当前位置:文档之家› 空气弹簧装置系统

空气弹簧装置系统

空气弹簧装置系统
空气弹簧装置系统

空气弹簧装置系统

空气弹簧装置系统可以显著提高车辆系统的运行平稳性,大大简化转向架的结构,使转向架实现轻量化并易于维护,因此使用广泛。

1、空气弹簧装置系统的优缺点

(1)空气弹簧装置系统的优点。

①空气弹簧能够大幅度提高车辆悬挂系统的静挠度,以降低车体的振动频率。

②与钢弹簧相比,空气弹簧具有非线性特性,可以根据车辆振动性能的需要,使钢弹簧具有比较理想的弹性特性曲线。

③空气弹簧的刚度随载荷变化而变化,保持空、重车时车体的振动频率几乎相等,使空车和重车状态的运行平稳性一致。

④空气弹簧用高度控制阀控制时,使车体在不同静载荷下,保持车辆地板面距钢轨面的高度基本不变。

⑤空气弹簧可以同时承受三维方向的载荷,可代替摇动台装置,简化结构,减轻自重。

⑥在空气弹簧本体和附加空气室之间装设有适宜的节流孔,可代替垂直安装的液压减振器。

⑦空气弹簧具有良好的吸收高频振动和隔声性能。

(2)空气弹簧装置系统的缺点。

空气弹簧装置系统的缺点是配件多,成本较高,维护与检修工作量大。

2、空气弹簧悬挂系统的组成与结构

(1)空气弹簧悬挂系统的组成

1—储风缸;2—止回阀;3—截断塞门;4—支管;5—列车制动主风管;6—附加空气室;7—差压阀;8—空气弹簧;9—高度控制阀;10—连接软管(2)空气弹簧的结构。

空气弹簧分为膜式空气弹簧和囊式空气弹簧。普遍应用的是膜式空气弹簧,其还可分为约束膜式空气弹簧和自由膜式空气弹簧。

(3)空气弹簧的密封。

空气弹簧的密封要求高,以保证弹簧性能稳定和节省压缩空气。一般采用压力自封式和螺钉紧封式。压力自封式,是利用空气囊内部空气压力将橡胶囊的端面与盖板(或内、外筒)卡紧进行密封的方式;螺钉紧封式,是利用金属卡板与螺钉夹紧进行密封的方式。压力自封式的结构简单,组装检修方便,应用较多。(4)空气弹簧的附件。

①高度控制阀。

高度控制阀的主要作用。

根据载荷的变化自动调整空气弹簧的内部压力,使车体保持一定高度;车辆在直线上运动时,正常的振动和轨道冲击作用不会使高度控制阀发生进、排气作用;当车辆(装有两个高度控制阀)通过曲线时,车体的倾斜使得转向架左右两

侧的高度控制阀分别产生进气和排气,从而减少车辆的倾斜。

②差压阀。差压阀是在左右空气弹簧出现超过规定的压力差时,使压力高的一端空气流向较低的一端,以防止车体异常倾斜的装置。在转向架一侧空气囊破裂时,另一侧空气囊中的空气也能泄出,保证车辆仍能在低速下继续安全运行。差压阀的动作压力一般有1 kg/cm2、1.2 kg/cm2、1.5 kg/cm2三种。

③排放阀。

q7空气悬架检修

奥迪Q7空气悬架工作原理与检修 2009汽车检测与维修技术1班黄慧 指导教师:蓝北军 摘要:文章介绍了空气悬架系统的发展过程,阐述了汽车空气悬架的工作原理及其结构特点,通过分析说明了汽车空气悬架系统具有非线性的变刚度特性,认为这种特性使空气悬架对于改善汽车的行驶平顺性具有其特有的优点,同时,说明了其必然存在的缺点,介绍了国内空气悬架系统的发展现状及其发展的客观条件,并且分析了我国汽车空气悬架系统的发展趋势。 关键词:空气悬架检修故障诊断 第一章绪论 1.1 空气悬架的发展历程 空气悬架最初诞生于十九世纪,主要用于机械设备的隔振。空气悬架1901年最初在车辆上作为悬架元件使用,主要用作有轨电车悬架的减震元件。1947年,美国的普尔曼车上首先使用了空气弹簧悬架系统。空气悬架目前已经成为提升汽车性能的关键部件之一,其独特的变刚度、低振动频率、抗冲击的特性有效地提高了汽车的乘坐舒适性和操纵稳定性,同时还可以有效地减小汽车对路面的损坏[1]。到了20世纪六十年代,汽车空气悬架系统已经进入了蓬勃发展的阶段,不仅取得了丰富的理论成果,而且在美国、欧洲等发达国家的大部分公共汽车、豪华旅游车上得到了应用。我国早在20世纪六十年代就曾经设计生产了空气悬架系统,但是由于我国的整体工业水平比较低,实际产品的使用效果并不理想。目前,我国正处于重新起步阶段,空气悬架只应用在一些豪华客车和少部分的重型载货车上。 1.2 汽车空气悬架的工作原理及结构特点 汽车空气悬架主要由空气弹簧组件、推力杆、高度控制阀、减振器和横向稳定杆等组成。它把空气弹簧作为弹性元件,通过空气的可压缩性来起到弹性作用。空气弹簧是空气悬架系统的核心部件,由纺织物作为骨架增强层的弹性支撑承载部件,可以通过充气来调节车身的高度,并利用橡胶的弹性和空气压力,获得综合性的减振缓冲性能[2]根据橡胶气囊工作时的变形方式,空气弹簧可以分为膜

