当前位置:文档之家› 分子动力学模拟方法的基本原理与应用

分子动力学模拟方法的基本原理与应用

分子动力学模拟方法的基本原理与应用
分子动力学模拟方法的基本原理与应用

分子动力学模拟方法的基本原理与应用

摘要: 介绍了分子动力学模拟的基本原理及常用的原子间相互作用势, 如Lennard-Jones势; 论述了几种常用的有限差分算法, 如Verlet算法; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。

关键词: 分子动力学模拟; 原子间相互作用势; 有限差分算法;

分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。

从统计物理学中衍生出来的分子动力学模拟方法(Molecular Dynamics Simulation, MDS) , 实践证明是一种描述纳米科技研究对象的有效方法, 得到越来越广泛的重视。所谓分子动力学模拟, 是指对于原子核和电子所构成的多体系统, 用计算机模拟原子核的运动过程, 从而计算系统的结构和性质, 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段, 称之为“计算机实验”手段, 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

科学工作者在长期的科学研究实践中发现,当实验研究方法不能满足研究工作的需求时,用计算机模拟却可以提供实验上尚无法获得或很难获得的重要信息;尽管计算机模拟不能完全取代实验,但可以用来指导实验,并验证某些理论假设,从而促进理论和实验的发展。特别是在材料形成过程中许多与原子有关的微观细节,在实验中基本上是无法获得的,而在计算机模拟中即可以方便地得到。这种优点使分子动力学模拟在材料研究中显得非常有吸引力。

分子动力学模拟就是用计算机方法来表示统计力学,作为实验的一个辅助手段。分子模拟就是对于原子核和电子所构成的多体系统,求解运动方程(如牛顿方程、哈

密顿方程或拉格朗日方程),其中每一个原子核被视为在全部其它原子核和电子作用下运动,通过分析系统中各粒子的受力情况,用经典或量子的方法求解系统中各粒子在某时刻的位置和速度,以确定粒子的运动状态,进而计算系统的结构和性质。该模拟技术主要涉及粒子运动的动力学问题,与蒙特卡罗模拟方法(简称MC)相比,分子动力学是一种“确定性方法”,它所计算的是时间平均,而MC进行的是系综平均。然而按照统计力学各态历经假设,时间平均等价于系综平均。因此,两种方法严格的比较计算能给出几乎相同的结果。

经典的分子动力学方法是Alder等于1957年提出并首先在“硬球”液体模型下应用,发现了由Kirkwood在1939年根据统计力学预言的“刚性球组成的集合系统会发生有液相到结晶相的转变”。后来人们称这种相变为Alder相变。Rahman于1963年采用连续势模型研究了液体的分子动力学模拟。1972年Less等发展了该方法并扩展了存在速度梯度的非平衡系统。1980年Andersen等创造了恒压分子动力学方法。1983年Gillan等将该方法推广到具有温度梯度的非平衡系统,从而形成了非平衡系统分子动力学方法体系。1984年Nose等完成了恒温分子动力学方法的创建。1985年针对势函数模型化比较困难的半导体和金属等,Car等提出了将电子论与分子动力学方法有机统一起来的第一性原理分子动力学方法。1991年Cagin等进一步提出了应用于处理吸附问题的巨正则系综分子动力学方法。20世纪80年代后期,计算机技术飞速发展,加上多体势函数的提出与发展,使分子动力学模拟技术有了进一步的发展。

1、分子动力学的运动方程:

分子动力学模拟的出发点是假定粒子的运动可以用经典动力学来处理,对一个由N个粒子构成的孤立体系,粒子的运动由牛顿运动方程决定,也就是:

mid2ri/dt2=-▽

i V(r

1

,r

2

,r

N

),式中,m

i

,r

i

分别为第i个原子的质量和位置。▽

i =-?/?r

i

,V(r

1

,r

2

,r

N

)为体系所处的势。

2、运动方程的数值积分:

计算机模拟方法的基点是利用现代计算机高速和精确的优点 , 对几百个以至上千个分子的运动方程进行数值积分有许多不同的积分方法 , 它们的效率和方便程度各异问题基本上就是用有限差分法来对二阶常微分方程进行积分常用的有以下几种方法:

、Verlet算法[1]:

Verlet算法是在60年代后期出现的,对扩散分子的质心运动的积分是最稳定的也是最常用的数值方法。它运用t时刻的位置和加速度以及t时刻的位置来预测t+δt位置,其积分方案,以三阶Taylor展开为基础,由以下方程给出:

r(t+δt)=2r(t)-r(t-δt)+δt2α(t)

这里,为简单计,省略了i。速度可按微分的基本法则得出:

V(t)=[r(t+δt)-r(t-δt)]/2δt。这种算法的优点是占有计算机的内存小,并且很容易编程。但它的缺点是位置r(t+δt)要通过小项(δt2)与非常大的两项2r(t)和r(t-δt)的差相加得到,这容易造成精度损失。并且从式中可以看出,这种算法不是一个自启动算法,新位置必须由t和t-δt时刻的位置得到。

、Gear的预侧-校正算法:

这种算法分为三步来完成:首先,根据Taylor展开,预测新的位置、速度和加速度。然后,根据新的计算的力计算加速度。这个加速度再由与Taylor级数展开式中的加速度进行比较,两者之差在校正步里用来校正位置和速度项。这种方法的缺点就是占有计算机的内存大。

、“蛙跳”(Leap-frog)算法[2]:

