当前位置:文档之家› 分式不等式的解法教案资料

分式不等式的解法教案资料

分式不等式的解法教案资料
分式不等式的解法教案资料

例1、(1)()()303202

x x x x ->-->-与解集是否相同,为什么? (2)

()()303202x x x x -≥--≥-与解集是否相同,为什么? 解:方法1:利用符号法则转化为一元一次不等式组,进而进行比较。

方法2:在分母不为0的前提下,两边同乘以分母的平方。

通过例1,得出解分式不等式的基本思路:等价转化为整式不等式(组):

(1)()()

()()00f x f x g x g x >??> (2)()()()()()000

f x

g x f x g x g x ?≥??≥??≠?? 解题方法:数轴标根法。

解题步骤: (1)首项系数化为“正”

(2)移项通分,不等号右侧化为“0”

(3)因式分解,化为几个一次因式积的形式

(4)数轴标根。

例2、解不等式:22320712

x x x x -+≤-+-

例3、解不等式:22911721x x x

x -+

≥-+ 点评:1、不能随便去分母

2、移项通分,必须保证右侧为“0”

3、注意重根问题

例4、解不等式:22560(

0)32x x x x +-≥≤-+

点评:1、不能随便约去因式

2、重根空实心,以分母为准

例5、解不等式:

2121332

x x x x ++>--

点评:不等式左右不能随便乘除因式。

例6、解不等式:

22331x x x ->++

练习:解不等式:

1、302x x

-≥-(首相系数化为正,空实心)

2

2

113x x ->+(移项通分,右侧化为0)

高考数学 高次分式不等式解法

课 题:分式不等式 高次不等式的解法 ⒈ 一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x . 分析一:利用前节的方法求解; 分析二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等 式的解集是下面两个不等式组:???<+>-0401x x 与???>+<-0401x x 的解集的并集,即{x|? ??<+>-040 1x x } ∪?? ?>+<-0 40 1|{x x x }=φ∪{x|-4-0401x x 或? ??>+<-040 1x x ?x ∈φ或-40; 解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3; ③列表如下: ④由上表可知,原不等式的解集为:{x|-23}. 小结:此法叫列表法,解题步骤是:

①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)… (x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……; ②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的 因式开始依次自上而下排列); ③计算各区间内各因式的符号,下面是乘积的符号; ④看下面积的符号写出不等式的解集. 练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-13}. {x|-10(<0)形式,并将各因式x的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来; ③由右上方穿线,经过数轴上表示各根的点(为什么?); ④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”, 则找“线”在x轴下方的区间. 注意:奇过偶不过 例3解不等式:(x-2)2(x-3)3(x+1)<0. 解:①检查各因式中x的符号均正; ②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根); ③在数轴上表示各根并穿线,每个根穿一次(自右上方开始奇过偶不过),如下图: ④∴原不等式的解集为:{x|-1

八年级数学上册第十五章分式15.3分式方程第1课时分式方程及其解法教案人教版

15.3 分式方程 第1课时分式方程及其解法 【知识与技能】 1.理解分式方程的意义; 2.掌握解分式方程的基本思路和解法; 3.理解解分式方程可能无解的原因,掌握解分式方程的验根方法. 【过程与方法】 通过探索实际问题中的数量关系,体会分式方程的模型作用,在经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题,解决问题的能力,渗透转化的数学思想,培养学生的应用意识. 【情感态度】 在活动中培养学生乐于探索、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值. 【教学重点】 解分式方程的基本思路和解法. 【教学难点】 理解解分式方程可能无解的原因,及增根的含义. 一、情境导入,初步认识 问题一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 【教学说明】让学生求出江水流速为v千米/时后,自主探究,获得方程.然后师生共同评析.教师讲课前,先让学生完成“自主预习”. 思考 (1)方程 9060 3030 v v = +- 与以往学过的方程有什么不同之处? (2)什么叫分式方程?分式方程的特征是什么? (3)怎样解分式方程 9060 3030 v v = +- 呢? 【教学说明】教师提出问题后,学生自主探究,相互交流,得出相应结论.教师应关注学生的参与情况及解决问题的情形,适时予以点拨,最后师生共同评析. 二、思考探究,获取新知 分式方程:分母中含有未知数的方程叫做分式方程.

