当前位置:文档之家› 考研数学矩阵8大秩及其证明2009

考研数学矩阵8大秩及其证明2009

考研数学矩阵8大秩及其证明2009
考研数学矩阵8大秩及其证明2009

考研数学矩阵的8大秩及其证明2009

()1 ()()0min , m n R A m n ?≤≤

证明:根据矩阵秩的定义直接得出。

()2 ()(){}()()()

()()

()()()()1

? , , ? , 1? ,

为列向量R B R B m n m M ax R A R B R A B R A R B R A R A B R A R A E m ?≡?≤≤+??

?????→≤≤+≡ 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥

因而:()(){}(), , M ax R A R B R A B ≤成立。

又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~~

, A B

1110

3810

1100

1

0??

?

? ? ? ??

?

如:就是列阶梯形

用~

~

~

~

11, r r a a b b 分别表示非全零列,则有:

()~~~

()1~~

~~~

()1, 00, , , 00表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ?????

??

???→? ???

????????→= ?

????

由于初等变换后互为等价矩阵,故()~~, , R A B R A B ??

= ???

而矩阵~~, A B ??

???

只含有r t

+个非全零列,所以:()()

~~~~, , R A B r t R A B R A R B ????

≤+?≤+ ? ?????

综合上述得:()(){}()()(), , M ax R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。

●如B E =,设()(), , m n m R A B R A E ?=, 则

()()() , , m n

m m

m n m m R A E R E m

R A E

m

??≥≥=?=

()3 ()()()+R A B R A R B ≤+

证明:

()()()()

()()()()()()()()

2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知

()4

()()()()(){}()()()()2

min , 2A B

R A R B n R AB R A R B n n A R A n R A

R A n

=?+-≤≤≤??????→-≤≤≤n 阶方阵为的列数

证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解

()()(

)()()()()()(

)()

(){

},m i n , T

R

B R B

T

T T

T T

T T B

A C R

B R

B C R C R B R

C

R C R A B R A R B n

=

=?

=

≥?????→≥?=≤≤

又,

()2 设()(), m n n s R A r R B t ??==

则A 的标准型为000r m n E ???

???,B 的标准型为000t

n s

E ???

??? 存在可逆矩阵, , , m s n n P Q P Q 使:

()()()()()1

11111

1

1

00 000000000

00

0000

0n r n t r

t

m n n s m n n s

r t

r

t

m

n n s m n n s m n n s m n n s

r t

r n t n n n n

n r t m E E P AQ P BQ E E E E AB P Q P Q P M Q m m M Q P m m

R AB R P -?-??------???????---?-?????==

? ??????????????== ? ? ? ???????????

?=???→= ??

?

?=分块

()()()()11

00000

000 000

000 0000 n r n t r

t

n n s m n n s

r

t

n n

m n n s r t r n t r

t

n r t m n

n s E E M Q E E R M m m E

E

R m m

-?---????????--???????????

? ???????

????

??=??

? ?????????????????

?=

? ? ???

???

??

??

?

=()()000r r t t

r r t t r t E m E R R E m E R m ?????

==

???

()()()()()()()()()()()()() --r t n n n n n n n n r t r t r t r t m M R M n M n r n t M m R m R m n n r n t r t n R A R B n R AB R m R A R B n

?????????≡--≥--=+-=+-?=≥+-注意到矩阵是满秩矩阵的子阵,。

考虑到极端情况:即中有行没有一个零元素,有列没有一个零元素,这时,中的零元素全部在矩阵中,从而使取得最小值,所以:

()5 ()()0m n n l A B R A R B n ??=?+≤

证明:设()12, , , l B b b b = ,则

()()()12, , , 0, 0, , 00 1,2,,l i A b b b A b i l =?==

()()()()()()()()12 0 0 ,., , , i l B l AX AX S R S n R A b S R B R b b b R S n R A R A R B n

===-∈?=≤=-?????+≤ 上式说明的个列向量都是齐次方程的解。

如果的解空间为 其维数就是 显然,

()6 ()

()()()*, 1, 10, 1

n R A n

R A R A n R A n =??