【WO2019215046A1】空气弹簧控制系统、空气弹簧系统、包括该系统的车辆及其方法【专利】

(12)NACH DEM VERTRAGüBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS(PCT)VER?FFENTLICHTE INTERNATIONALE ANMELDUNG (19)Weltorganisation für geistiges Eigentum Internationales Büro (43)Internationales Ver?ffentlichungsdatum(10)Internationale Ver?ffentlichungsnummer WO2019/215046Al 14.November2019(14.11.2019) W IP O P C T (51)Internationale Patentklassifikation:(72)Erfinder:ZAK,Przemyslaw;Lukasinskiego13/14, B60G17/052(2006.01)B60G17/015(2006.01)50-436Wroclaw(PL).FILTER,Stefan;Doerpefeld40, 30419Hannover(DE).JOVERS,Ingo;Sch?fereiweg13, (21)Internationales Aktenzeichen:PCT/EP2019/061423 30989Gehrden(DE).LUCAS,Johann;Güldenbusch?(22)Internationales Anmeldedatum:weg23,31319Sehnde(DE).MORADI DEHDEZI,Nos? 03.Mai2019(03.05.2019)rat;Alte Bemeroder Stra?e111,30539Hannover(DE). THIMM,Andreas;Haydnstr.21,31157Sarstedt(DE). (25)Einreichungssprache:Deutsch (74)Anwalt:RABE,Dirk-Heinrich;WABCO GmbH,IP/In-(26)Ver?ffentlichungssprache:Deutsch tellectual Property,Am Lindener Hafen 21,30453Hanno?(30)Angaben zur Priorit?t:ver(DE). 102018111003.0(81)Bestimmungsstaaten(soweit nicht anders angegeben,für 08.Mai2018(08.05.2018)DE jede verfügbare nationale Schutzrechtsart).AE,AG,AL, (71)Anmelder:WABCO EUROPE BVBA[BE/BE];Chaus?AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY, see de la Hulpe166,1170Brüssel(BE).BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM, DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT, HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN, (54)Title:PNEUMATIC SPRING CONTROL SYSTEM,PNEUMATIC SPRING SYSTEM,VEHICLE COMPRISING SAME,AND METHOD FOR SAME (54)Bezeichnung:LUFTFEDERSTEUERUNGS SYSTEM UND LUFTFEDERSYSTEM SOWIE FAHRZEUG DAMIT UND VERFAHREN DAFüR 10 Fig.1 (57)Abstract:The invention relates to a pneumatic spring control System(ECAS,Electronic Controlled Air Suspension)(10)for a Utility vehicle,such as a truck or the like,or for a passenger car,comprising a main control unit(12)for operating the pneumatic spring control System(10).The pneumatic spring control System(10)is characterized by at least two auxiliary control units(14),eachofwhich is connected to the main control unit(12)via a separate or common data Connection(16).Each of the auxiliary control units(14)has at least one output(18)for actuating at least one actuator(20)which can be connected to the output(18),in particular an adjustment drive (28)for a valve(30),preferably an electrovalve component,in particular a pneumatic or hydraulic valve component,such as a solenoid valve.Furthermore,at least one function can be stored in each auxiliary control unit(14)for generating control Signals at the output [Fortsetzung auf der n?chsten Seite]

电控空气悬架系统的发展现状综述

电控空气悬架系统的发展现状综述 梁广源 (广东技术师范学院汽车学院,广东广州 10588) 摘要:介绍汽车电控空气悬架的基本结构和工作原理,论述国内外电控空气悬架的发展状况,对电控空气悬架的控制策略以及研究状况进行分析及总结,并阐述当前电控空气悬架在应用过程存在的问题及其发展方向。 关键词:电控空气悬架,发展状况,部件技术,研究状况,存在问题 Review on Development of Electronically Controlled Air Suspension System Liang Guangyuan (Guangdong Polytechnic Normal University, School of Automotive Engineering, Guangzhou 10588, China) Abstract:The basic structure and working principle of electronically controlled air suspension were introduced. The development status of the electronically controlled air suspension at home and abroad was discussed. The technology and research status of electronic control air suspension were analyzed and summarized, and the problems existing in the application of electronic controlled air suspension and its development direction were expounded. Key words: electronically controlled air suspension, development status, component technology, research status, existing problems 引言 空气悬架系统是以橡胶材质的空气弹簧作为弹性元件的悬架。现代人对汽车的驾驶要 求越来越高,在乘坐舒适性和操纵 稳定性方面提出了新的要求。传统 的空气悬架系统是利用机械式的 压气机通过高度控制调节阀来对 空气弹簧进行充气放气,从而改变 汽车的离地高度。随着电子控制系 图1

轨道交通车辆转向架用空气弹簧

轨道交通车辆转向架用空气弹簧 作者:陆海英出自:时代新材1??????? 概述 现代轨道交通车辆不断地朝着高速化、轻量化以及低噪音方向发展,空气弹簧悬挂系统具诸多钢制螺旋弹簧不具备的优点,因此在干线高速铁道车辆转向架和城市轨道交通车辆转向架中均日益广泛地采用空气弹簧作为二系悬挂装置。与空气弹簧相比,钢弹簧由于具有线性刚度特性,使其在轨道交通车辆上的应用受到限制,这主要有两方面的原因:一,在高速轨道交通领域刚弹簧不能够大幅度提高车辆悬挂系统静挠度以降低车体的自振频率,尤其是车辆的载客量较大时;二,城市轨道交通车辆的载客量大而且要求地板高度在不同载客量时基本不变,钢弹簧不具备这种特性。总之,空气弹簧悬挂的采用可以显着提高车辆系统的运行平稳性,大大简化转向架的结构,使转向架实现轻量化和易于维护。一般来讲,轨道交通车辆对空气弹簧的采用可以分为三个阶段: 图-1 B型城市轨道交通车辆动车无摇枕转向架 ⑴利用空气弹簧的垂向特性,提高车辆系统的垂向运行平稳性; ⑵空气弹簧的垂向和横向特性并用,取消转向架二系悬挂装置中的摇动台,简化转向架结构; ⑶充分利用大变位(包括扭转)、低横向刚度空气弹簧的三维特性(图-1,图-2),取消摇枕,彻底实现转向架二系悬挂装置的轻量化,同时使抗蛇行运动减振器的采用成为可能,可更好地协调转向架蛇行运动稳定性和良好的曲线通过性能之间的矛盾。 图-2 利用空气弹簧三维特性的城轨 无摇征转向架二系悬挂装置 2 空气弹簧悬挂系统的构成 空气弹簧悬挂的整个系统如图-3所示,主要由空气弹簧本体、附加空气室、高度控制装置、差压阀和节流孔(阀)等组成。该系统的工作原理为:车辆静载荷增加时,空气弹簧1被压缩使空气弹簧工作高度降低,这样高度控制阀2随车体下降,由于高度调整连杆3的长度固定,此时高度调整杠杆4 图-3 空气弹簧悬挂系统 1.空气弹簧 2.高度控制阀 3.高度调整连杆 4. 高度调整杠杆 5.列车风源 6.排气口 7.节流孔(阀) 8. 附加空气室 9.差压阀