解分式方程的基本思路是将分式方程运用去分母的方法化成为整式方程. 如:解方程90603030v v =+-. 解:在方程两边乘的最简公分母(30+v)(30-v ),得 90(30-v)=60(30+v ). 解得v=6. 检验:将v=6代入方程,左边=5/2=右边,所以v=6是原分式方程的解. 试一试 解方程2110525 x x =-- . 思考 上面两个分式方程中,为什么 90603030v v =+-去分母后所得整式方程的解就是原分式方程的解,而2110525 x x =--去分母后所得整式方程的解却不是原分式方程的解呢? 【教学说明】教师提出问题后,学生先独立解决问题,然后在小组中提出自己的看法并讨论.在学生讨论时,教师可参与交流,鼓励学生勇于探索、实践,解释产生这一现象的原因,并让学生明白解分式方程时一定要验根. 【归纳结论】 一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此;解分式方程时必须检验.检验方法可以如下:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;如果使最简公分母为0,则整式方程的解不是原分式方程的解,它是原分式方程增根,原分式方程无解. 三、典例精析,掌握新知 例1解方程233x x =- . 解:方程两边同乘以x(x-3),得 2x=3(x-3). 解得x=9. 检验:x=9时,x(x-3)=54≠0,∴x=9是原分式方程的解. 例2解方程() 31112x x x x -=--+() . 解:方程两边同乘以(x-1)(x+2),得 x (x+2)-(x-1)(x+2)=3 化简,得x+2=3. 解得x=1.

含参不等式

含参不等式知识互联网 题型一:不等式(组)的基本解法

x ( x ( b ( 无解(大大小小无解了) 典题精练 【例1】 ⑴解不等式 31 423 x x x +--+≤. ⑵解不等式组12(1)532122 x x x --?? ?-<+??≤,并在数轴上表示出解集 ⑶求不等式组2(2)43 251x x x x --??--? ≤<的整数解 ⑷解不等式组32215x x -<-<

⑸解不等式组253473 x x -?? (2012年朝阳一模) 题型二:含参数的不等式(组) 思路导航 对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <, 例题精讲 【引例】⑴关于x 的一次不等式组x a x b >???? ⑵13kx +> ⑶132kx x +>- ⑷36mx nx +<--

⑸() 212m x +< ⑹()25n x --< 【例3】 ⑴不等式 ()1 23 x m m ->-的解集与2x >的解集相同,则m 的值是 . ⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 . ⑶ 关于x 的不等式5ax >的解集为5 2 x <-,则参数a 的值 . ⑷ ①若不等式组3 x x a >??>? 的解集是x a >,则a 的取值范围是 . ②若不等式组3 x x a >??? ≥的解集是x a ≥,则a 的取值范围是 . A .3a ≤ B .3a = C .3a > D .3a ≥ (北京二中期中考试) ⑸已知关于x 的不等式组2 32x a x a +??-?≥≤无解,则a 的取值范围是 . ⑹已知关于x 的不等式组>0 53x a x -??-? ≥无解,则a 的取值范围是 . 【例4】 ⑴ 已知关于x 的不等式组0 521≥x a x -??->? 只有四个整数解,则实数a 的取值范围是 . ⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥ (北京五中期中考试)

