑色固体、放出大量热 5.C+O2点燃CO2 化学反应现象:剧烈燃烧、白光、放热、使石灰水变浑浊 6.S+O2点燃SO2 化学反应现象:剧烈燃烧、放热、刺激味气体、空气中淡蓝色火焰.氧气中蓝紫色火焰 7.2H2+O2点燃2H2O 化学反应现象:淡蓝火焰、放热、生成使无水CuSO4变蓝的液体(水) 应用:高能燃料 8.4P+5O2点燃2P2O5 化学反应现象:剧烈燃烧、大量白烟、放热、生成白色固体 应用:证明空气中氧气含量 9.CH4+2O2点燃2H2O+CO2 化学反应现象:蓝色火焰、放热、生成使石灰水变浑浊气体和使无水CuSO4变蓝的液体(水)应用:甲烷和天然气的燃烧 10.2KClO3 MnO2Δ 2KCl +3O2↑ 化学反应现象:生成使带火星的木条复燃的气体 应用:实验室制备氧气 11.2KMnO4Δ K2MnO4+MnO2+O2↑ 化学反应现象:紫色变为黑色、生成使带火星木条复燃的气体 应用:实验室制备氧气 12.2HgOΔ2Hg+O2↑ 化学反应现象:红色变为银白、生成使带火星木条复燃的气体 应用:拉瓦锡实验 13.2H2O通电2H2↑+O2↑ 化学反应现象:水通电分解为氢气和氧气 应用:电解水 14.Cu2(OH)2CO3Δ2CuO+H2O+CO2↑ 化学反应现象:绿色变黑色、试管壁有液体、使石灰水变浑浊气体 应用:铜绿加热 15.NH4HCO3ΔNH3↑+ H2O +CO2↑ 化学反应现象:白色固体消失、管壁有液体、使石灰水变浑浊气体 应用:碳酸氢铵长期暴露空气中会消失 16.Zn+H2SO4=ZnSO4+H2↑ 化学反应现象:有大量气泡产生、锌粒逐渐溶解 应用:实验室制备氢气 17.Fe+H2SO4=FeSO4+H2↑ 化学反应现象:有大量气泡产生、金属颗粒逐渐溶解 18.Mg+H2SO4 =MgSO4+H2↑ 化学反应现象:有大量气泡产生、金属颗粒逐渐溶解 19.2Al+3H2SO4=Al2(SO4)3+3H2↑ 化学反应现象:有大量气泡产生、金属颗粒逐渐溶解 20.Fe2O3+3H2Δ 2Fe+3H2O 化学反应现象:红色逐渐变为银白色、试管壁有液体