空气弹簧原理

空气弹簧装置系统组成 1、系统组成。 主要有空气弹簧本体、附加空气室、高度控制阀、差压阀和滤尘器等组成。 2、压力空气传递过程 压力空气由列车主风管1→T 形支管2→截断塞门3→滤尘止回阀4→空气弹簧储风缸5→主管→连接软管6→高度控制阀7→附加空气室10和空气弹簧本体8。 3、高度调整阀工作原理。为了保持车体距轨面的高度不变,在车体与转向架之间装有高度调整阀,以调节空气弹簧橡胶囊中的压缩空气,使车辆地板面不受车内乘客的多少和分布不均匀的影响,基本保持水平。调节过程: ① 在正常载荷位置,及H h =时,充气通路L V →和放气回路E L →均被关闭; ② 当车体载荷增加时,此时H h <,阀动作,使L V →通路开启,压缩空气向空气弹簧充气,直至地板上面上升到标定高度为止。 ③ 当车体载荷减少时,此时H h >,阀动作,使E L →通路开启,空气弹簧向大气排气,直至地版面下降到标定高度为止。 4、高度调整阀装置结构。不同动车组所使用的高度调整装置结构有所区别,这里以2CRH 和3CRH 动车组所采用的高度调整阀装置为例来加以说明。 2CRH 的结构如图 所示。该高度调整阀内使用的工作油特性如下: (1)种类:硅油。 黏度:25,/1023s m -℃。 温度系数:0.6. 流动点:-50℃。 高度调整阀工作过程分进气过程和排气过程,具体如图 当然,上述调整只是在静态时进行,不能影响车体与转向架间的正常震动。保证高度调节阀仅在静态需要调整时才起作用,而对动态震动不起作用,这就要求高度调整阀必须具有如下特性: 具有不感带(10±1)mm ;具有时间延时(3±1)s ;内腔充满硅油,起阻尼作用。 3CRH 的高度控制阀组成主要包括高度阀座、高度阀、水平杆、螺纹杆、调整环和下座等部件见图 高度控制阀的主体采用螺钉固定在高度阀座上,阀座与摇枕相连,而该阀的阀杆铰接在转向架上。高度控制阀在转向架的位置可参见图 通过调整高度控制阀和转向架构架之间的螺纹杆的长度以便调整由于车轮磨耗造成的车辆高度变化。在每次镟轮之后应进行这样的调整。车辆高度阀调节车辆垂向位移的不敏感带约为±3mm ,此时空气流通停止,避免空气的过度消耗。在不敏感带之后,空气流通保证了悬挂系统的减振功能。空气悬挂设备的空气信号与旅客载荷成比例,并传送到控制单元,用以制动载荷补偿。 高度调整阀在空气弹簧系统的闭环线路中起着一个作动器的作用。它被设计为一个无旁通的非节流阀式双座阀门。它使用了一个单向阀门,用来保持气囊压力。 3CRH 动车组采用SN1205-E/110型的高度控制阀,其工作原理如图 该阀门在顶部有一个开口V ,用来安装辅助储气罐。在开口V 的对面是一个排气口E,左和

现代轨道交通车辆转向架用空气弹簧悬挂技术

专业知识分享版 使命:加速中国职业化进程 1、概述 现代轨道交通车辆不断地朝着高速化、轻量化以及低噪音方向发展,空气弹簧悬挂系统具有诸多钢制螺旋弹簧不具备的优点,因此在干线高速铁道车辆转向架和城市轨道交通车辆转向架中均日益广泛地采用空气弹簧作为二系悬挂装置。与空气弹簧相比,钢弹簧由于具有线性刚度特性,使其在轨道交通车辆上的应用受到限制,这主要有两方面的原因:一,在高速轨道交通领域刚弹簧不能够大幅度提高车辆悬挂系统静挠度以降低车体的自振频率,尤其是车辆的载客量较大时;二,城市轨道交通车辆的载客量大而且要求地板高度在不同载客量时基本不变,钢弹簧不具备这种特性。总之,空气弹簧悬挂的采用可以显著提高车辆系统的运行平稳性,大大简化转向架的结构,使转向架实现轻量化和易于维护。一般来讲,轨道交通车辆对空气弹簧的采用可以分为三个阶段: 图-1 B 型城市轨道交通车辆动车无摇枕转向架 ⑴利用空气弹簧的垂向特性,提高车辆系统的垂向运行平稳性; ⑵空气弹簧的垂向和横向特性并用,取消转向架二系悬挂装置中的摇动台,简化转向架结构; ⑶充分利用大变位(包括扭转)、低横向刚度空气弹簧的三维特性(图-1,图-2),取消摇枕,彻底实现转向架二系悬挂装置的轻量化,同时使抗蛇行运动减振器的采用成为可能,可更好地协调转向架蛇行运动稳定性和良好的曲线通过性能之间的矛盾。 图-2 利用空气弹簧三维特性的城轨无摇征转向架二系悬挂装置 2、空气弹簧悬挂系统的构成 空气弹簧悬挂的整个系统如图-3所示,主要由空气弹簧本体、附加空气室、高度控制装