分式不等式的解法

一 不等式的解法 1 含绝对值不等式的解法(关键是去掉绝对值) 利用绝对值的定义:(零点分段法) 利用绝对值的几何意义:||x 表示x 到原点的距离 ||(0){|}x a a x x a =>=±的解集为 }|{)0(||a x a x a a x <<-><的解集为 }|{)0(||a x a x x a a x -<>>>或的解集为 公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. 2 整式不等式的解法 根轴法(零点分段法) 1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正); 2) 分解因式; 3) 标根(令每个因式为0,求出相应的根,并将此根标在数轴上。注意:能取 的根打实心点,不能去的打空心); 4) 穿线写解集(从右到左,从上到下依次穿线。注意:偶次重根不能穿过); 一元二次不等式解法步骤: 1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正); 2) 首先考虑分解因式;不易分解则判断?,当0?≥时解方程(利用求根公式) 3) 画图写解集(能取的根打实心点,不能去的打空心) 3 分式不等式的解法 1)标准化:移项通分化为()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0() f x g x ≤)的形式, 2)转化为整式不等式(组)()()0()()0()()00()0()()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠?; 4 指数、对数不等式的解法 ①当1a >时 ()()()()f x g x a a f x g x >?> log ()log ()()()0a a f x g x f x g x >?>> ②当01a <<时 ()()()()f x g x a a f x g x >?< log ()log ()0()()a a f x g x f x g x >?<< x = 0x x ≥ 0x x -<

分式方程及其解法优秀教案

9.3分式方程(1) 一、内容和内容解析 1.内容 分式方程的概念和解法 2.内容解析 分式方程是分母中含有未知数的方程,它是整式方程的延伸与发展,它是初中阶段是要学的又一类方程. 解分式方程的基本思路是通过去分母将分式方程转化为整式方程.在去分母时方程两边所乘的最简公分母可能为零,因而所解整式方程的解不一定是分式方程的解,所以,检验整式方程的解是不是分式方程的解是解分式方程中必不可少的一步. 基于以上分析,可以确定本课的教学重点是:分式方程的解法. 二、目标和目标解析 1.目标 (1)理解分式方程的概念. (2)理解并掌握解分式方程的一般步骤,并学会用去分母的方法解可化为一元一次方程的简单分式方程. (3)了解检验在解分式方程中的必要性. 2.目标解析 目标(1)是让学生理解分式方程的概念,掌握分式方程的特征——分母中含有未知数,并学会判断一个方程是否为分式方程. 目标(2)是让学生知道解分式方程的一般步骤是去分母、解整式方程、检验、写出分式方程的解;熟悉解分式方程的基本思路是通过去分母将分式方程转化为整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想;让学生知道去分母的关键是找各分母的最简公分母;目前只要求学生掌握去分母后能转化为一元一次方程的分式方程的解法.目标(3)是让学生知道在解分式方程去分母时两边同乘了最简公分母可能会等于零,会使原分式方程无意义,因而需要检验. 三、教学问题诊断分析 学生在只学习一元一次方程及二元一次方程等简单整式方程的基础上学习分式方程,在用去分母将分式方程转化为整式方程,通过先求出整式方程的解进而检验是否为分式方程的解,为什么有些整式方程的解是原分式方程的解,而有一些不是原分式方程的解,学生一时难以接受,更不明白为什么会出现有些分式方程无解的情况. 基于以上分析,本课的教学难点是:了解去分母解分式方程检验的必要性. 四、教学过程设计 (一)复习与回顾 1.什么是一元一次房?

含参不等式解法举例

含参不等式专题(淮阳中学) 编写:孙宜俊 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。 解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况: (1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。 一、含参数的一元二次不等式的解法: 1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥?) 例1、解关于x 的不等式0)1(2>++-a x a x 。 解:0)1)((2>--x a x 1,0)1)((==?=--x a x x a x 令 为方程的两个根 (因为a 与1的大小关系不知,所以要分类讨论) (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 综上所述: (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 变题1、解不等式0)1(2>++-a x a x ; 2、解不等式0)(322>++-a x a a x 。

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

分式不等式的解法基础测试题回顾.doc

分式不等式的解法 一.学习目标: 1.会解简单的分式不等式。 二.学习过程 (一)基础自测 1.解下列不等式 (1)43107x x -<+ (2)-x 2+7x >6 (3)()()015<+-x x . (二)尝试学习 2.解下列不等式 (1)121 >+-x x (2)2x +11-x <0. (3)41 2+-x x ≥0 (4) x +5(x -1)2≥2