神经递质参与精神兴奋药物成瘾的研究进展

supplementatio n[J].P reven M edi,2005,41:253-259. [7]Sachdev P.H omocy steine and neur opsychiatr ic diso rders [J].Rev Bras Psiquiatr,2004,26(1):50-60. [8]陈杭军,孙晓玲,方润权,等.血管性痴呆患者同型半胱氨 酸及胆碱酯酶检测及意义[J].实用医学杂志,2006, (19):2310. [9]T ro en A,Ro senberg I.H omocy steine and cog nitiv e func- tion[J].Semin V asc M ed,2005,5(2):209-214. [10]Haan M N,M iller JW,A iello A E,et al.H omocy steine,B vitamins,and the incidence o f dementia and cog nitiv e im-pair ment:r esults fro m the sacramento ar ea lat ino study on aging[J].A m J Clin Nutr,2007,85(2):511-517. [11]M attso n M P.M ethy lation and acet ylat ion in nervo us sys- tem development and neur odegenerative disor ders[J]. A geing Res Rev,2003,2:329-342. [12]Chung Y H,Ho ng JJ,Shin CM,et al.Immunohistochem-i cal study o n the distributio n of ho mocysteine in the cen-tral nervo us system of tr ansg enic mice ex pr essing a hu-man Cu/Zn SOD mutation[J].Br ain R es,2003,967:226-234. [13]T jiattas L,O rtiz DO,D hivant S,et al.Folate def iciency and homo cysteine induce to xicity in cultured do rsal mo t gang lion neuro ns v ia cy tosolic calcium accumulation[J]. A ging Cell,2004,3:71-76. [14]王敏健,杨志华,冉隆梅,等.肌萎缩侧索硬化与血浆同型 半胱氨酸关系的研究[J].中国医学创新,2008,5(33):3- 5. [15]T o ole JF,M a linow M R,Chambless L E,et al.L ow ering homo cysteine in patients w ith ischemic str oke to prevent r ecur rent st roke,m yocar dial infar ct ion,and death:t he v-i tamin int er ventio n for str oke pr event ion(VISP)r andom-ized contr olled t rail[J].JAM A,2004,291(5):565-575. [16]李卫丽,景光光,陈孝银.高同型半胱氨酸血症的中医病 因病机探讨[J].辽宁中医杂志,2006,33(4):412. [17]张继东,胡连海,李宝芹.血清高半胱氨酸与脑梗死严重 程度及中医证型关系的研究[J].上海中医药杂志,2004, 38(11):9-10. [18]王碧云,张梅丽,谭燕,等.葛根素注射液对缺血性脑卒中 患者的临床观察及其对血浆ET及HCY、O X-L DL的影响[J].海南医学,2005,16(5):9-10. [19]范英昌,李妍,赵福梅.葛根素对同型半胱氨酸损伤内皮 细胞的影响[J].中国老年医学杂志,2006,26(2):372-373. [20]王淑丽,刘德山,郭瑞臣,等.大蒜素对大鼠血清高半胱氨 酸水平的影响[J].山东大学学报:医学版,2006,44(4): 389-391. [21]郝媛媛,刘德山,王淑丽.大蒜素对高半胱氨酸所致内皮 细胞损伤的保护作用[J].山东大学学报:医学版,2007, 45(7):389-391. (收稿日期:2010-03-11修回日期:2010-09-01) #综述# 神经递质参与精神兴奋药物成瘾的研究进展 张滢莹综述,屈强,唐显玲审校 (泸州医学院第一附属医院麻醉科,四川646000) 关键词:神经递质药;精神治疗药物;物质相关性障碍;多巴胺 do i:10.3969/j.issn.1671-8348.2011.04.040文献标识码:A文章编号:1671-8348(2011)04-0392-04 精神兴奋药物成瘾是指反复使用具有成瘾性的药物,造成中枢神经系统发生适应性变化而导致躯体耐受及心理依赖复杂的病理生理过程,并伴有觅药、用药等强迫行为。由于成瘾形成涉及多种复杂神经机制、转录机制、信号传导机制等,因此治疗成瘾仍是世界范围的医学难题。近年来研究发现神经递质在成瘾形成的机制中具有重要的作用,调控其与相应受体的结合可能实现抗成瘾。本文就神经递质在成瘾中的作用机制和相应防治药物的研究进展作一综述。 1成瘾机制中与神经递质相关的基本环节 精神兴奋药物通过阻滞或逆转伏隔核多巴胺轴突终末多巴胺载体而升高伏隔核内多巴胺含量,从而刺激中等多棘C-氨基丁酸(G ABA)神经元内源性大麻素(eCBs)的释放,导致伏膈核谷氨酸和腹苍白球G A BA含量降低,减弱了对多巴胺神经元的抑制,升高伏隔核细胞外多巴胺含量,引起一系列成瘾相关症状和适应性改变[1-2]。在中枢神经系统中,突出传递最重要的方式是神经化学传递。突触前膜合成和释放神经递质,通过突出间隙与突触后膜上的相关受体结合而发挥其生理作用。精神兴奋药物进入体内会导致海马、前额叶皮层、中脑腹侧被盖区及伏隔核等学习记忆相关脑区的多巴胺、谷氨酸等神经递质释放的异常变化,通过作用于相应的受体引发一系列分子事件,包括激活细胞内信号传导通路,改变神经营养因子、转录因子、即刻早期基因或染色体的结构等,并最终引起突触的可塑性,甚至神经元的形态结构发生变化,从而导致成瘾形成。由此可通过药理学手段兴奋或阻断神经递质与其相应受体的结合而达到抗成瘾的目的。 2神经递质参与多巴胺系统相关成瘾机制及其抗成瘾治疗2.1多巴胺系统相关成瘾机制脑内多巴胺系统主要有3条通路[3]:(1)起源于黑质致密斑投射至背侧纹状体的黑质-纹状体通路,通路中的神经元退变可引起运动障碍,如帕金森病; (2)起源于腹侧背盖区终止于伏隔核的中脑边缘通路,主要调节自然和药物奖赏效应;(3)起源于腹侧背盖区而终止与前额叶皮层的中脑皮层通路,主要调节复杂认知过程。中脑边缘通