Hockey提出的Leap-frog算法是Verlet算法的变化,这种方法设计半时间间隔的速度,即:r(t+δt)=r(t)+ δtv(t+δt/2),v(t+δt/2)=v(t-δt/2)+ δtα(t)。

t时刻的速度由下式给出:v(t)=[v(t+δt/2)+v(t-δt/2)]/2。这种算法与Verlet 算法相比有两个优点:(1)包括显速度项;(2)收敛速度快,计算量小。这种算法明显的缺陷是位置和速度不同步。

除了上述提及的几种方法外, 还有Beeman算法、Rahman等。

3、周期性边界条件和长程力:

即使是使用现代的巨型计算机,MD方法还是只能用于粒子数大约是几百到几千的系统。这就引起一个问题:用这样少量的粒子,如何来模拟宏观体系为了解决这个问题,引入了周期性边界条件[3]。采用这种方法,模拟体系实际上是由基本单元(也称为模拟计算元胞)在各个方向上重复叠合而成。但在模拟中只需保留基本单元,所有其它单元与基本单元由平移对称性关联。

在处理粒子之间的相互作用时,通常采用“最小影像”约定。这个约定是在由无穷重复的MD基本模拟计算元胞中,一个粒子只与它所在的基本元胞内的另外N-1个(设在此元胞内有N个粒子)中的每个粒子或其最邻近影像粒子发生相互作用。

实际上,这个约定就是通过满足不等式条件r

c

c

为截断半径,L

是元胞的边长)通常L的数值应当选得很大,以避免有限尺寸效应,但这样会增大计算量,同城采用对相互作用势的修正来近似处理。

4、势函数:

MD模拟结果准确与否的关键在于对系统内的原子之间相互作用势函数的选取,总的来说,原子(或分子)之间的相互作用势的研究进展一直很缓慢,在一定程度上制约了MD方法在实际研究中的应用,原子间的势函数的发展经历了从对势到多体势的过程,对势认为原子之间的相互作用是两两之间的作用,与其它原子的位置无关,而实际上,在多原子体系中,一个原子的位置不同,将影响其它原子间的有效相互作用。所以,多体势能更准确地表示多原子体系势函数。

、对势:

在分子动力学模拟的初期,经常采用的就是对势。对势可以分为间断对势[1]和连续对势,而连续对势主要有以下几种:Lennard-Jones(L-J)势、Born-lande(B-L)势、Morse势和Johnson势等,其中,L-J势是为描述惰性气体分子之间的相互作用而建立的,因此它表达的力比较弱,描述材料的行为也比较柔韧,也可以用来描述过渡金属原子之间的相互作用。B-L势是用来描述离子晶体离子之间的相互作用的。Morse势和Johnson势多用于描述金属原子之间的相互作用。对势虽然简单,得到的结果往往也符合某些宏观物理规律,但其缺点是必然导致Cauchy关系,所以,对势实际上不能准确地描述晶体的弹性性质。

、多体势:

多体势是在20世纪80年代初期开始出现的,1984年Daw和Baskes首次提出了原子嵌入(EAM)势[4]。此势的基本思想是:把晶体的总势能分成位于晶格点阵上的原子核之间的相互作用对势和原子核镶嵌在电子云背景中的嵌入能(多体相互作用)两部分,其中,对势和多体作用势的函数形式往往根据经验选取。基于EAM势的势函数还有很多种,这些多体势大多用于金属的微观模拟,此外,还有许多形式的多体势函数形式,1987年Jacobsen等人在等效介质原理的基础上提出的另一种多体势函数形式,由于其简单、有效,也得到了广泛地应用。

5、分子动力学模拟的系综:

平衡态分子动力学模拟是在一定的系综瞎进行的,经常用的平衡系综是NVT或NPT系综。在这两种系综中,牵涉到控制温度和压力的几种技术,分别如下:

、控温方法:

(1)速度标定:系统的温度与动能存在如下关系:,

式中,N是原子数,N

c 是约束数,K

B

是Boltzmann常数,v

i

是原子i的速度。由于系

统的温度和动能存在这样的关系,所以一种最简单和最直观的方法是直接对速度进行标定。这种方法的基本思想是:如果t时刻的温度是T(t),速度乘以因子λ后,

温度的变化为ΔT=(λ2-1)T(t),其中,,T 为所控制体系的温度。

(2)Berendsen 恒温槽方法:这种控温方法假设所模拟的体系与一个恒温槽连载一起,则两者之间就可以通过热交换而使模拟体系达到恒温的目的,方法如下,定义一个参数λ:,式中τ表征系统与恒温槽之间的热交换速率,Δt 为MD 的时间步长,那么通过v new =λv old 校正即可保持体系的温度在

T 0附近震动,而参数(通常取为~)则可用于控制这个震动幅度。

(3)Nose-Hoover 方法:这种方法是通过改变模拟体系的Hamiltonian 来实现控温的,因而有更强的物理意义,其基本思想就是在Hamiltonian 加入一个假想的项来代表一个恒温源,具体做法如下:

,式中,S 和分别是假想项的坐标和动量。这样体系的微分方程就变为:v i =dr i /dr ,ai=-(dV/dr+mivi

)/mi ,d 。式中,g 为体系的自由度,Q 为一个可调参量,表征着假想项的质量,T 为温度。

在这三种控温方法中,速度标定是一种非真实的物理效应。但这种方法可以使系统很快达到平衡,在经典分子动力学方法中,这是一种比较常用的控温方法。Berendsen 控温方法是通过系统和恒温槽进行热交换来控制温度,此方法的优点是非常简单,应用起来非常方便。Nose-Hoover 控温方法是基于统计力学而提出来的一种控温方法,当系统和恒温槽进行热交换时,在系统中粒子出现的几率遵从统计力学规律,所以这是一种真实的物理效应。

、控压方法:

用MD 方法研究压力的诱导相变和结构重构,在等压下模拟比在等体积下更容易实现。在等压模拟下,可以通过改变模拟元胞的三个方向或一个方向的尺寸来实现体积的变化,类似于温度控制的方法,也有许多方法用于压力控制,在实际应用中,有以下两种较为常用的压力控制方法。

(1) Berendsen 方法:这种控压方法的基本思路与基本控制方程均与他的控

温方法类似,如下:,式中是一个可调参数,为所控制的压力。然后,在每一次的MD迭代中,粒子坐标x,y,z均用相乘,得到新的坐标,即可实现对压力P的控制。该方法的缺点是可能导致在很长的模拟时间步长内,保持着起伏。

(2)Parrinello-Rahaman方法:这种方法是通过改变体系的Lagrangian来实现的,新的Lagrangian定义如下:

,其中,是模拟单胞的基矢,,原子坐标为,V为原子之间的相互作用势,Ω为单胞体积,Tr表示矩阵的迹,W是一个可调参量。这种方法的有点是模拟单胞不仅大小可变,形状也可变。

6、热力学性质的计算:

经典力学的一个基本前提是,只要知道了物理体系在相空间的运动,就可以导出其所有的宏观性质。在分子动力学中,对模拟得到的位形进行结构分析是很重要的。比如在研究晶体的熔化时,需要及时分析它的结构变化。就结构分析而言,目前常用的方法有:径向分布函数、静态结构因子和配位数等方法。

、径向分布函数:

径向分布函数可以由下式来定义:,式中,n(r)表示距离原点r到r+Δr之间的平均粒子数,V是模拟的体积。RDF表示的物理含义是:再空间位置r点周围的体积元中单位体积内发现另一个粒子的几率。由此看出,RDF表征着结构的无序化程度。

、静态结构因子:

静态结构因子表示式为:,其中,N是总原子数,K

是倒格矢,为原子位置矢量。对理想晶体而言,SSF为1,而对理想流体,则为0。、配位数:

所谓配位数,就是原子的第一最近邻原子的个数配位数的多少 , 表示了该原子周围的原子分布的密度大小,它经常在一些分析中作为结构分析的一种辅助手段。

7、MD方法的进一步研究方向:

经典分子动力学方法存在两个缺陷:(1)元胞体积和形状保持不变,限制MD 方法的应用;(2)不适合含有自由电子的系统,对金属等系统的计算的结果不理想。

为克服经典分子动力学方法的局限性,20世纪80年代初Anderson、Parrinello 等人发展了可变元胞分子动力学方法。由于能带论中的密度泛函(DF)方法是研究凝聚态物质电子结构的有效方法,1985年Car等人提出了第一原理的MD方法。

但是,进一步拓宽分子动力学方法的应用面显然是一个热门的发展方向。对MD 方法本身而言,最重要的两个要素是初始位形的给定和相互作用势函数的选取。MD 模拟时间足够长,初始条件的选择不会影响计算的结果,但是选择合理的初始条件可以加快系统趋于平衡,可以节省机时。

影响MD计算结果精确程度的最主要的因素是相互作用势的精确性,人们对提高势函数的精确性进行了大量的研究提出了许多势函数的形式,但是,对大多数原子而言,努力找到即准确而形式又不太复杂的势函数,仍然是一个很有挑战性的课题。我们认为,把第一原理、量子化学分析和参数拟合相结合是势函数研究的最好的方法,NanxianChen等人就用此方法研究了氯化钠晶体离子之间的相互作用势,并研究了微结构的变化,这是一个值得进一步研究的方向。[5]

8、分子动力学模拟方法的应用:

、氨的自扩散系数的分子动力学模拟研究:

扩散系数是描述传递现象的重要的流体热物理性质之一,较宽温度和压力范围的扩散系数在化工生产中具有重要应用价值。扩散系数的实验测量是一项很困难的工作,而分子动力学(MD)模拟撒获得分子扩散系数的有效方法。

氨,作为大气中最重要的碱性气体之一,它在大气化学、物质传输与沉降过程中发挥着重要作用。

采用MD模拟方法计算氨在较宽温度和压力范围的自扩散系数,通过将两种不同的控温方式得到的模拟值与大量的实验值进行比较,验证了所采用的模拟方法是合理的。从而可有效地预测极端条件下实验难以测量的扩散系数。

MD模拟采用TINKER 程序包,OPLS-AA全原子力场。

模拟体系包含300个分子。分子间的作用势采用Lennard-Jones势,体系中的长程作用力采用Ewald加和的形式。在模拟过程中均采用周期性边界条件、Beeman算法求解运动方程。温控方式分别采用Andersen和Berendsen。体系的截断半径为1nm,时间步长为1fs。MD模拟在NVT系综进行。

通过模拟发现:从常温到高温,采用Berendsen控温方式得到的氨的自扩散系数的模拟值与实验值吻合的很好。于是,可以采用分子动力学模拟来代替实验,获得高温高压条件下实验难以测量的分子自扩散系数。另一方面,氨的自扩散系数受温度的影响比受压力的影响更明显。[6]

、半晶态聚合物的分子动力学模拟:

聚合物材料区别于其它材料的一个典型特征是它具有半结晶形态.当从熔点以上温度开始缓慢冷却到室温时,很多聚合物将发生部分区域结晶、部分保留为非晶态的转变,而形成半晶态的结构。实验观测到折叠链结构为聚合物结晶的基本形式,由折叠链片晶可形成多层堆叠片晶、球晶、串晶和枝晶等。针对半晶态聚合物的总体形态,人们提出了多种多样的聚合物结构模型,如缨状微束模型、折叠链模型和折叠链缨状胶粒模型等。