(三)巩固练习题 1.不等式 02 1<+-x x 的解集是 . 2.不等式 01 312>+-x x 的解集是( ) .A }2131|{>-x x .D }31|{->x x (四)归纳总结 1.解分式不等式的基本方法是将其转化为与之同解的整式不等式或不等式组. 2.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解;若不等式含有等号时,分母不为零.即: (1)f (x )g (x )>0?()()0>?x g x f (f (x )g (x ) <0?()()0

1.不等式 23--x x ≥0的解集是 . 2.不等式 0121≤+-x x 的解集是 3.不等式 042>+-x x 的解集是 4.不等式1x x -≥2的解集为( ) .A [1,0)- .B [1,)-+∞ .C (,1]-∞- .D (,1](0,)-∞-+∞ 5.解下列不等式 (1)2x +11-x <0 (2)x +12x -3≤1 四.作业 解不等式:(1) 0324≤+-x x (2)321≥-+x x

【精品】《解分式方程》教学设计

《解分式方程》的教学设计 邢台县皇台底中学李改增 设计理念: 《数学课程标准》指出:数学教学是在老师指导下,学生积极主动地掌握数学知识、技能,发展能力,形成 积极、主动的学习态度。而教师应引导学生从已有的数 学现实出发,经过自己的思考,得出有关数学结论,形 成数学知识、技能和能力,发展情感态度和思维品质。 由此,我确定自己在本节课中起引导作用,依学生已有 的数学实际,重新设计教学内容,使整节课贯穿一条节 节拔高的教学主线。而学生是这节课的主体,由他们探 索问题,相互解答疑惑,达成共识,逐步形成知识点, 再运用知识巩固与提高。 教学内容:《义务教育教科书数学》(冀教版版)八年级上册第十二章第四节(课本第18页至20页)。 教学目标: 1.知识目标: (1)熟悉解分式方程的步骤。 (2)理解解分式方程时验根的必要性。

2.能力目标: 会按照解分式方程的步骤解分式方程。 3.情感与价值观: (1)培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。 (2)运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。 老师引导学生自主探索分式方程的解法,将分式方程转化为整式方程,在解题中亲身体验“转化”思想。 弄清了“转化”的方向,也就明白了解分式方程的步骤,解题思路自然清晰,能力随之形成。 重点: 1.探索解分式方程的步骤,熟练掌握分式方程的解法。 2.体会解分式方程验根的必要性。 难点:如何将分式方程转化为整式方程;体会分式方程 验根的必要性。 学情与教材分析:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。但

高中数学不等式的分类、解法(教资材料)

高中数学简单不等式的分类、解法 一、知识点回顾 1.简单不等式类型:一元一次、二次不等式,分式不等式,高次不等式,指数、对数不等式,三角不等式,含参不等式,函数不等式,绝对值不等式。 2.一元二次不等式的解法 解二次不等式时,将二次不等式整理成首项系数大于0的一般形式,再求根、结合图像写出解集 3三个二次之间的关系: 二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228) 二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法 法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法 法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()() (x g x f a a x g x f >?>; 0)()()(log )(log >>?>x g x f x g x f a a 0; )()(0)(log )(log x g x f x g x f a a < 7.三角不等式解法 利用三角函数线或用三角函数的图像求解 8.含参不等式解法 根据解题需要,对参数进行分类讨论 9.函数不等式解法 利用函数的单调性求解,化为基本不等式(有时还会结合奇偶性) 10.绝对值不等式解法(后面详细讨论) 二、练习: (1)2 3440x x -++>解集为 (2 23x - << ) (一化二算三写) (2)213 022 x x ++>解集为 (R ) (变为≤,则得?)(无实根则配方) 三、例题与练习 例1已知函数)()1()(b x ax x f +?-= ,若不等式 0)(>x f 的解集为)3,1(-,则不等式0)2(<-x f 的 解集为 ),2 1()23,(+∞--∞ 解法一:由根与系数关系求出3,1-=-=b a ,得 32)(2++-=x x x f ,再得出新不等式,求解 解法二:由二次不等式0)(>x f 的解集为)3,1(-得 0)(+n mx 的解集为 (m, n )=(-4,-5),解集为)4 5 ,(--∞ 例2:不等式 22 32 x x x -++≥0的解集是_____. 答案:(-2,-1)∪[2,+∞) 法一:化为不等式组 法二:数轴标根法 法三:化为整式不等式(注意等价性) 变式2:不等式0332 3<+--x x x 的解集为 . 答案:)1,()3,1(--∞ 例3:解关于x 的不等式ax x ax -≥-222 分析:化为02)2(2 ≥--+x a ax ,考虑分类标准:①a 与0的关系② a 2 与-1的关系 变式3:①解关于x 的不等式ax 2-(a +1)x +1<0 解:原不等式可化为(ax-1)(x-1)<0 当a<0时,原不等式解集为),1()1 ,(+∞-∞ a 当a=0时,x-1>0, 原不等式解集为(1,+ ∞) 当0