神经递质共存现象

【专题】神经生理的递质共存问题 和大家谈谈递质共存,可能有助于进一步理解。 递质共存现象:长期以来,一直认为一个神经元内只存在一种递质,其全部神经末梢均释放同一种递质。这一原则称为戴尔原则(Dale principle)。近年来应用免疫细胞化学方法,1979年Hokfelt等发现在交感神经节内含NE和SOMT。并产生了递质共存(neurotransmitter coexistence)的概念。以后又陆续发现在脑、脊髓和外周组织都有神经肽和经典递质共存的现象,从而改变了传统的化学传递概念。 递质共存的方式很多(递质与递质;递质与多肽;多肽与多肽),其中比较多见的是一种经典递质与多种神经肽共存的形式。递质共存的现象很普遍,人和动物的中枢神经或外周神经组织中都有递质共存(见表)。然而,共存的递质之间存在种族差异。 递质共存的生理意义 1.突触后相互调节作用共存的递质和神经肽共同释放(corelease)后,共同传递(cotransmi tter)信息。两者分别作用于突触后,起相互协同或拮抗作用,以有效地调节细胞或器官的功能。 (1)协同作用:猫唾液腺接受颌下神经节的副交感神经和颈上神经节的交感神经双重支配,副交感神经内含ACh和VIP,交感神经内含NE和NPY。ACh引起唾液腺分泌稀稠液,并增加唾液腺的血供;VIP并不直接影响唾液腺的分泌,却能增加唾液腺的血供,增加唾液腺上ACh受体的亲和力,从而增加ACh分泌唾液腺的作用。NE导致唾液腺分泌粘稠液,并减少血供;NPY也并不直接调节唾液腺的分泌,而是通过收缩支配唾液腺的血管,与NE 协同调节唾液腺的分泌。可见,支配猫唾液腺神经末梢中共存的递质与神经肽,两者起协同作用(图16—3)。 (2)拮抗作用:肾上腺髓质嗜铬细胞中共存脑啡肽和NE。电刺激狗内脏大神经,导致肾静脉血浆中NE和脑啡肽的含量同时升高,并伴血压升高;狗利舍平化后,再刺激内脏大神经,此时肾静脉血浆中NE的含量低于正常,而脑啡肽的含量却高于正常,并伴有血压下降。若

2016考研西医综合:兴奋性与抑制性突触后电位的作用

医学考研交流群<<<点击加入咨询医学考研<<<点击加入 2017 跨考独家整理最全医学考研知识资料库,您可以在这里查阅历年医学考研真题和知识点等内容,加入我们的医学考研交流群还可以获得西医老师每晚免费答疑服务,帮你度过这最困难的一年。 以下内容为跨考网整理,如您还需更多考研资料,可选择医学考研一对一咨询进行解答。 2016考研西医综合:兴奋性与抑制性突触后电位的作用 针对西医综合中兴奋性与抑制性突触后电位的作用和产生原理,小编为大家准备了相关的知识点,希望能给大家的考研备考带来更大的帮助。 【参考答案】 突触前神经元的活动经突触引起突触后神经元活动的过程称突触传递,一般包括电—化学—电三个环节。突触前神经元的兴奋传到其轴突分支末端时,使突触前膜对Ca2+的通透性增加,Ca2+内流,促使突触小泡移向突触前膜,并与之融合,小泡破裂释放出递质,经突触间隙与突触后膜相应受体结合,引起突触后神经元活动的改变。如果突触前膜释放的是兴奋性递质将促使突触后膜提高对Na+、K+、Cl-,特别是对Na+的通透性,主要使Na+内流,从而引起局部去极化,此称为兴奋性突触后电位(EPSP)。当这种局部电位达到一定阈值时,即可激发突触后神经元的扩布性兴奋。当突触前膜释放抑制性递质时,则提高突触后膜对K+、Cl-,特别是对Cl-的通透性,主要使Cl-内流,引起局部超极化,此称为抑制性突触后电位(IPSP)。突触后膜的超极化,使突触后神经元呈现抑制效应。根据突触前神经元活动对突触后神经元功能活动影响的不同,突触又可分为兴奋性突触和抑制性突触两类。 知识的积累全靠大家一点一滴的积累,考研备考的过程比较漫长,大家在备考的时候不要急功近利。最后祝大家考研顺利。 以上内容为跨考网整理的医学考研知识点,如果同学还想获得更多医学考研资料,可以关注跨考医学微信公众平台索取医学考研资料。加入我们的医学考研交流群还可获得超强院校专业信息、每日打卡监督学习、研究生学长答疑,不定期奖励活动等。