采用Meyer和Muler-Plathe提出的粗粒化聚乙烯醇模型,应用分子动力学方法,模拟熔融态聚合物经过缓慢冷却、局部结晶形成半晶态聚合物的过程,研究冷却过程中聚合物的结晶和凝固行为,揭示半晶态聚合物的结构特征及其形成机制。为半晶态聚合物物理、力学性能的分子模拟研究提供基础。

应用分子动力学方法 , 模拟熔融态聚合物经过缓慢冷却,局部结晶形成半晶态聚合物的过程。静态结构因子的演变显示出,在结晶行为的初期小角散射强度的增大先于布拉格峰的出现,这个现象与小角/大角x射线散射实验结果相一致。模拟得到了半晶态的聚合物结构,其中的微小晶区由折叠链构成,它们随机取向分布在非晶态区中,总体形态可用缨状微束结构模型描述。模拟得到的半晶态聚合物的结晶度为45%,分子链持久长度(即晶区平均厚度)约为。通过比较结晶度和分子链持久长度随温度的变化曲线,发现在不同的冷却阶段具有不同的有序结构形成机制。从随机缠绕的分子链到折叠链晶区,需要两种形式的结构转变:分子链的伸展和伸直分子链之间的平行排列。在从结晶温度到玻璃化温度的凝固转变过程中,存在上述两种形式的结构转变;而在玻璃化温度之后,材料的活性只能允许调整伸直分子链之间的相对排列位置,但由此也导致了聚合物结晶度明显的增大。[7]

、多肽抑制剂抑制淀粉质多肽42构象转换的分子动力学模拟和结合自由能计算:应用分子动力学模拟和结合自由能计算方法研究多肽抑制剂KLVFF、VVIA和LPFFD抑制淀粉质多肽42(Aβ42)构象转换的分子机理。结果表明,三种多肽抑制剂均能够有效抑制Aβ42的二级结构由α-螺旋向β-折叠的构象转换。

另外,多肽抑制剂降低了Aβ42分子内的疏水相互作用,减少了多肽分子内远距离的接触,有效抑制了Aβ42的疏水塌缩,从而起到稳定其初始构象的作用。这些抑制剂与Aβ42之间的疏水和静电相互作用(包括氢键)均有利于它们抑制Aβ42的构象转换。此外,抑制剂中的带电氨基酸残基可以增强其和Aβ42之间的静电相互作用(包括氢键)并降低抑制剂之间的聚集,从而大大增强对Aβ42构象转换的

抑制能力。但脯氨酸的引入会破坏多肽的线性结构,从而大大降低其与Aβ42之间的作用力。上述分子模拟的结果揭示了多肽抑制剂KLVFF、VVIA和LPFFD抑制Aβ42构象转换的分子机理,对进一步合理设计Aβ高效短肽抑制剂具有非常重要的理论指导意义。[8]

、超临界水中醋酸锌水解反应的分子动力学模拟:

超临界水具有特殊的溶解度、可变的密度、较低的粘度和表面张力以及较高的扩散特性,利用超临界水热合成法制备纳米ZnO逐渐成为常用的方法之一。在这种方法中,超临界水(SCW,温度T=647K,压力p=22MPa,密度ρ=)同时作

为反应介质和反应物,含Zn离子的盐如Zn(NO

3)

2

、ZnSO

4

、Zn(CH

3

COO)

2

的水溶液在

超临界状态下与碱(如KOH)或纯水先发生水解反应生成Zn(OH)

2然后Zn(OH)

2

脱水

得到纳米级的ZnO颗粒。利用超临界水热合成还成功制备出不同种类和形貌的纳米

颗粒,如MgO、TiO、ZrO

2、SnO

2

、ZnS和Fe

3

O

4

等。

利用分子动力学模拟Zn(CH

3COO)

2

与SCW反应的能量变化,以及产物CH

3

COOH在

SCW的分布特性,为实验上通过控制温度或压力生成纳米ZnO颗粒提供参考。

利用分子动力学模拟研究Zn(CH

3COO)

2

在SCW中的平衡特征以及水解反应过程的

能量变化,定性分析了水分子在Zn(CH

3COO)

2

团簇内部由于静电场的影响而发生解离

的可能性,得出以下结论:

(1)Zn(CH

3COO)

2

在SCW中易聚集成团,1个Zn周围平均结合5个CH

3

COO-和1

个H

2O满足Zn形成6配位八面体的空间构型的需要。Zn2+在Zn(CH

3

COO)

2

团簇内部和

表明的配位情况有所不同,更多的H

2O在Zn(CH

3

COO)

2

团簇表面参与Zn2+配位。

(2)在标准状态,Zn(CH

3COO)

2

水解生成Zn(OH)

2

和CH

3

COOH的反应焓变为·mol-1,

从热力学的角度看难以发生,但在超临界条件下,模拟发现上述水解反应使得体系

势能降低,表明反应容易发生,并且水解反应发生的同时伴随Zn(CH

3COO)

2

团簇结构

的改变。水解产物OH-容易进入Zn(CH

3COO)

2

团簇内部,富集Zn,而产物CH

3

COOH扩

散进入水相,并倾向分布在水相-气相界面。

(3)定性分析处于Zn(CH

3COO)

2

团簇内部的水分子周围静电势的分布发现,水

分子周围分布有很强的负的静电势,容易使水分子极化变形进而解离,促进

Zn(CH

3COO)

2

在SCW中的水解反应。[9]

参考文献:

[1] fluids. I. Thermodynamical properties of Lennard-Jonesmolecules[J]. Phys. Rev. ,1967,159:98-103