不等式解法举例

不等式解法举例 ?教学重点:不等式求解. ?教学难点:将已知不等式等价转化成合理变形式子. ?教学方法:创造教学法 为使问题得到解决,关键在于合理地将已知不等式变形,变形的过程也是一个创造的过程,只有这一过程完成好,本节课的难点也就突破. ?教学过程: 一、课题导入 1、由一元一次不等式、一元二次不等式、和简单的绝对值不等式式子,导出其不等式 解法. 2、一元二次不等式的解法. 3、数形结合思想运用. 二、新课讲授 例1:解不等式|x2-5x+5|<1 分析:不等式|x|0)的解集是{x|-a-1 解这个不等式组,其解集就是原不等式的解集. 解:原不等式可化为 -1< x2-5x+5<1 即 x2-5x+5< 1 ①

x 2-5x +5>-1 ② 解不等式①由 x 2-5x +5< 1 得 (x -1)(x -4)< 0 解集为{x |1- 1 得 (x -2)(x -3)> 0 解集为{x |x < 2或x >3}. 原不等式的解集是不等式①和不等式②的解集的交集,即 {x|13}={x|10 x2-2x-3<0 或 x2-3x+2<0 x2-2x-3>0 因此,原不等式的解集就是上面两个不等式组的解集的并集. 解:这个不等式的解集是下面个不等组(Ⅰ)、(Ⅱ)的解集的并集: x 2-3x +2>0 ① x 2-2x -3<0 ② x 2-3x +2<0 ③ x 2-2x -3>0 ④ 先解不等式(Ⅰ). 解不等式① x 2-3x +2>0, 得解集 {x |x <1,或x >2} 解不等式② x 2-2x -3<0, 得解集 {x |x <1,或x >2} 因此,不等式组(Ⅰ)的解集是 {x |x <1,或x >2}∩{x |x <1,或x >2}. 不等式解集在数轴上表示如下: 再解不等式(Ⅱ). x 2-3x +2 x 2-2x -3 (Ⅰ) (Ⅱ)