专业知识分享版 使命:加速中国职业化进程 置、差压阀和节流孔(阀)等组成。该系统的工作原理为:车辆静载荷增加时,空气弹簧1被压缩使空气弹簧工作高度降低,这样高度控制阀2随车体下降,由于高度调整连杆3的长度固定,此时高度调整杠杆4 图-3 空气弹簧悬挂系统 1.空气弹簧 2.高度控制阀 3.高度调整连杆 4. 高度调整杠杆 5.列车风源 6.排气口 7.节流孔(阀) 8. 附加空气室 9.差压阀 发生转动打开高度控制阀的进气机构,压力空气由列车风源5通过高度控制阀的进气机构进入空气弹簧1和附加空气室8,直到高度调整杠杆回到水平位置即空气弹簧恢复其原来的工作高度;车辆静载荷减小时,空气弹簧1伸长使空气弹簧的工作高度增大,高度控制阀2随车体上升,同样由于高度调整连杆3的长度固定,高度调整杠杆4发生反向转动打开高度控制阀的排气机构,压力空气由空气弹簧1和附加空气室8通过高度控制阀的排气机构经排气口6排入大气,直到高度调整杠杆回到水平位置。 2.1 空气弹簧和附加空气室 2.1.1 空气弹簧 空气弹簧悬挂系统具有理想的反S 形非线性刚度特性,在正常工作范围内刚度很低,而振幅较大时其刚度具有陡增的特点,可以限制车体发生过大的位移。空气弹簧还能够有效地吸收高频振动和隔离噪音,并且由于自动高度控制阀的采用使空气弹簧悬挂可以保持地板高度不随车辆静载荷的变化而发生变化(除一系悬挂和车轮磨耗外)即空气弹簧具有恒定的工作高度。此外,更为重要的是,随着空气弹簧技术的不断进步,尤其是低横向刚度、大扭转变形空气弹簧的实用化,使得无摇枕转向架的研制成为可能。在无摇枕转向架中,利用高柔性空气弹簧低横向刚度和允许大扭转变形的特点,取消了传统转向架二系悬挂结构中的摇动台和摇枕装置而采用空气弹簧直接支承车体,使转向架的结构大为简化,减轻转向架的重

空气弹簧悬架与钢板弹簧悬架比

空气弹簧悬架与钢板弹簧悬架比较 空气悬架系统以气囊代替原车的钢板弹簧,并配合气源装置、高度调整装置、电动和气动控制装置等,保证车辆自适应载荷、车速、和路况等,可以更好的隔离路面的冲击、振动和噪音,在提高舒适性的同时还提升了车辆的操控性和安全性。目前在国外空气悬架已得到普遍应用,在国内的应用也在逐步推广。 格莱瑞特空气悬架系统,源于欧洲成熟技术,集成世界知名厂商的零部件,经过英国曼彻斯特大学实验室的严格测试,通过了英国汽车工业研究协会(MIRA)认证和德国TUV技术认证,产品技术先进、品质可靠。该系统零部件借用原车安装孔位,方便安装,最大程度的保持了原车底盘的完整性。 为更好的了解空气悬架系统,我们将格莱瑞特空气悬架系统从舒适性、经济性、安全性和可靠性4个方面与传统的板簧结构进行了比较: 1、舒适性 1)当钢板弹簧悬架的簧载质量变化后,车辆系统的自振频率会发生大幅度的变化。钢板弹簧满载时的偏频在1.7~2.3Hz左右,空载时更大,所以整体舒适性较差。 2)空气弹簧具有典型的非线性刚度,对振动、冲击的缓冲效果明显,试验数据表明:相同状态下,空气弹簧悬架系统车辆对路面的冲击力比钢板弹簧悬架的车辆减小1/3~1/2左右。 3)格莱瑞特空气悬架的偏频在1.35Hz左右(1.0Hz~1.5Hz范围内),因此空气悬架可以有效隔离车辆来自地面的振动,安装空气弹簧悬架的车辆具有良好的曲线通过能力(即转弯时的速度可以比钢板弹簧的车辆更高),制动距离更短(制动力分配均匀,有效制动功率大),后视镜图像更清晰、更稳定,驾驶员更舒适,不易疲劳,精神更集中。 4)空气弹簧悬架系统在高度阀的作用下,车辆负载变化时车身高度基本保持不变,偏频变化较小,从而保证空满载下的舒适性。我们还提供安装有升降阀的系统,实现整车身高度在一定范围内可调节,从而满足不同的装货、卸货要求,并提高车辆的通过性。 结论:空气弹簧悬架比钢板弹簧悬架的舒适性提高30%左右。 2、经济性 1)空气弹簧悬架系统可提高车辆的可靠性,使车载电器系统故障率减少30-40%,延长轮胎和刹车片的使用寿命,减少电气、空调、排气系统、车桥、车身和底盘的维修成本,延长车辆的使用寿命并增加折旧值。 2)轮胎寿命提高50%以上(采用钢板弹簧的货运卡车,其轮胎一般5万公里更换一次;更换为空气悬架后轮胎一般10万公里更换一次)。 3)加拿大研究机构对多家物流企业经多年的跟踪研究表明:空气悬架系统的车辆比钢板弹簧的车辆油耗减少3~5%。 4)减少对道路的冲击,保护路面,降低对公路的维修费用。 结论:空气弹簧悬架比钢板弹簧悬架的经济性提高20%。 3、安全性

电控悬架系统的控制原理和控制方法

1、弹性元件 空气弹簧 在空气悬挂系统中,空气弹簧代替了普通悬挂系统的螺旋弹簧。他有一个被卡紧在弹簧底部活塞上的合成橡胶和塑料膜片,一个端盖固定在膜片的上部,并且在端盖上有空气弹簧阀。通过空气弹簧的充气或者放气,保证了恒定的车辆纵倾高度。前空气弹簧安装在控制臂和横梁之间。空气弹簧的下端用卡箍卡紧在控制臂上,而在上端安装在横梁的弹簧座上。前减震器和弹簧是分开安装的。 空气弹簧电磁阀 在每个空气弹簧的上部都安装了一个空气弹簧电磁阀,并且正常情况下电磁阀是关闭的。当电磁阀线圈通电时,活塞移动就会使得到空气弹簧的气路打开。上面这种情况下,空气就会进入空气弹簧,或者从空气弹簧排出。在阀的末端安装了两个O形密封圈,用来密封空气弹簧罩。而阀就安装在类似于散热器承压盖的两成转动作用的空气弹簧罩内。 空气压缩机 空气压缩机的单活塞通过曲轴和连杆带动在缸体内上下运动。电枢连接在曲轴上,因此,电枢的转动就会使得活塞上下运动,当压缩机的输入端接上12V电源时,电枢就开始转动了。在缸体的顶部有进气阀和排气阀。压缩机上安装的硅胶干燥器去除了进入系统空气中的水分。 2、传感器 高度传感器 在空气悬架系统中,位于下控制器臂和横梁之间有2个前高度传感器,而在悬架和车架之间有一个后高度传感器。每个高度传感器都有一个安装传感器上端的磁性滑块。当车辆行程高度发生变化时,磁性滑块就会在传感器下壳内上下运动。传感器下壳上有2个通过电线束连接在控制模块上的电子继电器。 车辆动态悬挂(VDS)系统 车辆动态悬挂(VDS)系统由以下部件组成: 1,双位维护开关; 2,2个前高度传感器; 3,1个后高度传感器; 4,有内部电磁排气阀和空气干燥器的压缩机; 5,控制模块; 6,空气管路; 7,前后混合空气弹簧和减震器; 8,4个空气弹簧电磁阀; 9,压缩机继电器。