==-??

<-? 证明:分三种情况

(1)()R A n =,A 满秩、可逆,1

**0n A A A E A A

-=?=≠,*A 可逆,()*

R A n =

(2)()1R A n =-,说明A 中至少有一个元素的代数余子式不为零,即存在

()*

*

001ij A A R A

≠?≠?≥

又()1R A n =-,A 不可逆,则

()()()()*

*

*

*

001

1

A A A R A

R A n R A R A

=?=?+≤?≤?=

(3)()1R A n <-时,由矩阵秩的定义知,A 得所有1n -阶子式为零0ij A ?≡ ()()**00T

ij A A R A ==?=

评 注 如()1R A n =-,则()()()*

*

110A R R A R A n n A

??=+=-+= ???

()7 ()()() T T R A A R AA R A ==

证明:考察下列两个齐次方程组

0 (1)0 (2)

T

A AX AX ==

显然,(2)的解全部是方程(1)解,因此,(2)的基础解系包含于(1)的基础解系,即 ()()()()T T n R A n R A A R A A R A -≤-?≤ 另一方面

()()()0000T

T

T

T

A AX X

A

AX

AX AX AX =?=?=?

=

因此,(1)的基础解系包含于(2)的基础解系,即

()()()()

()()()()()

T

T

T

T

n R A n R A A R A A R A R A R A A R A R A A R A -≥-?≥∴≥≥?=

而()()()()T

T T T R AA R A A R A A R A ??===????

()8 ()()()0 0 A R R A R B C C B ??

≥+=

???

时等号成立 证明:设()(), R A r R B s ==,则:

1

2123

4341

21

2343

4

00000000000000000000000000000 000000000

0r r s s r r s s E E C C E A C C E C B C C C C E E E C E C C E C C C C C ????

???????

?????????→→????????

?????????????????

???→→→????????????初等行列混合变换

()()()()()4440000000000

000000

0000

0 r s r s r s r s E C E A

E R R R E R E R C R E R E r t C

B C ??

???

???????

???

??????==++≥+=+?

?????

????

()()()()4 0 0 0 C A R R A R B C C

B =??

≥+= ???

时等号成立时等号成立 评 注 下面3个关于秩的公式也常常使用。

()()()()()()()()

()()()()

; 为列满秩;为行满秩

m n a r A r A m

n b r ABC r AB r BC r B c G H r G A r AH r A =≠≥+-?==

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

考研数学线性代数知识点梳理

从近几年的真题来看,数学线性代数出题没有过多的变化,2014年的考研[微博]学子们,如何做到在千军万马中胜出,需要我们提前准备,更要做到心中有数,下面跨考教育[微博]数学教研室张老师就考研中线性代数部分的复习重点 在考前再给大家梳理一遍。 一、行列式与矩阵 第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练 掌握。 行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计 算,其中具体行列式的计算又有低阶和高阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。对于抽象行列式的求值,考点不在求行列式,而在于相关性质,矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、运算性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初 等矩阵的性质等。 二、向量与线性方程组 向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。 向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。 解线性方程组可以看作是出发点和目标。线性方程组(一般式) 还具有两种形式:(1)矩阵形式,(2)向量形式。 1)齐次线性方程组与线性相关、无关的联系 齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。 齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成 立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关无关的概念就是为了更好地讨论线 性方程组问题而提出的。