[2] The potential calculation and some applications[J]. Methods in Computational Physics,1970,9:136-211

[3], of state calculations by fast computing machines[J]. atom method derivation and application to impurities,surfaces,and other defects in metals[J]. 崔守鑫,胡海泉,肖效光,黄海军,分子动力学模拟基本原理和主要技术[O].聊城大学学报,2005,18(1):30-34

[6]周昌林,黎多来,李东凯,等,氨的自扩散系数的分子动力学模拟究[J]. 广东化工,2012,39(13):183-184

[7]段芳莉,颜世铛,半晶态聚合物的分子动力学模拟[A]. 计算物理,2012,29(5):759-765

[8]董晓燕,都文婕,刘夫锋,多肽抑制剂抑制淀粉质多肽42构象转换的分子动力学模拟和结合自由能计算[O],物理化学学报,2012,28(11),2734-2744

[9]王晓娟,李志义,刘志军,超临界水中醋酸锌水解反应的分子动力学模拟[O],物理化学学报,2013,29(1),23-29

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

MS分子动力学模拟具体实施步骤

第3章 铁基块体非晶合金‐纳米晶转变的动力学模拟过程 3.1 Discover模块 3.1.1 原子力场的分配 在使用Discover模块建立基于力场的计算中,涉及几个步骤。主要有:选择力场、指定原子类型、计算或指定电荷、选择non‐bond cutoffs。 在这些步骤中,指定原子类型和计算电荷一般是自动执行的。然而,在某些情形下需要手动指定原子类型。原子定型使用预定义的规则对结构中的每个原子指定原子类型。在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。 图 3-1 1)计算并显示原子类型:点击Edit→Atom Selection,如图3‐1所示 图3-2 弹出对话框,如图3‐2所示 从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe

原子都将被选中,原子被红色线圈住即表示原子被选中。再编辑集合,点击Edit →Edit Sets,如图3‐3、3‐4所示。 图3-3 图3-4 弹出对话框见图3‐4,点击New...,给原子集合设定一个名字。这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按 钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3‐5。 图3-5 在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。

分子动力学模拟讲解

分子动力学模拟 一,软件: NAMD:https://www.doczj.com/doc/ca16183290.html,/Research/namd/免费注册之后进行免费下载, 只需要下载解压不需要安装 VMD:https://www.doczj.com/doc/ca16183290.html,/Research/vmd/免费,分子可视化和辅助分析软 件 二,分子动力学模拟需要的数据文件包括: (1)蛋白质的PDB文件,此文件只记录原子空间位置,能够从RCSB管理的PDB数据库(https://www.doczj.com/doc/ca16183290.html,/pdb/)下载。 (2)PSF文件,此文件负责储存蛋白质的结构信息,记录蛋白质原子之间的成键情况。用户需要根据自己要求生成该文件。 (3)力场参数文件。此文件是分子动力学模拟的核心。CHAYMM,X-PLOR,AMBER和GROMACS 是经常用到的四种力场。NAMD能够利用上述每一种力场执行分子动力学模拟。 (4)配置文件(configuration file)。此文件作用是告知NAMD分子动力学模拟的各种参数,例如PDB和PSF两个文件保存的位置,模拟结果储存在哪里,体系的温度是多少等等。此文件也是要用户根据需求自己生成。同一配置的电脑,蛋白质分子大小不同,模拟运行的时间也不同,通常大蛋白质需要较长的时间。 三.以蛋白质1L63为例给出操作说明。 在PDB数据库下载蛋白质1L63. 建立文件夹1L63,其中包括以下几个文件,其中.conf文件需要修改,下面第4步会讲到。 以下生成PSF文件: 1.单击VMD,file-New Molecule-打开Molecule File Browser对话框,单击Browse按钮,在文件浏览器中找到文件夹1L63,在此文件夹中选择1L63.pdb,单击Load按钮载入1L63.pdb 2.除去pdb文件中带有的水分子 单击Extension-TK Console,弹出VMD Tk Console窗口。 首先用cd命令改变当前目录到1L63文件夹下,然后输入下列命令: set L63[atomselect top protein] $L63writepdb L63p.pdb 这样,1L63文件夹下就生成了文件L63P.pdb。这一PDB文件仅包含蛋白质,不包含水分子。 3.生成psf文件。 注意,这里仅讲全自动的psf文件生成器,描述如下: 选择Extensions-Modeling-Automatic PSF Builder菜单项,点击左上角的Options,选择Add solvation box,和Add neutralizing ions,点击右下角的I’m feeling lucky按钮,

分子动力学模拟教学教材

分子动力学模拟

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse 势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此

分子动力学模拟基础知识

分子动力学模拟基础知识 ? Molecular Dynamics Simulation o MD: Theoretical Background Newtonian Mechanics and Numerical Integration The Liouville Operator Formalism to Generating MD Integration Schemes o Case Study 1: An MD Code for the Lennard-Jones Fluid Introduction The Code, mdlj.c o Case Study 2: Static Properties of the Lennard-Jones Fluid (Case Study 4 in F&S) o Case Study 3: Dynamical Properties: The Self-Diffusion Coefficient ? Ensembles o Molecular Dynamics at Constant Temperature Velocity Scaling: Isokinetics and the Berendsen Thermostat Stochastic NVT Thermostats: Andersen, Langevin, and Dissipative Particle Dynamics The Nosé-Hoover Chain Molecular Dynamics at Constant Pressure: The Berendsen Barostat Molecular Dynamics Simulation We saw that the Metropolis Monte Carlo simulation technique generates a sequence of states with appropriate probabilities for computing ensemble averages (Eq. 1). Generating states probabilitistically is not the only way to explore phase space. The idea behind the Molecular Dynamics (MD) technique is that we can observe our dynamical system explore phase space by solving all particle equations of motion . We treat the particles as classical objects that, at least at this stage of the course, obey Newtonian mechanics. Not only does this in principle provide us with a properly weighted sequence of states over which we can compute ensemble averages, it additionally gives us time-resolved information, something that Metropolis Monte Carlo cannot provide. The ``ensemble averages'' computed in traditional MD simulations are in practice time averages : (99) The ergodic hypothesis partially requires that the measurement time, , i , in the system. The price we pay for this extra information is that we must at least access if not store particle velocities in addition to positions, and we must compute interparticle forces in addition to potential energy. We will introduce and explore MD in this section.