汽车空气弹簧的应用

空气弹簧在汽车上的应用 空气弹簧是汽车空气悬架系统的和重要组成部分,它利用空气的压缩弹性进行工作,具有缓冲、减振和承载重量等功能。空气弹簧具有优良的弹性特性,与普通钢制弹簧相比有许多优点,因而其应用围十分广泛。将空气弹簧用于汽车悬架系统可大大提高汽车的行驶平顺性和舒适性。 1934年,费尔斯通公司研制出膜片式空气弹簧并首先在美国通用客车上试应用成功。20世纪50年代中期,空气弹簧产品经过多年的研发和试验,有关技术逐步成熟,装有空气悬架的客车开始在美国、德国得到大批量推广应用。20世纪80年代以来,世界上主要的发达国家为了减少车辆对道路的破坏和增加车辆的舒适性,在客车上几乎全部使用了空气弹簧,重型商用车上的使用率也超过了80%。 空气弹簧的种类 空气弹簧由橡胶气囊、上盖板、底座、辅助气室,夹紧环和缓冲块等组成。根据橡胶气囊工作时变形式的不同,空气弹簧的结构形式主要分为膜式空气弹簧、囊式空气弹簧和混合式空气弹簧3种(见图1)。膜式空气弹簧是圆柱形结构,根据橡胶气囊止口与接口的连接方式,膜式空气弹簧又分为约束膜式和自由膜式。约束膜式空气弹簧一般用螺栓夹紧密封,自由膜式空气弹簧则采用橡胶气囊的压力自封。囊式空气弹簧的外形结构有些象灯笼,有单曲、双曲或多曲囊式空气弹簧。早期的商用车上主要使用双曲囊和三曲囊式空气弹簧。近期膜式空气弹簧的用量逐步增加,是因为膜式空气弹簧具有行驶平顺性好和行程大的优点。 不同种类空气弹簧的使用区别 1.膜式空气弹簧 (1)有效面积变化率较小,因此其刚度较低,易于得到较低的固有频率。 (2)通过改变活塞底座的形状和利用活塞底座的空心腔增加出储气空间,优化其刚度特性,从而获得理想的非线性特性。

有关汽车空气弹簧悬架的介绍等等1

汽车空气悬架的发展及我国研发对策思考 中国商用车专业门户网站 2008/09/03 19:45:05 发表评论 空气悬架诞生于19世纪中期,早期用于机械设备隔振。1947年,美国首先在普耳曼汽车上使用空气悬架,欧洲及日本等国家和地区也相继对汽车空气悬架作了应用研究。目前,国外汽车发达国家无论是客车还是载重汽车都已经比较普遍采用空气悬架系统。而国内却处于刚刚起步阶段,只应用在一些豪华客车和少部分重型载货车上。 1、空气悬架的优点 空气悬架系统以空气弹簧为弹性元件,利用气体的可压缩性实现弹性作用。不论满载还是空载,通过压缩气体的气压能够随载荷和道路条件变化而进行自动调节,整车高度不会变化,可以大大提高乘坐的舒适性。随着人们对舒适性要求的提高,空气弹簧悬架因其独特的性能和适应性,正在逐步替代传统的钢板和螺旋弹簧悬架。空气弹簧的性能特点是:(1)负载能力可调;(2)刚度随负载变化;(3)负载变化时,固有频率几乎不变;(4)固有频率较低。 空气弹簧运动性能的特点决定了空气悬架具有以下优点:(1)乘坐更舒适安全;(2)改善车辆的行驶平顺性;(3)延长轮胎和制动片的使用寿命;(4)负载变化时车身高度不变;(5)减少电气、空调、排气系统、车桥、车身和底盘的维修成本;(6)减少对道路的冲击,保护路面,降低高速公路的维修费用;(7)延长车辆的使用寿命并提升旧车价值。 2、国外空气悬架的发展历程及现状 20世纪30年代初,美国凡世通轮胎公司首次把空气弹簧应用于汽车工业。哈维·凡世通(Harvey Firestone)在亨利·福特一世(Henry Ford I)和托马斯·阿瓦·爱迪生(Thomas Alva Edison)的技术支持下,在1934年研制出了柱式空气弹簧悬架系统——AIREDE空气弹簧。1944年通用汽车公司与凡世通公司合作,在其客车上进行了首轮试验。试验结果显示了空气悬架系统的内在优越性。通用汽车公司经过大量的产品研制开发工作,1953年开始试生产装有空气悬架的客车,这是商用汽车采用空气弹簧悬架的开始。20