矩阵秩的基本不等式

1 矩阵秩的基本不等式 定理1:设,m n A R ∈,,n s B R ∈,则{}()()()min (),()r A r B n r AB r A r B +-≤≤。 证明:由于0Bx =的解一定是0ABx =的解,因此0Bx =的基础解系为0ABx =的基础解系的一部分。于是,()()s r B s r AB -≤-,即()()r AB r B ≤。 ()()()()()()T T T T r AB r AB r B A r A r A ==≤=。 这样,我们就证明了()()r AB r A ≤,()()r AB r B ≤,故{}()min (),()r AB r A r B ≤。 我们假设1x ,2x ,……,()s r B x -,()1s r B x -+,……,()s r AB x -为0ABx =的基础解系。其中,0i Bx =,1()i s r B ≤≤-;0j Bx ≠,()1()s r B j s r AB -+≤≤-。 下面,我们来证明向量组{} ()()1 s r AB j j s r B Bx -=-+是线性无关的。事实上,假设数j k , ()1()s r B j s r AB -+≤≤-,使得 ()()1 ()s r AB j j j s r B k Bx -=-+∑ ,于是() ()1 0s r AB j j s r B B x -=-+=∑ 。 这样, () ()1 0s r AB j j s r B x -=-+=∑ 为0Bx =的解。于是,存在数j k ,1()j s r B ≤≤-,使得 ()() ()1 1 ()s r AB s r B j j j j s r B j x k x --=-+== -∑ ∑,即()1 0s r AB j j j k x -==∑ 。由于向量组{} ()1 s r AB j j x -=线性无关,因 此,0j k =,()1()s r B j s r AB -+≤≤-。于是,向量组{}() ()1 s r AB j j s r B Bx -=-+线性无关。 又由于()0j j A Bx ABx ==,()1()s r B j s r AB -+≤≤-,因此{}() ()1 s r AB j j s r B Bx -=-+为 0Ax =的基础解系的一部分。于是, []()()11()()()s r AB s r B r B r AB n r A ---++=-≤- 即()()()r AB r A r B n ≥+-。 推论1:若,m n A R ∈,,n s B R ∈满足0AB =,则()()r A r B n +≤。 证明:0()()()r AB r A r B n =≥+-,于是()()r A r B n +≤。

关于某矩阵秩地证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n × m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →???? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归 纳小结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

矩阵的秩的相关不等式的归纳小结 林松 (莆田学院数学系,福建,莆田) 摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。 关键词:矩阵的秩,矩阵的初等变换 引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。 一基本的定理 1 设A是数域P上n m ?矩阵,于是 ?矩阵,B是数域上m s 秩(AB)≤min [秩(A),秩(B)],即乘积的秩不超过个因子的秩 2设A与B是m n ?矩阵,秩(A±B)≤秩(A)+秩(B) 二常见的秩的不等式 1 设A与B为n阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n 证:设r(A) = r,r(B )= s,则由AB = 0,知,B的每一列向量都是以A为系数方阵的齐次线性方程组的解向量。 当r = n时,由于该齐次方程组只要零解,故此时 B = 0,即此时r(A) = n,r(B) = 0,结论成立。 当r〈 n 时,该齐次线性方程组的基础解系中含n-r个向量,

从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n 2设A 为m n ?矩阵,B 为n s ?矩阵,证明不等式r(AB)≤r(A)+r(B)-n 证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于 000S E B A AB A E E E B ??????= ? ? ?-?????? 而 0S E B E ?? ?-?? 可逆,故 r(A)+r(B) ≥ 秩 0A E B ?? ? ?? =秩 0A AB E ?? ???=秩 0 0AB E ?? ??? =r(AB)+r(E) =r(AB)+n 从而r(AB) ≥ r(A) + r(B) - n 3设A ,B 都是n 阶方阵,E 是n 阶单位方阵,证明 秩(AB-E )≤秩(A-E )+秩(B-E ) 证:因为0A E B E B E --?? ? -??00B E ?? ???00AB E B E -?? = ?-?? 故秩(AB-E )≤秩00AB E B E -?? ?-??≤秩0A E B E B E --?? ?-?? =秩(A-E )+秩(B-E ) 因此 秩(AB-E )≤秩(A-E )+秩(B-E ) 4 设A ,B ,C 依次为,,m n n s s t ???的矩阵,证明 r(ABC) ≥ r(AB) + r(BC) - r(B)