初中化学中溶解度的计算

初中化学中溶解度的计算 一定温度下,一定量的溶剂中所溶解物质的质量是一定的,反之,任意量的饱和溶液里溶质质量与溶剂质量或溶质质量与溶液的质量比是一定的,如果把一定温度下溶剂的量规定为100g,此时所溶解溶质形成饱和溶液时的质量称为溶解度。由此可得以下关系: 溶解度————100g溶剂————100+溶解度 (溶质质量) (溶剂质量) (饱和溶液质量) 可得出以下正比例关系: 式中W溶质、W溶剂、W饱和溶液分别表示饱和溶液中溶质、溶剂和溶液的质量,S表示某温度时该溶质的溶解度。 在以上的比例式中,100是常量,其它3个量中只要知道其中2个量就可求出另外一个量。由此,不仅明确了溶解度的解题的基本思路就是比例关系,从而避免质量混淆的现象,而且也使学生明确溶解度计算的一题多种解法,并从中找出最佳解法。 一、已知一定温度下某物质饱和溶液里的溶质和溶剂的质量,求溶解度 例1 在一定温度下,ng某物质恰好溶于一定量的水中形成mg饱和溶液,求该物质在此温度下的溶解度。解;由题意可知,W溶液=W溶质+W溶剂,因此mg该物质的饱和溶液中含水的质量为:(m-n)g,此题可代入分式(1): 设某温度下该物质的溶解度为Sg 也可代入分式(2) 二、已知一定温度下某物质的溶解度,求此温度下一定量的饱和溶液中含溶质和溶剂的质量 例2 已知在20℃时KNO3的溶解度为31.6g。现要在20℃时配制20gKNO3饱和溶液,需KNO3和H2O各几克? 解:设配制20℃20g硝酸钾饱和溶液需硝酸钾的质量为xg。 此题若代入公式(1),列式为: 若代入公式(2),列式为:

需水的质量为20-4.8=15.2g 答:配制20℃时20gKNO3的饱和溶液需KNO34.8g和水15.2g。 三、已知一定温度下某物质的溶解度,求一定量溶质配制成饱和溶液时,所需溶剂的质量 例3 已知氯化钠在20℃的溶解度是36g,在20℃时要把40g氯化钠配制成饱和溶液,需要水多少克?解:从题意可知,在20℃时36g氯化钠溶于l00g水中恰好配制成氯化钠的饱和溶液。 设20℃时40g氯化钠配制成氯化钠饱和溶液需要水为xg 答:在20℃时,40g氯化钠配制成饱和溶液需要水111g。 四、计算不饱和溶液恒温变成饱和溶溶需要蒸发溶剂或加入溶质的质量 例4 已知硝酸钾在20℃的溶解度为31.6g,现有150g20%的硝酸钾溶液,欲想使其恰好饱和,应加入几克硝酸钾或蒸发几克水? 解:先计算150g20%的KNO3溶液里含KNO3的量为150×20%=30g,含水为150-30=120g,则欲使之饱和,所要加进溶质或蒸发溶剂后的量之比与饱和溶液中溶质和溶剂之比相等进行列式。 设要使20℃150克20%KNO3溶液变为饱和溶液需加入x克KNO3或蒸发yg水,依题意列式: 答:要使20℃150g20%的KNO3溶液变为饱和溶液需加入KNO37.92g,或蒸发25.1g水。 五、计算温度升高时变成饱和溶液需加入溶质或蒸发溶剂的质量 例5 将20℃时263.2g硝酸钾饱和溶液温度升至60℃需加入几克硝酸钾或蒸发几克水才能变为饱和溶液?(20℃硝酸钾溶解度为31.6g,60℃为110g) 设将20℃时263.2gKNO3饱和溶液升至60℃时需加入xgKNO3或蒸发yg水后才能变成饱和溶液。 先计算20℃此饱和溶液中含溶质和溶剂的量,设含溶质为ag

谷氨酸循环及谷氨酸兴奋性毒性

谷氨酸循环及谷氨酸兴奋性毒性 众所周知,谷氨酸是中枢神经系统最重要的兴奋性神经递质。谷氨酸不能通过血脑屏障。在脑内合成Glu的途径有4条[1]:(1)α-酮戊二酸接受氨基产生Glu;(2)γ-氨基丁酸(γ-amino-bu-tyric acid,GABA)经GABA转氨酶形成Glu;(3)鸟氨酸在鸟氨酸转氨酶的作用下产生谷氨酸半醛,后者进一步生成Glu;(4)谷氨酰胺在谷氨酰胺酶的作用下水解成Glu。而其中只有第4条途径来源的Glu发挥神经递质的作用。 一.谷氨酸—谷氨酰胺循环 神经系统中,神经胶质细胞(主要是星型胶质细胞,AC)与神经元的比例约为10:1。AC 介于神经元与毛细血管之间,是血脑屏障的重要组成部分。正常状态下,神经元胞浆的Glu 浓度在10mM/L,AC胞浆的Glu浓度在50至几百μM/L,胞外则为0.6,突触间隙为1μM/L,而突触终端囊泡可达100mM/L,胞内外Glu的浓度相差万倍以上。突触传递过程中,神经冲动传导至神经突触,神经末梢去极化,突触小泡通过突触囊泡和质膜融合而从神经元释放(即胞吐作用)。囊泡释放的Glu可使突触间隙的浓度由静息的1μM/L升高到1.1 mM/L,维持在此峰值的时间约为1.2ms。[2]作用于突触后膜的各型Glu受体,传递神经冲动,发挥生理作用,同时,触发负反馈调节,并由AC膜上的谷氨酸转运体摄取,神经胶质细胞具有很强的Glu摄取能力,并含有谷氨酰胺合成酶,能将Glu转变成谷氨酰胺,再转运至突触前神经末梢胞质中,经谷氨酰胺酶脱氨生成Glu。同时,一部分经谷氨酸脱羧酶催化生成具有抑制作用的GABA。接着,Glu通过位于囊泡上的谷氨酸转运体将其转位进入囊泡内腔,并储存于囊泡中。在静息神经元(resting neuron)中,Glu在神经末梢的突触囊泡内以很小的膜结合细胞器形式储存。由此形成神经元和胶质细胞之间的“谷氨酸-谷氨酰胺循环”(如图)