空气弹簧的优点

空气弹簧的优点及分类 近年来,非线性课题一直是各学科的研究前沿,在隔振领域也不例外。随着隔振设计中对隔振系统各种性能指标要求的提高,迫使人们不断探索新型的隔振器。非线性隔振器能够自动避开共振,有效抑制振动幅值、隔离冲击,因而受到广泛的关注。线性隔振器却不能自动避开共振。 非线性隔振器的刚度是随隔振器变形量的不同而变化的,因而由非线性隔振器组成的隔振系统其固有频率与振动幅值有关。如果隔振器是非线性硬特性的,固有频率随振幅的增加而上升;如果隔振器是非线性软特性的,固有频率随振幅的增加而下降。当设备在启动过程中经过共振点时,被隔振设备的振动幅值将出现峰值,高出静态位移许多倍。随着振幅的迅速增长,由非线性隔振器组成的隔振系统其固有频率将上升或下降,从而避开共振频率。对于线性隔振器,其刚度值是不变的,只能通过阻尼作用控制共振振幅。但是过了共振点之后,隔振器的隔振效率因为阻尼的作用而下降。 此外非线性隔振器还能有效防止冲击。对于非线性硬特性的隔振器其刚度随变形量的增加而上升,遇到冲击时,簧上载荷的加速度随变形量的增加而增大,因而在较小的变形下冲击速度迅速降低。对于非线性软特性的隔振器其刚度随变形量的增加而降低,因而能够起到缓冲作用,但隔振器的变形量较大。在很多情况下不允许有太大的变形量,就应该选择非线性硬特性隔振器来防止冲击。 根据上述分析,空气弹簧是一种理想的隔振元件。空气弹簧是在柔性密闭容器中加入压力空气,利用空气压缩的非线性恢复力来实现隔振和缓冲作用的一种非金属弹簧。它具有优良的非线性硬特性,因而能够有效限制振幅,避开共振,防止冲击。空气弹簧隔振系统的固有频率可以设计得很低,甚至达1Hz以下,而橡胶隔振器的自振频率一般为5-7 H z。所以空气弹簧的隔振效率比起其它隔振元件高得多,而且能够隔离低频振动。特别是因为空气弹簧隔振系统容易实施主动控制,作为一种具有可调非线性静、动态刚度及阻尼特性的隔振元件,空气弹簧的应用越来越广泛。 1.2 空气弹簧的分类及特点 1.2.1 空气弹簧的分类 目前国内、外对空气弹簧的分类方法很不统一,大致有下列几种: (一)按橡胶囊的曲数分类 空气弹簧按橡胶囊的曲数分为单(一)曲,双(二)曲,三曲,……,n曲,如图1-3和图1-4所示。随着曲数的增加,刚度变小,空气弹簧隔振系统的固有频率也相应减小。但这不仅给制造上带来了麻烦,而且还会引起橡胶囊的弹性不稳,因此一般只使用到4曲。 (二)按结构型式分类 1. 日本《空气弹簧》一书中的分类: 胶囊型空气弹簧:轮胎型[ 图1-3 (c) ] 平板型[ 图1-3 (a)、(b) ] 耳垂型[ 图1-4 (b) ] 2. 我国的分类: 空气弹簧:囊式空气弹簧[ 图1-2、1-3 ] 约束膜式空气弹簧[ 图1-4 (a) ] 自由膜式空气弹簧[ 图1-4 (b) ]

空气悬架系统

对汽车空气悬架系统的认识和了解 1 空气悬架发展概述 空气弹簧诞生于19世纪中期,早期用于机械设备隔振。1947年,美国首先在普尔曼车上使用空气弹簧,到目前为止,空气悬架系统(AIRMATIC)是流行于当今发达国家汽车行业的先进产品。在发达国家,100%的中型以上客车都用了空气悬架系统,40%以上的卡车、挂车和牵引车用了空气悬架系统。其最大的优点是:不仅可以提高乘员的乘坐舒适性,而且可以对道路起到重要的保护作用。 我国虽然从50年代就开始了对空气悬架的研究工作,但由于设计及制造等复杂因素的影响,并没有开发出实用的空气悬架系统,一直未能得到推广应用,目前国内各种车辆采用的空气悬架基本依赖进口。为了提高我同空气悬架的自主开发能力.目前国内各大汽车厂、研究所和大专院校加大对空气悬架基础理论和设计方法的研究力度,并在各种车辆上尝试采用空气悬架。 随着空气悬架应用的推广,对空气弹簧、导向机构及控制机构的研究也得到了重视。J. R. EVANS等人在1970年做了空气弹簧垂直特性实验,建立空气弹簧垂直动态特性模型。1994年做了空气弹簧的侧向特性实验,在大频率和大幅值情况下,测量了空气弹簧在不同载荷下的侧向力和变形。Katsuya Yoyofuku等通过研究振动频率和弹簧反应之间的关系,分析管道和气室对弹簧特性变化的影响。交通部重庆公路科学研究所的丁良旭对空气悬架的一些性能进行了计算机模拟,拟合了空气弹簧的特性曲线。 Jon Bunne和Roger Jable研究了空气悬架对传动系统振动的影响。John Woodrooffe通过试验分别评价了重型货车空气弹簧悬架和钢板弹簧悬架的路面附着性和行驶平顺性。 2 空气悬架系统的特性 2.1 空气弹簧的特点 (1)空气弹簧具有非线性特性,可将其特性曲线设计成理想形状。如图1所示空气弹簧特性曲线,静、动刚度随着载荷的增加而增大。

奥迪A8轿车适应空气悬架系统

奥迪A8轿车自适应空气悬架系统 奥迪A8轿车作为奥迪品牌的顶级车型,配备了新开发的自适应空气悬架(图1)。 它利用电子减振调控装置可以实时跟踪汽车当前的行驶状态测得车轮的运动状态(非簧载质量)和车身的运动状态(簧载质量)。在四个可选模式范围内实现了不同的减振特性曲线。每个减振器都可单独进行调控。因此,在设定好的每种模式(舒适型或运动型)下均能够保证汽车具有最佳的舒适性和行车安全性。在设定的模式的框架下,车身高度自动调控程序和减振特性曲线被整合成一个系统。 系统的组成及原理 系统的组成如图2所示。 主要部件及功能 1.空气弹簧 空气弹簧采用外部引导式。它被封装在一个铝制的圆筒内。为了防止灰尘进入圆筒和(空气弹簧)伸缩囊之间,用一个密封圈密封线圈活塞和气缸之间的区域。密封圈可在维修时更换,空气弹簧伸缩囊不能单独更换。出现故障时,必须更换整个弹簧/减振支柱。 为了保证行李箱具有尽可能大的可利用空间和最大储物宽度,最大限度地减小了空气弹簧的直径。为了满足舒适性的要求,空气弹簧体积应最小。此冲突的解决方案是使用一个与减振器相连的容器存储额外的空气。 空气弹簧不仅替代了钢制弹簧,而且相对于钢制弹簧还有独特的优点。空气弹簧使用了铝制气缸的新式外部引导性装置减小了空气弹簧伸缩囊的壁厚。这样,在路面不平情况下响应更加灵敏。 2.减振器(图3和图4) 构造: 使用了一个无级电子双管气压减振器(无级减振控制系统=CDC减振器)。活塞上的主减振阀门通过弹簧机械预紧。在阀门上方安装有电磁线圈,连接导线经由活塞杆的空腔与外部连接。 功能: 减振力主要取决于阀门的通流阻力。流过的油的通流阻力越大,减振力也就越大。 以弹簧挠度(弹性)跳动(等于压力分段减振)为例从原则上说明工作原理(图5): 当电磁线圈上没有电流作用时,减振力达到最大。减振力最小时电磁线圈上的电流大约为1800mA。在紧急运行时不对电磁线圈通电。这样就设定了最大减振力,并通过其来保证车辆行驶时动态稳定。