分子动力学模拟I

Gromacs中文教程 淮海一粟 分子动力学(MD)模拟分为三步:首先,要准备好模拟系统;然后,对准备好的系统进行模拟;最后,对模拟结果进行分析。虽然第二步是最耗费计算资源的,有时候需要计算几个月,但是最耗费体力的步骤在于模拟系统准备和结果分析。本教程涉及模拟系统准备、模拟和结果分析。 一、数据格式处理 准备好模拟系统是MD最重要的步骤之一。MD模拟原子尺度的动力学过程,可用于理解实验现象、验证理论假说,或者为一个待验证的新假说提供基础。然而,对于上述各种情形,都需要根据实际情况对模拟过程进行设计;这意味着模拟的时候必须十分小心。 丢失的残基、原子和非标准基团 本教程模拟的是蛋白质。首先需要找到蛋白质序列并选择其起始结构,见前述;然后就要检查这个结构是否包含所有的残基和原子,这些残基和原子有时候也是模拟所必需的。本教程假定不存在缺失,故略去。 另一个需要注意的问题是结构文件中可能包含非标准残基,被修饰过的残基或者配体,这些基团还没有力场参数。如果有这些基团,要么被除去,要么就需要补充力场参数,这牵涉到MD的高级技巧。本教程假定所有的蛋白质不含这类残基。 结构质量 对结构文件进行检查以了解结构文件的质量是一个很好的练习。例如,晶体结构解析过程中,对于谷氨酰胺和天冬酰胺有可能产生不正确的构象;对于组氨酸的质子化状态和侧链构象的解析也可能有问题。为了得到正确的结构,可以利用一些程序和服务器(如 WHATIF)。本教程假定所用的结构没有问题,我们只进行数据格式处理。 二、结构转换和拓扑化 一个分子可以由各个原子的坐标、键接情况与非键相互作用来确定。由于.pdb 结构文件只含有原子坐标,我们首先必须建立拓扑文件,该文件描述了原子类型、电荷、成键情况等信息。拓扑文件对应着一种力场,选择何种力场对于拓扑文件的建立是一个值得仔细考虑的问题。这里我们用的是GROMOS96 53a6连接原子力场,该力场对于氨基酸侧链的自由能预测较好,并且与NMR试验结果较吻合。

分子动力学模拟

分子动力学模拟 The Standardization Office was revised on the afternoon of December 13, 2020

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

分子动力学模拟Word版

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但是通常情况下,体系各自由度中运动周期最短的是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其他无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能力。

分子动力学模拟及其在材料中的研究进展

《材料计算设计基础》 学号: 流水号: 姓名: 完成日期:

分子动力学模拟及其在材料中的研究进展 摘要:本文综述了分子动力学模拟技术的发展,介绍了分子动力学的分类、运动方程的求解、初始条件和边界条件的选取、平衡系综及其控制、感兴趣量的提取以及分子动力学模拟在材料中的研究进展。 关键词:分子动力学模拟平衡态系综金属材料感兴趣量径向分布函数 引言 科学工作者在长期的科学研究实践中发现,当实验研究方法不能满足研究工作的需求时,用计算机模拟却可以提供实验上尚无法获得或很难获得的重要信息;尽管计算机模拟不能完全取代实验,但可以用来指导实验,并验证某些理论假设,从而促进理论和实验的发展。特别是在材料形成过程中许多与原子有关的微观细节,在实验中基本上是无法获得的,而在计算机模拟中即可以方便地得到。这种优点使分子动力学模拟在金属材料研究中显得非常有吸引力。 分子动力学MD (Molecular Dynamics)模拟就是用计算机方法来表示统计力学,作为实验的一个辅助手段。MD模拟就是对于原子核和电子所构成的多体系统,求解运动方程(如牛顿方程、哈密顿方程或拉格朗日方程),其中每一个原子核被视为在全部其它原子核和电子作用下运动,通过分析系统中各粒子的受力情况,用经典或量子的方法求解系统中各粒子在某时刻的位置和速度,以确定粒子的运动状态,进而计算系统的结构和性质。该模拟技术主要涉及粒子运动的动力学问题,与蒙特卡罗模拟方法(简称MC)相比,分子动力学是一种“确定性方法”, 它所计算的是时间平均,而MC进行的是系综平均。然而按照统计力学各态历经假设,时间平均等价于系综平均。因此,两种方法严格的比较计算能给出几乎相同的结果。 经典的分子动力学方法是Alder等于1957年提出并首先在“硬球”液体模型下应用,发现了由Kirkwood在1939年根据统计力学预言的“刚性球组成的集合系统会发生有液相到结晶相的转变”。后来人们称这种相变为Alder相变。Rahman