神经递质简介

神经递质简介 neurotransmitter 在化学突触传递中担当信使的特定化学物质。简称递质。随着神经生物学的发展,陆续在神经系统中发现了大量神经活性物质。 [编辑本段] 一、神经递质的生活周期 在中枢神经系统(CNS)中,突触传递最重要的方式是神经化学传递。神经递质由突触前膜释放后立即与相应的突触后膜受体结合,产生突触去极化电位或超极化电位,导致突触后神经兴奋性升高或降低。神经递质的作用可通过两个途径中止:一是再回收抑制,即通过突触前载体的作用将突触间隙中多余的神经递质回收至突触前神经元并贮存于囊泡;另一途径是酶解,如以多巴胺(DA)为例,它经由位于线粒体的单胺氧化酶(MAO)和位于细胞质的儿茶酚胺邻位甲基转移酶(COMT)的作用被代谢和失活。 [编辑本段] 二、神经递质的特征 神经递质必须符合以下标准:①、在神经元内合成。②、贮存在突触全神经元并在起极化时释放一定浓度(具有显著生理效应)的量。③、当作为药物应用时,外源分子类似内源性神经递质。④、神经元或突触间隙的机制是对神经递质的清除或失活。如不符合全部标准,称为“拟订的神经递质”。 [编辑本段] 三、神经递质的分类 脑内神经递质分为四类,即生物原胺类、氨基酸类、肽类、其它类。生物原胺类神经递质是最先发现的一类,包括:多巴胺(DA)、去甲肾上腺素(NE)、肾上腺素(A)、5-羟色胺(5-HT)也称(血清素)。氨基酸类神经递质包括:γ-氨基丁酸(GABA)、甘氨酸、谷氨酸、组胺、乙酰胆碱(Ach)。肽类神经递质分为:内源性阿片肽、P物质、神经加压素、胆囊收缩素(CCK)、生成抑素、血管加压素和缩宫素、神经肽y。其它神经递质分为:核苷酸类、花生酸碱、阿南德酰胺、sigma受体(σ受体)。 重要的神经递质和调质有:①乙酰胆碱。最早被鉴定的递质。脊椎动物骨骼肌神经肌肉接头、某些低等动物如软体、环节和扁形动物等的运动肌接头等,都是以乙酰胆碱为兴奋性

兴奋性递质和抑制性递质的作用机理#精选、

兴奋性递质和抑制性递质的作用机理 2012-02-18 23:09:56| 分类:高中生物(新人教|字号订阅 一、递质的类型 兴奋作用的神经递质:如乙酰胆碱、去甲肾上腺素、5羟色胺。 抑制作用的神经递质:如多巴胺、甘氨酸、γ-氨基丁酸等。 二、递质的作用对象 兴奋和抑制的对象不一定,如果该神经递质存在于突触间隙,则作用对象是神经细胞,若是存在于神经末梢,则作用对象是肌肉细胞。 三、递质的作用机理: 1.兴奋性递质作用机理: 突触小泡释放兴奋性化学递质,这些兴奋性化学递质与后膜受体结合,提高膜对Na十、K十、CI-,特别是 Na十的通透性增加,膜电位降低,局部去极化,即产生兴奋性突触后电位。兴奋性突触后电位加大到一定程度时,就导致突触后神经元产生扩布性兴奋,传到整个突触后神经元。 2.抑制性递质作用机理: 同样是突触前神经元轴突末梢兴奋,但释放到突触间隙中的是抑制性递质。此递质与突触后膜特异性受体结合,使离子通道开放,提高膜对钾离子、氯离子,尤其是氯离子的通透性,使突触后膜的膜电位增大(如由-70毫伏增加到-75毫伏)、出现突触后膜超极化,称为抑制性突触后电位,持续时间也约10毫秒。此时,突触后神经元不易去极化,不易发生兴奋,表现为突触后神经元活动的抑制。