含参不等式练习题及解法

众所周知,不等式解法是不等式这一板块的高考备考重点,其中,含有参数的不等式的问题,是主考命题的热点,又是复习提高的难点。(1)解不等式,寻求新不等式的解集; (2)已知不等式的解集(或这一不等式的解集与相关不等式解集之间的联系),寻求新含参数的值或取值范围。 (3)注意到上述题型(2)的难度与复杂性,本专题对这一类含参不等式问题的解题策略作以探索与总结。 一、立足于“直面求解” 解不等式的过程是一系列等价转化的过程,对于有关不等式的“解”的问题,直面不等式求解,有时是问题解决的需要,有时是解决问题的基础或手段。所给问题需要在获得不等式的解集或最简形成后,方可延伸或突破时,则要果断地从求 解不等式切入。例1.设关于x的不等式 (1)解此不等式;(2)若不等式解集为(3,+∞),求m的取值范围; (3)若x=3属于不等式的解集,求m的取值范围 分析:着眼于不等式的等价变形,注意到这里m2>0,m2同乘以不等式两边,则不等式转化为ax>b型,于是可以x的系数a的取值为主线进行讨论。 解:(1)由题设,原不等式m(x+2)>m2+(x-3)(m R,m≠0) (m-1)x>m2-2m-3(1)∴当m>1时,由(1)解得 当m=1时,由(1)得x R;当m<1且m≠0时,由(1)解得 ∴当m>1时,原不等式的解集为当m=1时,原不等式的解集为R 当m<1且m≠0时,原不等式的解集为 (2)若不等式的解集为(3,+∞),则由(1)知应得 ∴此时m的取值范围为{5} (3)注意到x=3 为不等式的解,将x=3代入(1)得:3(m-1)>m2-2m-3m2-5m<0 00以及,m的取值或取值范围由此而产生。 例2.已知关于x的不等式组的整数解的集合为{-2},求实数R的取值范围。 分析:由题设知,这一不等式组的解集只含有一个整数-2,那么当x= -2属于这一成员不等式时,该不等式的解集是何种情形,这需要解出不等式后方可作出结论,故考虑以求解这一成员不等式切入并延伸。 解:不等式x2-x-2>0 (x+1)(x-2)>0x<-1或x>2 ∴不等式x2-x-2>0的解集A=(-∞,-1)∪(2,+ ∞),显然-2∈A 不等式2x2+(2R+5)x+5R<0 (x+R)(2x+5)<0① 设这一不等式的解集为B,则由-2B,得:(-2+R)(-4+5)<0R<2② 注意到(x+R)(2x+5)=0的根为x1= -R,, ∴(1)当时, 由①得,即此时-2 B (2)当时,由①得

含参不等式

《不等式(组)的字母取值范围的确定方法》教学设计 教材分析:本章内容是北师大新版八年级数学(下)第二章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用口诀或数轴直观的得到一元一次不等式组的解集。 学情分析:在学习了一元一次不等式组的解法之后,学生就会经常遇到求一元一次不等式组中字母系数的值或求其取值范围的问题. 不少学生对解决这样的问题感到十分困难. 事实上,只要能灵活运用不等式组解集的知识即可顺利求解. 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握逆向思维和数形结合的数学思想。 学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。 (2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。 教学准备 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:大大取大;小小取小;大小小大中间找;大大小小找不到. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 1、⑴不等式组???-≥>1 2x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组?? ?≥≤14x x 的解集是 . ⑷不等式组???-≤>45x x 的解集是 . 一、已知不等式的解集确定字母系数的问题 1. 逆向运用“大大取大”求解参数 分析:逆向运用大大取大归结为:若不等式组???>>b x a x 的解集为b x >,则b a ≤ 例1.(2014恩施市) 如果一元一次不等式组???>>a x x 3的解集为a x >,则a 的取值范围是:( ) A. a >3 B. a ≥3 C. a ≤3 D. a <3 变式练习1:若不等式组? ??<->+m x x x 544的解集是3

高二数学课件-《不等式的解法举例》

高二数学课件:《不等式的解法举例》 过去的一切会离你越来越远,直到淡出人们的视野,而空白却会越放越大,直至铺成一段苍白的人生。下面为您推荐高二数学课件:《不等式的解法举例》。 (1)能熟练运用不等式的基本性质来解不等式; (2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法; (3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解; (4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想; (5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.【教学建议】一、知识结构 本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为: ; ; ;

二、重点、难点分析 本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式的求解.这个不等式其实是一个不等式组的简化形式,当为一元一次式时,可直接解这个不等式组,但当为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集. 三、教学建议 (1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.特别是对于基础比较差的学生,这一环节不可忽视. (2)在研究不等式的解法之前,应先复习解不等式组的基本思路以及不等式的解法,然后提出如何求不等式的解集,启发学生运用换元思想将替换成,从而转化一元二次不等式组的求解. (3)在教学中一定让学生充分讨论,明确不等式组中的两个不等式的解集间的交并关系,两个不等式的解集间的交并关系. (4)建议表述解不等式的过程中运用符号 . (5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法.可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法. (6)分式不等式与高次不等式的等价原因,可以认为是不等式两端同乘