金属铝分子动力学模拟

物理计算与设计报告书 院(系)名称: 学生姓名: 专业名称: 班级: 时间: 金属铝分子动力学模拟

摘要:分子动力学模拟,是指对于原子核和电子所构成的多体系统,用计算机模拟 原子核的运动过程,并从而计算系统的结构和性质,其中每一原子核被视为在全部其它 原子核和电子所提供的经验势场作用下按牛顿定律运动。我们用c语言编写程序,VMD 动画演示得到原子在拉伸过程中的变化。在控制温度不变的情况下,得到了金属铝分子 的动力学模拟过程。通过不断拉伸,趋衡铝分子,计算其势能,力,速度,观察每次拉 伸过程中以及拉伸后铝原子的排列,得到金属铝的运动细节,从而更加利于我们了解铝 的性质。 结论:原子两端的拉力与原子势能的变化曲线基本一致。原子间断层以滑层方式断 裂。 关键词:铝分子,分子动力学,c语言,势能 1 引言 人们很早就知道材料的力学性能随尺度发生变化尺度减小, 材料中缺陷存在的几率降低, 材料的强度提高同时尺度的变化可能导致材料内在变形竞争机制的改变, 例如多晶材料晶粒粒径在微米级以上时, 强度主要受位错强化机制控制, 而粒径进入纳米级后, 材料的变形主要来源于晶界滑移等机制原子尺度下, 微观效应占主导地位, 材料的理化、力学性能表现出与宏观不同、甚至相反的特性。Brenner发现金属单晶晶须拉伸强度与晶须直径呈反比,Fleck在微米级细铜丝的扭转试验中观察到尺寸效应纳米电机系统(NEMS)的出现同迫切要求了解纳米尺度下材料的力学行为, 当前从实验上较难获得详细的信息, 而分子动力学模拟可以提供相关细节. 分子动力学通过直接模拟原子的运动过程, 使我们能够详细了解模拟对象的演化发展历史分子动力学模拟的一个关键在于原子势函数的选取原子势早期一般采用简单的对势, 但对势无法正确描述弹性常数, 其结果不理想世纪年代提出的镶嵌原子法、有效介质理论更客观地反映了原子间多体作用的本质, 可得到较合理的结果.认为体系总能量为

分子动力学模拟方法的基本原理与应用

分子动力学模拟方法的基本原理与应用 摘要: 介绍了分子动力学模拟的基本原理及常用的原子间相互作用势, 如Lennard-Jones势; 论述了几种常用的有限差分算法, 如Verlet算法; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。 关键词: 分子动力学模拟; 原子间相互作用势; 有限差分算法; 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 从统计物理学中衍生出来的分子动力学模拟方法(Molecular Dynamics Simulation, MDS) , 实践证明是一种描述纳米科技研究对象的有效方法, 得到越来越广泛的重视。所谓分子动力学模拟, 是指对于原子核和电子所构成的多体系统, 用计算机模拟原子核的运动过程, 从而计算系统的结构和性质, 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段, 称之为“计算机实验”手段, 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。 科学工作者在长期的科学研究实践中发现,当实验研究方法不能满足研究工作的需求时,用计算机模拟却可以提供实验上尚无法获得或很难获得的重要信息;尽管计算机模拟不能完全取代实验,但可以用来指导实验,并验证某些理论假设,从而促进理论和实验的发展。特别是在材料形成过程中许多与原子有关的微观细节,在实验中基本上是无法获得的,而在计算机模拟中即可以方便地得到。这种优点使分子动力学模拟在材料研究中显得非常有吸引力。 分子动力学模拟就是用计算机方法来表示统计力学,作为实验的一个辅助手段。分子模拟就是对于原子核和电子所构成的多体系统,求解运动方程(如牛顿方程、哈

分子动力学模拟知识点总结

分子动力学模拟: 对于原子核和电子组成的多体体系,求解运动方程(哈密顿,牛顿,拉格朗日),用经典和量子化方法求解粒子的运动状态。 MC方法:系综(抽样)平均法分子动力学:时间平均 一优点:遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。核心算法:粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。缺点:元胞体积和形状不变,不含有自由电子,对金属体系计算不理想。 注意:一般而言,MD模拟时间足够长,初始条件不会影响计算结果,但是会加大构型平衡的计算时间。 二步骤: 1.选取所要研究的系统并建立适当的模拟模型。 2.设定区域的边界条件,选取粒子间相互作用势模型;要注意观察PBC边界条 件的使用,以及计算格子和建模的晶格子之间的关系。体系是单胞沿不同方向重复叠合而组成。但模拟时只保留基本单元,由平移对称矩阵计算得到其他原子的空间坐标。最小近邻的截断半径。 3.设定系统所有粒子的初始位置和初始速度; 4.计算粒子间相互作用力和势能,以及各个粒子的位置和速度;最好与实际模 型相符,以减少达到平衡的时间。势场参数调整,最小近邻的截断半径。 对势:LJ势(惰性气体,过渡金属,柔韧材料),Born-lande势(离子晶体),Morse势,Johnson势(金属)发展到三体势,缺点是导致Cauchy关系,即不能描述晶体的弹性性质。 多体势:80年代以后,EAM势等(晶体对势+核嵌入电子云嵌入能),多用于金属。 5.待体系达到平衡后,构型积分获得体系的宏观性质。选取合适的系综,控制

vasp的分子动力学模拟

vasp的分子动力学模拟 VASP 2010-01-15 02:26:36 阅读57 评论0 字号:大中小 vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度方面有较好的优势。 缺点:可选系综太少。 尽管如此,对于大多数有关分子动力学的任务还是可以胜任的。 主要使用的系综是NVT 和NVE。 下面我将对主要参数进行介绍! 一般做分子动力学的时候都需要较多原子,一般都超过100个。 当原子数多的时候,k点实际就需要较少了。有的时候用一个k点就行,不过这都需要严格的测试。通常超过200个原子的时候,用一个k点,即Gamma点就可以了。 INCAR: EDIFF 一般来说,用1E-4 或者1E-5都可以,这个参数只是对第一个离子步的自洽影响大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小。 IBRION=0 分子动力学模拟 IALGO=48 一般用48,对于原子数较多,这个优化方式较好。 NSW=1000 多少个时间步长。 POTIM=3 时间步长,单位fs, 通常1到3. ISIF=2 计算外界的压力.