如上图所示,甘氨酸能使突触后膜的Cl-通道开放,使Cl-内流,可使突触后膜的膜外正电位更高,静息电位加强,下一个神经元更难以产生兴奋,即使下一个神经元受到抑制。 抑制性递质 英文:inhibitory neurotransmitter 抑制性突触的神经递质。在中枢神经系统中有γ- 氨基丁酸,甘氨酸和去甲肾上腺素等。但是,有如乙酰胆碱在神经肌肉接头处是兴奋性递质和在心脏的迷走神经末端是抑制性递质那样,化学递质是兴奋性还是抑制性,并不是由物质决定的,而是取决于它所作用的突触下膜的离子通透性和细胞内的离子浓度(主要是氯离子)。 最新文件仅供参考已改成word文本。方便更改如有侵权请联系网站删除

导电橡胶抗电化学腐蚀性研究

导电橡胶抗电化学腐蚀性研究 主要研究了导电橡胶的抗电化学腐蚀性能。阐述了电化学腐蚀原理,说明了发生电化学腐蚀的必要条件,对导电橡胶物理性能和应用范围作了简要介绍,针对几种常用导电橡胶,参照park公司资料设计试验夹具进行盐雾试验,详细介绍了试验夹具、试验方法、试验过程、试验装置和导电橡胶抗电化学腐蚀的评定指标等,并分析试验数据得出结论,最后提出了避免导电橡胶电化学腐蚀的措施,大量实例验证该措施是科学的、有效的。 标签:导电橡胶;电化学腐蚀;盐雾试验;复合导电橡胶 引言 电化学腐蚀是导电橡胶的失效的重要原因之一,国内对导电橡胶电化学腐蚀性研究几乎尚未开展,只能凭借设计人员的经验积累来进行设计及应用,在很大程度上影响了导电橡胶的使用效果[1]。文章在研究电化学腐蚀原理和导电橡胶性能的基础上,制作电化学腐蚀测试夹具对导电橡胶进行盐雾腐蚀试验,分析实验数据得出结论,并提出避免或减弱导电橡胶电化学腐蚀的措施。 1 电化学腐蚀原理 电化学腐蚀是金属表面与离子导电介质(电解质)发生电化学反映引起的破坏[2]。在反应过程中有电流产生,腐蚀金属表面上存在着阴极和阳极。由阴阳极组成短路电池,腐蚀过程中有电流产生。金属材料在潮湿的大气、海水、土壤等自然环境以及在酸碱、盐溶液和水介质中的腐蚀都属于电化学腐蚀。 金属对间发生电化学腐蚀的必要条件为:存在两种不同腐蚀电位的金属,两种金属相互接触,金属之间存在电解液[3]。 2 导电橡胶 导电橡胶是将导电颗粒均匀分布在硅橡胶中,通过压力使导电颗粒接触,达到良好的导电性能。导电橡胶内部填充的金属颗粒不同,导电橡胶的性能和应用范围也不相同。模压型玻璃镀银导电橡胶适用于大范围的EMI应用提供可靠的低成本屏蔽;纯银导电橡胶:防霉菌,适用于低压到中压的场;铜镀银导电橡胶具有最大导电性,屏蔽效果最好;铝镀银导电橡胶:最高的导电性,电化腐蚀最小,重量比其他的性能导电橡胶轻,对机箱接头和缝隙提供极好的水气密封[4]。在结构设计时,设计人员应充分考虑导电橡胶的特性和相应的应用范围。表1列举了几种常用导电橡胶的物理性能。 导电橡胶的电化学腐蚀有自身的电化学腐蚀和应用的电化学腐蚀。铝颗粒表面的镀银层并不能对所有铝颗粒进行完全包覆,在海水等腐蚀环境中,必然在导电颗粒未被完全包覆的部位发生电化学腐蚀,即产生导电橡胶金属颗粒自身的电