空气弹簧的分类及简介

空气弹簧的分类及特点 近年来,非线性课题一直是各学科的研究前沿,在隔振领域也不例外。随着隔振设计中对隔振系统各种性能指标要求的提高,迫使人们不断探索新型的隔振器。非线性隔振器能够自动避开共振,有效抑制振动幅值、隔离冲击,因而受到广泛的关注。线性隔振器却不能自动避开共振。 非线性隔振器的刚度是随隔振器变形量的不同而变化的,因而由非线性隔振器组成的隔振系统其固有频率与振动幅值有关。如果隔振器是非线性硬特性的,固有频率随振幅的增加而上升;如果隔振器是非线性软特性的,固有频率随振幅的增加而下降。当设备在启动过程中经过共振点时,被隔振设备的振动幅值将出现峰值,高出静态位移许多倍。随着振幅的迅速增长,由非线性隔振器组成的隔振系统其固有频率将上升或下降,从而避开共振频率。对于线性隔振器,其刚度值是不变的,只能通过阻尼作用控制共振振幅。但是过了共振点之后,隔振器的隔振效率因为阻尼的作用而下降。 此外非线性隔振器还能有效防止冲击。对于非线性硬特性的隔振器其刚度随变形量的增加而上升,遇到冲击时,簧上载荷的加速度随变形量的增加而增大,因而在较小的变形下冲击速度迅速降低。对于非线性软特性的隔振器其刚度随变形量的增加而降低,因而能够起到缓冲作用,但隔振器的变形量较大。在很多情况下不允许有太大的变形量,就应该选择非线性硬特性隔振器来防止冲击。 根据上述分析,空气弹簧是一种理想的隔振元件。空气弹簧是在柔性密闭容器中加入压力空气,利用空气压缩的非线性恢复力来实现隔振和缓冲作用的一种非金属弹簧。它具有优良的非线性硬特性,因而能够有效限制振幅,避开共振,防止冲击。空气弹簧隔振系统的固有频率可以设计得很低,甚至达1Hz以下,而橡胶隔振器的自振频率一般为5-7 H z。所以空气弹簧的隔振效率比起其它隔振元件高得多,而且能够隔离低频振动。特别是因为空气弹簧隔振系统容易实施主动控制,作为一种具有可调非线性静、动态刚度及阻尼特性的隔振元件,空气弹簧的应用越来越广泛。 1.2 空气弹簧的分类及特点 1.2.1 空气弹簧的分类 目前国内、外对空气弹簧的分类方法很不统一,大致有下列几种: (一)按橡胶囊的曲数分类 空气弹簧按橡胶囊的曲数分为单(一)曲,双(二)曲,三曲,……,n曲,如图1-3和图1-4所示。随着曲数的增加,刚度变小,空气弹簧隔振系统的固有频率也相应减小。但这不仅给制造上带来了麻烦,而且还会引起橡胶囊的弹性不稳,因此一般只使用到4曲。 (二)按结构型式分类 1. 日本《空气弹簧》一书中的分类: 胶囊型空气弹簧:轮胎型[ 图1-3 (c) ] 平板型[ 图1-3 (a)、(b) ] 耳垂型[ 图1-4 (b) ] 2. 我国的分类: 空气弹簧:囊式空气弹簧[ 图1-2、1-3 ] 约束膜式空气弹簧[ 图1-4 (a) ] 自由膜式空气弹簧[ 图1-4 (b) ]

空气弹簧悬架的发展历史及应用

配套产业 COMMERCIAL VEHICLE 空气悬架系统是以空气弹簧为弹性元件,利用气体的可压缩性实现其弹性作用的。通过压缩气体的气压能够随载荷和道路条件变化进行自动调节,不论满载还是空载,整车高度没有变化,可以大大提高乘坐的舒适性。目前,国外无论是客车还是载重车都已经比较普遍采用空气悬架系统,而国内却处于刚刚起步阶段,只应用在一些豪华客车和少部分重型载重车上。 空气弹簧悬架发展历史20世纪30年代初,美国凡世通轮胎公司首次把空气弹簧应用于汽车工业。哈维?凡世通(Harvey Firestone)在亨利?福特一世(Henry Ford Ⅰ)和托马斯?阿瓦?爱迪生(Thomas Alva Edison)的技术支持下,在1934年研制出了空气柱形式的空气弹簧悬架系统——AIREDE空气弹簧。1944年通用汽车公司与凡世通公司合作,在其客车上进行了首轮试验。试验结果显示了空气悬架系统的内在优越性。通用汽车公司经过大量的产品研制开发工作,1953年开始生产装有空气悬架的客车,这是商用汽车采用空气弹簧悬架的开始。20世纪50年代中叶,固特异轮胎公司研制出一种滚动凸轮式空气弹簧,凸轮 ■ 杨 松 在活塞的型面上滚动,从而控制空气弹簧的负载变形关系曲线。同时,空气控制系统的巨大进步也为空气悬架的应用起了很大的推动 作用。 随后不久,空气悬架技术在欧洲也很快发展起来,但欧洲的发展道路和北美有些不同。欧洲的汽 车生产厂商并未将空气悬架独立成单独总成,而是各自开发满足其独特车型需要的空气悬架。这种不同的发展道路使欧洲的空气悬架设计只适用于某种具体车型,并采用一些复杂技术,因而其使用成本较高。而北美的空气悬架通用性较强,应用较简单,成本较低。 美国纽威?安柯洛克国际公司在1951年成立时即作为一家悬架系统的专业生产厂家,为公路和非公路行驶的重型车辆设计和制造钢板弹簧悬架系统。不久,纽威公司向商用车市场投放了世界上第一种实际应用的空气悬架系统。因其通用性强,结构简单,成本较低,迅速占领了北美市场。随后纽威公司开发了一系列空气悬架产品,应用于世界各地的客车、卡车和挂车。 空气弹簧悬架相对于 钢板弹簧悬架的优点 随着广大乘客对舒适性要求的提高,空气弹簧悬架因其独特的性能和适应性,正在逐步打入传统的钢板和螺旋弹簧领域。 空气弹簧运动性能特点:⑴负载能力可调;⑵弹性系数随负载变化;⑶负载变 化时,固有频率几乎不变;⑷固有频率较低。 空气弹簧运动性能的特点决定了空气悬架具有以下优点:⑴乘坐更舒适安全;⑵改善车辆的行驶平顺性;⑶延长轮胎和制动片的使用寿命;⑷负载变化时车身高度不变;⑸减少电气、空调、排气系统、车桥、车身和底盘的维修成本;⑹减少对道路的冲击,保护路面,降低高速公路的维修费用;⑺延长车辆的使用寿命并增加折旧值。 悬挂系统的作用就是将轮胎所承受的各种力和力矩传递给车架和车身,并能吸收、缓和路面传来的振动和冲击,减少驾驶室内的噪声,增加乘客的舒适性以及保持汽车良好的操作性和平稳的行驶性。不论是采用空气弹簧悬架还是钢板弹簧悬架,都是为了达到这个目的。但是钢板弹 空气弹簧悬架的  发展历史及应用 图2 驱动桥系列空气悬架图1 转向桥系列空气悬架