NBLOCK= 1 多少个时间步长,写一次CONTCAR,CHG和CHGCAR,PCDAT. KBLOCK=50 NBLOCK*KBLOCK 个步长写一次XDATCAR. ISMEAR=-1 费米迪拉克分布. SIGMA =0.05 单位:电子伏 NELMIN=8 一般用6到8, 最小的电子scf数.太少的话,收敛的不好. LREAL=A APACO=10 径向分布函数距离, 单位是埃. NPACO=200 径向分布函数插的点数. LCHARG=F 尽量不写电荷密度,否则CHG文件太大. TEBEG=300 初始温度. TEEND=300 终态温度。不设的话,等于TEBEG. SMASS -3 NVE ensemble;-1 用来做模拟退火。大于0 NVT 系综。 【转】vasp的分子动力学模拟 ★★★★★★★★ 小木虫(金币+1):奖励一下,谢谢提供资源 uuv2010(金币+1): 您是否可以做一个专题,详细讲讲怎么做?比如第一步需要干什么,第二步需要干什么,结果怎么分析……如果能做一个这样完整的专题就太好了,不知道您是否有兴趣?2011-07-13 18:20:12 uuv2010(金币+1): 多谢提供资源2011-07-16 17:39:55 uuv2010(金币+5, 1ST强帖+1): 多谢您的详细讲解!感谢就此专题与大家分享!2011-08-12 18:25:12 vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度方面有较好的优势。 缺点:可选系综太少。 尽管如此,对于大多数有关分子动力学的任务还是可以胜任的。 主要使用的系综是NVT 和NVE。 下面我将对主要参数进行介绍!

分子动力学模拟方法概述

1 分子动力模拟计算的基本原理 分子动力计算的基本原理,即为利用牛顿运动定律。在分省储存空间。其缺点是位置与速度不同步。这意味着在位置一子动力模拟中,体系原子的一系列位移是通过对牛顿运动方程定时,不可能同时计算动能对总动能的贡献。 的积分得到的,结果是一条运动轨迹,它表明了系统内原子的位置与速度是如何随时间而发生变化。 先由系统中各分子位置计算系统的势能,按照经典力学,系统中任一原子i 所受的力为势能的梯度: 将牛顿运动定律方程式对时间积分,可预测i 原子经过时间t 后的速度与位置: 式中, 及 分别是粒子i 的位置与速度,上标“0”为各物理量的初始值[1]。 2 牛顿运动方程的数值解法 为了得到原子的运动轨迹,必须解式(3)的牛顿运动方程,可采用有限差分法。有限差分法的基本思想就是将积分分 成很多小步,每一小步的时间固定为 。常用的有以下几种算法:① Verlet 算法;② Velocity-Verlet 算法;③ leap-frog 算法(蛙跳算法);④ Beeman 算法;⑤ Gear 算法。leap-frog 算法和Gear 算法由于使用简便,准确性及稳定性高,节省储存空间等作者:photon 优点,已被广泛采用。 2.1 leap-frog算法 Leap-frog 算法速度与位置的数学式为: 为了执行leap-frog 算法,必须首先由t-0.5 时刻的速度与t 时刻的加速度计算出 ,然后由方程 计算出位置 。时间为t 时的速度可由式(6)算 2.2 Gear算法[1] Gear 所提出的一种利用数值解的方法,称为校正预测法(predictor-corrector method )。时间t+ 时的位置、速度等可由时间t 的泰勒展开式预测得到: 式中的 的1次、2次、3次微分。式(7)所产生的速度、加速度不是由牛顿运动方程解得的,所以并非完全正确。可由所预测的位置 计算所受的力及正确的加速度 。设正确的加速度与预测的加速度之间的误差为: 式中, 均为常数。以上为Gear 的一次预测校正法,也可将此计算推展至更高次的校正。 3 势函数 势函数表明了原子间的相互作用。针对不同的计算物质,不同的模拟目的,势函数有不同的形式。计算结果的可靠性与势函数密切相关。在分子动力学发展初期,主要采用对势。随着模拟体系的复杂性,逐渐出现了多体势,以弥补对势的不足。 3.1 对势 主要是Lennard-Jones 势(L-J 势),又叫12-6势能,它的数学表达式是: 式中,r 为原子对间的距离, 、 是势能参数。在 L-J 势能中, 项是排斥项, 项是吸引项。当 r 很大时,L-J 势能趋近于零,表示当原子对相距很远时,彼此之间已经没有非键 分子动力学模拟方法概述 周晓平 田壮壮 忽晓伟 (郑州大学 西亚斯国际学院 河南 郑州 451100) 摘 要: 主要介绍分子动力学模拟的基本原理,阐述分子动力学方法的运动方程、数值解法、势函数、边界条件、适用系综以及体系相关性质的计算。最后指出分子动力学模拟方法的优势和发展方向。 关键词: 分子动力学;势函数;边界条件 中图分类号:O414 文献标识码:A 文章编号:1671-7597(2012)1210040-02 由牛顿第二定律可得i 原子的加速度为: 可得各量的校正式为:

相关主题
文本预览
相关文档 最新文档