2016考研数学:矩阵二项式分析及其应用

2016考研数学:矩阵二项式分析及其应用 来源:文都教育 线性代数是考研数学的一个科目,而矩阵是线性代数中最基本、最重要的一个工具,其它内容都需要用到矩阵作为分析和解决问题的工具。矩阵的一些运算在形式上与数的运算有些相似之处,如逆矩阵的定义与数的倒数有些相似,线性方程组AX b =的求解,在系数矩 阵A 可逆时,其解为1X A b -=,这与一元一次方程ax b =的解1 x a b -=(0a ≠)相似; 与数的二项公式0 ()n n k n k k n k a b C a b -=+= ∑相应的也有矩阵的二项公式,下面我们就来分析一 下矩阵的二项公式及其应用。 一、矩阵二项式公式 公式:如果矩阵A 和B 可交换,即AB BA =,则 112221 10 ()n n k n k k n n n n n n n n n n k A B C A B A C A B C A B C AB B -----=+==+++++∑ ,n 为正 整数,(1)(1)! k n n n n k C k --+= 为排列组合中的组合数(注:00 A B E ==). 证 : 当 1 n =时, 等式显然成立 ;当 2 n =时, 22 2 2 222()()()2A B A B A B A A B B A B A A B B A + = ++=+ ++=+ += +; 假设对n 时等式成立,则对1n +时, 1112221 1()()()()()n n n n n n n n n n n A B A B A B A B A C A B C A B C AB B +----+=++=++++++= 1121211111()()()n n n n n n n n n n n n n A C A B BA C A B BC A B AB BC AB B +----+=++++++++ , ∵AB BA =,∴223223 ,()()BA BAA ABA AAB A B BA BA A A B A A B =======, 一 般地 k k BA A B =,因此,

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

考研数学二(矩阵)-试卷11.doc

考研数学二(矩阵)-试卷11 (总分:48.00,做题时间:90分钟) 一、选择题(总题数:6,分数:12.00) 1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数: 2.00) __________________________________________________________________________________________ 2.设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r 1,则( )(分数:2.00) A.r>r 1。 B.r<r 1。 C.r=r 1。 D.r与r 1的关系依C而定。 3.设A是m×n矩阵,B是n×m矩阵,则( )(分数:2.00) A.当m>n,必有行列式|AB|≠0。 B.当m>n,必有行列式|AB|=0。 C.当n>m,必有行列式|AB|≠0。 D.当n>m,必有行列式|AB|=0。 4.设A为m×n矩阵,B为n×m矩阵,若AB=E,则( )(分数:2.00) A.r(A)=m,r(B)=m。 B.r(A)=m,r(B)=n。 C.r(A)=n,r(B)=m。 D.r(A)=n,r(n)=n。 5. 2.00) A.a=1时,B的秩必为2。 B.a=1时,B的秩必为1。 C.a≠1时,B的秩必为1。 D.a≠1时,B的秩必为2。 6.已知 2.00) A.3。 B.2。 C.1。 D.1或3。 二、填空题(总题数:10,分数:20.00) 7.设(2E一C 一1 B)A T =C 一1,其中E是四阶单位矩阵, 2.00) 填空项1:__________________ 8.设矩阵 2.00) 填空项1:__________________ 9. 2.00) 填空项1:__________________ 10.已知n阶矩阵 2.00) 填空项1:__________________

矩阵秩的一些著名结论

引言 矩阵的秩是高等代数中一个应用及其广泛的理论,有关矩阵的秩的等式或不 等式的证明,常常和向量组的秩,线性方程组的解等密切相关,推证有难度也有技巧。熟练掌握关于矩阵秩的一些结论及其证明技巧,对有关理论的学习会有很大的裨益。矩阵A 中的最大阶不为零的子式的阶数就称为矩阵A 的秩,记为r(A).一些平凡的理论及概念读者可参阅一些权威教材,这里只对一些经典的理论做一讨论. 1. 证明: 设B A ,为两个同阶矩阵,则有r(A ﹢B)≤r(A)﹢r(B) 证 设A =(α1,α 2 ,…, αn ), B =() ββ βn ,...,,2 1 则 A +B =( α1 +β1 ,α2 +β 2 ,…, αn +βn ) 不妨设A 列向量的极大线性无关组为 α1 ,α 2 ,…, α r . (1≤r ≤n); B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1 =αα1 +α 2 2 k i +…+ α r ir k ; βi =β1 1 l i +β 2 2 l i +…+ β s is l ; 则 αi +β i = k i 1 α1 +α 2 2 k i +…+αr ir k +β1 1 l i +β 2 2 l i +…+ β s is l ; 即A +B 的列向量可由 α1 ,α 2 ,…, α r , β 1 , β 2 ,… β s 线性表出, 故)()()(B +A =+≤B +A r r s r r . 2. 若AB =O ,则)()(B r A r +n ≤. 证 记 ),...,,(2 1 ββ βn B =,由AB =O ,知B 的每一列都是O =AX 解, 即O =A β i ,i =1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.