神经递质知识点归纳

第三章体内的信息交流:突触突触就是著名生理学家谢灵顿于1897年首次提出的。1906年,她在《神经系统的整合作用》一书中再次提出:“鉴于神经元与神经元之间的连接形式在生理学上可能有的重要性,有必要给它一个专门术语,这就就是突触。”由于科学技术水平的限制,谢灵顿没有突触形态结构的直接证据。突触形态学直接证据的获得就是与20世纪初发展起来的生物组织标本固定染色技术分不开的。另外,还与光学显微镜油镜镜头的使用有关。突触结构的确立就是在20世纪50年代。一、突触的概念经典的概念:某神经元的轴突末梢与其它神经元的胞体或突起发生功能性接触所形成的特殊结构。广义的概念:指两个神经元之间或神经元与效应细胞之间功能上密切联系、结构上又特殊分化的区域。如神经-肌肉接头、神经-腺细胞接头等。二、突触的分类按接触部位的不同,可将突触分为轴突—树突型、轴突—胞体型、轴突—轴突型、胞体—胞体型、树突—树突型等。按结构与机制的不同,可将突触分为化学突触与电突触。按传递性质的不同,可将突触分为兴奋性突触与抑制性突触。(一)电突触突触间隙为2nm,腔肠动物神经网的突触主要就是电突触。蚯蚓、虾等无脊椎动物也主要就是电突触。特点:突触前后两膜很接近,神经冲动可直接通过,速度快,传导没有方向之分,任何一个发生冲动,即可以传导给另一个。(二)化学突触突触间隙约20~50nm,由突触前成分(突触前膨大与突触前膜,内含突触小泡)、突触间隙与突触后成分(含神经递质的受体)组成。只有在神经递质与突触后膜上的受体结合后,突触后神经元才能去极化而发生兴奋。三、突触的传递过程:分三个环节突触前神经元兴奋使突触前膜去极化,引起突触前膜上Ca2+通道开放,Ca2+内流;突触前膜内Ca2+浓度增高,引起突触小泡向前膜移动、与前膜融合,释放神经递质;神经递质经突触间隙扩散到突触后膜并作用于后膜上的特异性受体,引起离子通道的开放(或关闭),导致突触后膜产生一定程度的去极化或超极化,即突触后电位。 四、突触后电位包括兴奋性突触后电位(excitatory postsynaptic potential,EPSP)与抑制性突触后电位(inhibitory postsynaptic potential ,IPSP)。兴奋性突触后电位的产生神经轴突的兴奋冲动,轴突终末去极化,钙离子进入突触前终末,突触小泡与突触前膜融合并向突触间隙破裂开口,兴奋性神经递质释放,递质扩散并作用于突触后膜受体,突触后膜对钠离子的通透性升高,产生局部兴奋,出现兴奋性突触后电位。兴奋性突触后电位幅度高于爆发动作电位的阈值时,就会在突触后神经元的轴丘处产生动作电位,兴奋传至整个神经元。兴奋性突触后电位区别于动作电位的重要特性:其通道就是配基门控,而动作电位就是电压门控;兴奋性突触后电位的电位大小就是一种分级电位,它具有空间总与与时间总与的作用而没有“全或无”的特性。抑制性突触后电位的产生与兴奋性突触后电位类似,不同的地方就是兴奋从突触前传到突触后,引起突触后膜的超极化,使得突触后的神经元更难产生动作电位。产生超极化的原因就是神经递质的性质不同与具有不同平衡电位的离子通道。产生抑制性突触后电位的神经递质被称为抑制性神经递质(如甘氨酸,GABA等)。抑制性突触后电位主要就是氯离子的流入(在有些情况下,就是钾离子的流出)所引起。抑制性突触后电位的大小不但与刺激的强度有关,也与突触后神经元的膜电位有关。当静息膜电位就是- 80mV时,产生的IPSP就是超极化,而静息膜电位就是- 90 mV时则不产生抑制性电位。当静息膜电位更加极化时,IPSP会变为去极化。五、突触传递的特征1、单向传布刺激脊髓背根可在腹根引出动作电位,刺激腹根则不能在背根上引出动作电位。这说明兴奋通过中枢时,只能沿着单一方向传布。单向传布的特征就是由突触本身的结构与递质释放等因素所决定的,因为只有突触前膜能释放神经递质。2、突触延搁(中枢延搁) 突触传递过程中神经递质由囊泡释放、通过突触间隙向后膜扩散以及与后膜上受体结合并发挥作用等环节所耗费的时间。据测定,兴奋通过一个外周突触所需时间为0、3~0、5ms,比神经纤维上兴奋通过同样的距离所需时间要长得多。反射中枢内冲动经过的突触数目愈多,中枢延搁也就愈长。例如,由大脑皮层参与的反射活动,其中枢延搁可达500ms