(完整版)含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

分式不等式教案

2.3分式不等式的解法 上海市虹口高级中学 韩玺 一、教学内容分析 简单的分式不等式解法是高中数学不等式学习的一个基本内容.对一个不等式通过同解变形转化为熟悉的不等式是解不等式的一个重要方法.这两类不等式将在以后的数学学习中不断出现,所以需牢固掌握. 二、教学目标设计 1、掌握简单的分式不等式的解法. 2、体会化归、等价转换的数学思想方法. 三、教学重点及难点 重点 简单的分式不等式的解法. 难点 不等式的同解变形. 四、教学过程设计 一、分式不等式的解法 1、引入 某地铁上,甲乙两人为了赶乘地铁,分别从楼梯和运行中的自动扶梯上楼(楼梯和自动扶梯长度相同),如果甲的上楼速度是乙的2倍,他俩同时上楼,且甲比乙早到楼上,问甲的速度至少是自动扶梯运行速度的几倍. 设楼梯的长度为s ,甲的速度为v ,自动扶梯的运行速度为0v . 于是甲上楼所需时间为 s v ,乙上楼所需时间为02 s v v + . 由题意,得 2 s s v v v < +. 整理的 0122v v v <+. 由于此处速度为正值,因此上式可化为022v v v +<,即02v v >.所以,甲的速度应大于自动扶梯运行速度的2倍. 2、分式不等式的解法 例1 解不等式: 1 232 x x +>-.

解:(化分式不等式为一元一次不等式组) 1232x x +>-?12032x x +->-?()51032 x x -->-?1 032x x -<- ?10320x x -?或10320x x ->??-??或12 3x x >?? ??或 10 320 x x ->?? -?>,00a ab b -?12032x x +->-?()51032 x x -->-?1 032x x -<- ?()()3210x x --(0<)?()()0f x g x >(0<) ; (2) ()()0f x g x ≥(0≤)?()()()()000 f x g x g x ≥≤??? ≠??.

初中数学八年级上册《分式方程及其解法》优秀教学设计

15.3 分式方程 第1课时 分式方程及其解法 1.了解分式方程的概念.(重点) 2.掌握可化为一元一次方程的分式方程的解法,知道转化的思想方法在解分式方程中的应用.(重点) 3.了解增根的概念,会检验一个数是不是分式方程的增根,会根据增根求方程中字母的值.(难点) 一、情境导入 1.什么是方程? 2.什么是一元一次方程? 3.解一元一次方程的一般步骤是什么? 我们今天将学习另外一种方程——分式方程.二、合作探究 探究点一:分式方程的概念 下列关于x 的方程中,是分式方程的是( ) A.3+x 2=2+x 5 B.2x -17=x 2 C. x π+1=2-x 3 D.12+x =1-2x 解析:A 中方程分母不含未知数,故不是分式方程;B 中方程分母不含未知数,故不是分式方程;C 中方程分母不含表示未知数的字母,π是常数;D 中方程分母含未知数x ,故是分式方程.故选D. 方法总结:判断一个方程是否为分式方程,主要是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母). 探究点二:分式方程的解法 【类型一】 解分式方程 解方程: (1)5x =7x -2;(2)1x -2=1-x 2-x -3. 解析:分式方程两边同乘以最简公分母, 把分式方程转化为整式方程求解,注意验根. 解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解; (2) 方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解. 方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的 解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是 代入公分母检验. 【类型二】 由分式方程的解确定字母的取值范围 关于x 的方程2x +a x -1=1的解是正 数,则a 的取值范围是____________. 解析:去分母得2x +a =x -1,解得x =-a -1,∵关于x 的方程2x +a x -1=1的解是 正数,∴x >0且x ≠1,∴-a -1>0且-a -1≠1,解得a <-1且a ≠-2,∴a 的取值范围是a <-1且a ≠-2. 方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0. 探究点三:分式方程的增根 【类型一】 求分式方程的增根 若方程 3x -2=a x +4x (x -2) 有增

相关主题
文本预览
相关文档 最新文档