CRH380BL高速列车空气弹簧

摘要 在普通机车车辆中,常常采用弹簧装置来缓冲冲击,使列车平稳运行,从而改善车辆横向运动性能和曲线通过性能。在高铁迅猛发展的今天,普通机车传统的弹簧装置已经无法满足CRH系列动车组的列车性能要求了,所以采用圆弹簧,橡胶弹簧以及空气弹簧。圆弹簧和橡胶弹簧常常用于一级悬挂系统中,而空气弹簧则主要应用于二级悬挂系统中。本文主要介绍的是CRH380BL动车组空气弹簧悬挂装置的分析与改进。 关键词:二系悬挂装置空气弹簧设计改进

目录 第1章空气弹簧简介 (1) 1.1空气弹簧原理 (1) 1.2空气弹簧分类 (1) 1.3空气弹簧特点 (2) 1.4空气弹簧在CRH380BL的应用 (3) 第2章 CRH380BL空气弹簧的结构原理与结构分析 (5) 2.1CRH380BL空气弹簧系统的工作原理 (5) 2.2空气弹簧系统的结构 (5) 2.2.1空气弹簧 (5) 2.2.2高度阀 (6) 2.2.3差压阀 (8) 2.2.4抗测滚扭杆 (8) 2.2.5抗蛇行减振器 (11) 2.2.6二系横向减振器 (11) 2.2.7二系垂向减振器 (12) 2.3CRH380BL整体转向架特点 (12) 第3章日本空气弹簧系统 (15) 3.1日本新干线高速动车组二系悬挂空气弹簧技术 (15) 3.1.1抗蛇行减振器 (16) 3.1.2半有源悬挂和有源悬挂 (16) 第4章CRH380BL空气弹簧的设计改进分析 (17) 4.1空气弹簧的支撑方式 (17) 4.2垂向减振器方式的选择 (17) 4.3空气弹簧气囊大小的选择 (18) 4.4存在问题 (20) 4.5分析问题 (20)

动车组空气弹簧系统的组成及其特性分析

动车组总体 题目:动车组空气弹簧系统 的组成及其性能分析姓名:谭兆利 学号:EMU 2015007 成绩: 二〇一五年一月

摘要:铁路机车车辆上采用弹簧装置来缓冲冲击,使列车平稳运行,改善机车横向运动性能和曲线通过性能。随着高速铁路的发展,传统的弹簧装置已经不能满足高速列车性能的要求,现在多采用圆弹簧、橡胶弹簧及空气弹簧。圆弹簧和橡胶弹簧经常被用作一系悬挂,而空气弹簧则被广泛运用于二系悬挂。本文主要介绍空气弹簧的组成及其各部件性能的分析。 关键字:空气弹簧;高度调整;差动阀 1.系统组成。 主要有空气弹簧本体、附加空气室、高度控制阀、差压阀和滤尘器等组成(见图1)。 2.压力空气传递过程(见图1) 压力空气由列车主风管1→T形支管2→截断塞门3→滤尘止回阀4→空气弹簧储风缸5→主管→连接软管6→高度控制阀7→附加空气室10和空气弹簧本体8。 3.高度调整阀工作原理。 为了保持车体距轨面的高度不变,在车体与转向架之间装有高度调整阀,以调节空气弹簧橡胶囊中的压缩空气,使车辆地板面不受车内乘客的多少和分布不均匀的影响,基本保持水平。

3.1调节过程(见图2): 在正常载荷位置,及H h =时,充气通路L V →和放气回路E L →均被关闭; 当车体载荷增加时,此时H h <,阀动作,使L V →通路开启,压缩空气向空气弹簧充气,直至地板上面上升到标定高度为止。 当车体载荷减少时,此时H h >,阀动作,使E L →通路开启,空气弹簧向大气排气,直至地版面下降到标定高度为止。 3.2高度调整阀装置结构。 不同动车组所使用的高度调整装置结构有所区别,这里以2CRH 和3CRH 动车组所采用的高度调整阀装置为例来加以说明。 2CRH 的结构如图3 所示。该高度调整阀内使用的工作油特性如下: 种类:硅油;黏度:25,/1023s m -℃;温度系数:0.6.;流动点:-50℃以下。 高度调整阀工作过程分进气过程和排气过程,具体如图4,图5 当然,上述调整只是在静态时进行,不能影响车体与转向架间的正常震动。保证高度调节阀仅在静态需要调整时才起作用,而对动态震动不起作用,这就要求高度调整阀必须具有如下特性: 具有不感带(10±1)mm ;具有时间延时(3±1)s ;内腔充满硅油,起阻尼作用。 3CRH 的高度调整阀组成主要包括高度阀座、高度阀、水平杆、螺纹杆、调整环和下座等部件见图6 高度控制阀的主体采用螺钉固定在高度阀座上,阀座与摇枕相连,而该阀的阀杆铰接在转向架上。高度控制阀在转向架的位置可参见图6。 通过调整高度控制阀和转向架构架之间的螺纹杆的长度以便调整由于车轮

相关主题
文本预览
相关文档 最新文档