复合材料耐腐蚀性能的表征

复合材料耐腐蚀性能的表征(characterization of anticorrosion properties of composites) 复合材料在腐蚀性介质中使用时,用吸水性、耐化学腐蚀性和老化性等物理化学指标来表征其耐腐蚀性能。 吸水性吸水性试验是将复合材料试样浸泡在蒸馏水中,规定水温为20℃±5℃,浸泡24h后取 出试样吸去游离水分后称量,再将试样干燥后称量,用吸水质量W、单位面积吸水量Ws和吸水率Wp.c来表示材料的吸水性: 式中G1为试样浸水后质量,g;G2为试样浸水后再干燥的质量,g;S为试样的整个表面积,cm2。 耐化学腐蚀性测试复合材料的耐化学腐蚀性,主要是用静态浸泡法。将标准试样浸泡在选定 的化学介质之中,试验温度为常温、80℃或其他规定温度,试验期龄常温为1、15、30、90、180、360d;加温为1、3、7、14、21、28d。测定试样的外观、试验介质外观、巴氏硬度、弯 曲强度随浸泡时间的变化。将性能随期龄变化制成表或图来直观地表示复合材料的耐腐蚀性。 老化性复合材料的老化,指其在使用贮存过程中受到光、热、氧、水分、机械应力、微生物 等因素作用,引起其微观结构破坏而失去使用价值的过程。老化试验分为自然老化和人工加速老化两大类。 (1)大气老化试验。我国将试验地点划分为湿热带、亚湿热带、温带、寒温带、沙漠、高原6 种气候区域。将试样按规定暴露在大气之中,承受自然界麓瓣缀日晒雨淋的气候变化,隔一定时间取样,测试试样的外观和力学性能随暴露时间的变化,以评价复合材料的耐大气老化性能。试样暴露的检测周期一般不少于5年。为缩短试验周期,还发展了加速大气暴露试验方法。 (2)人工老化试验。人工老化试验系在实验室中强化使材料老化的条件,加速材料老化进程, 从而较快获得试验结果。 (3)沸水泡煮试验。将试样置于沸水中,以强化湿热老化,数小时的水煮可相当户外暴晒几个 月的结果。 (4)人工气候试验。将试样置于人工气候箱中,模拟大气环境的光、热、氧、湿度、降雨等条件,使试样加速老化。 (5)湿热老化试验。是针对树脂基复合材料易在湿热下生霉或老化变质等特点,在湿热箱中进 行强化试验。试验箱内温度为40~60℃,最高为70℃,相对湿度为95%。 (6)盐雾试验。模拟海洋大气或海边大气中的盐雾等因素对材料的老化条件。将试样置于盐雾 箱内做试验时,温度为40℃±2℃,相对湿度90%以上,并周期性地喷3.5%浓度的盐水。

初中化学溶解度教案设计

溶解度重要知识点

溶解度曲线相关练习 1. 甲、乙两物质的溶解度曲线如图所示,下列说确的是( ) A .甲和乙的饱和溶液,从t 1℃升温到t 2℃,仍是饱和溶液 B .t 1℃时,甲和乙的溶解度相等 C .t 1℃时,甲和乙各30g 分别加入80g 水中,均能恰好完全溶解 D .t 2℃时,在100g 水中放入60g 甲,形成不饱和溶液 2. 右图是a 、b 两种固体物质的溶解度曲线。从图中可获得的信息是( ) A. 固体物质的溶解度均随温度升高而增大 B .t ℃,相同质量的a 、b 溶解时放出热量相同 C .升高温度,可使a 或b 的饱和溶液变为不饱和溶液 D .将相同质量的a 、b 分别加入100g 水中,所得溶液质量分数相同 3.右图是甲、乙两种固体物质的溶解度曲线,下列说确的是( ) A .甲的溶解度大于乙的溶解度 B .乙的不饱和溶液降温可变成饱和溶液 C .20o C 时,甲、乙两种物质的溶解度相等 D .50o C 时,甲的饱和溶液中溶质的质量分数为40% 4. 右图是a 、b 两种固体物质(不含结晶水)的溶解度曲线。下列说确的是( ) A .b 的溶解度大于a 的溶解度 B .t 1℃时,将a 、b 两种物质的饱和溶液分别恒温蒸发等质量的 水,析出晶体的质量一定相等 C .将t 2℃时的b 的不饱和溶液降温至t 1℃,一定能得到b 的饱 和溶 液 D .t 2℃时,a 溶液的溶质质量分数一定小于b 溶液的溶质质量分数 5.右图是a 、b 两种固体物质的溶解度曲线,下列说法中正确的是 A .a 的溶解度大于b 的溶解度 B .在20℃时,a 、b 的溶液中溶质的质量分数相同 C .a 、b 的溶解度都随温度升高而增大 D .a 、b 都属于易溶物质 6.t 2℃时往盛有100g 水的烧杯中先后加入a g M 和a g N (两种物质溶解时互不影响,且溶质仍是M 、N ),充分搅拌。将混合物的温度降低到t 1℃,下列说确的是( ) A.t 2℃时,得到M 的饱和溶液 B.t 2℃时,得到N 的不饱和溶液 C .温度降低到t 1℃时,M 、N 的溶质质量分数相等,得到M 、N 的不饱和溶液 D.温度降低到t 1℃时,M 、N 的溶解度相等,得到M 、N 的饱和溶液 7.右图是a 、b 、c 三种固体物质的溶解度曲线,下列叙述正确的是( ) 50- 40- 30- 20- 10- 甲 乙 温度/ t 1 t 2 溶 解度/g

相关主题
文本预览
相关文档 最新文档