考研数学三必背知识点:线性代数

线性代数必考知识点 一、行列式 1、逆序数 一个排列n i i i i ,,,321若有类似21i i 时,我们称21i i 组成一个逆序。一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i 2、行列式性质 (1) 行列式行列互换,其值不变,即T A A (2) 行列式两行或两列互换,其值反号。 (3) 行列式某行或某列乘以k 等于行列式乘以k 。 (4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。 (5) 行列式两行或两列对应成比例,则行列式为零。 (6) 行列式某行或某列元素为零,则行列式为零。 (7) 上、下三角行列式其值为主对角线上元素乘积。 (8) 行列式值等于对应矩阵所有特征值的乘积,即n A 21 (9) 齐次线性方程组0 Ax 有非零解n A r A )(0 3、行列式行列展开定理 (1) 余子式ij j i ij A M )1( (2) 代数余子式ij j i ij M A )1( 4、三阶行列式展开公式 33211232231131221332211331231233221133 32 3123222113 1211a a a a a a a a a a a a a a a a a a a a a a a a a a a 二、矩阵 1、矩阵运算 (1) 矩阵加减法即是将对应元素进行加减。 (2) 矩阵乘法是将对应行与对应列元素相乘再相加。 (3) 矩阵除法是乘以逆矩阵。 (4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。 (5) n 阶方阵一般可以有1*,,, A A A A T 四大基本矩阵运算 2、矩阵的行列式 (1) A k kA A A n T , (2) A B B A BA AB 3、矩阵转置 (1) T T T T T T T T T T A B AB kA kA B A B A A A )(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A

最新考研数学矩阵8大秩及其证明

考研数学矩阵的8大秩及其证明2009 ()1 证明:根据矩阵秩的定义直接得出。 ()2 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥ 因而:()(){}(), , Max R A R B R A B ≤成立。 又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~ ~ , A B 1110 3 810 1100 1000?? ? ? ? ? ??? 如:就是列阶梯形 用~ ~~ ~ 1 1 , r r a a b b 分别表示非全零列,则有: ()~ ~~ ()1~~ ~ ~~ ()1 , 00, , , 0 0表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ????? ?? ???→? ????? ??????→= ???? ? 由于初等变换后互为等价矩阵,故()~~, , R A B R A B ?? = ??? 而矩阵~~, A B ?? ???只含有r t +个非全零列,所以:()()~~~~, , R A B r t R A B R A R B ???? ≤+?≤+ ? ????? 。 综合上述得:()(){}()()(), , Max R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。 ●如B E =,设()(), , m n m R A B R A E ?=, 则 ()()() , , m n m m m n m m R A E R E m R A E m ??≥≥=?= ()3 证明: ()()()()()()()()()()()() 2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知 ()4 证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解 ()()()() () ()()()()()(){},min , T R B R B T T T T T T T B A C R B R B C R C R B R C R C R AB R A R B n ==?=≥???? ?→≥?=≤≤又, ()2 设()(), m n n s R A r R B t ??== 则A 的标准型为000r m n E ??? ???,B 的标准型为000t n s E ??? ??? 存在可逆矩阵, , , m s n n P Q P Q 使:

矩阵秩的相关结论证明及举例

华北水利水电大学 矩阵秩的相关结论证明及举例 课程名称:线性代数 专业班级:能源与动力工程(热动)101班 成员组成:王威威 联系方式: 2014年12月30日

一:摘要 矩阵的秩是数学中一个极其重要并广泛应用的概念,是线性代数的一个重要研究对象,因此,矩阵的秩的结论作为线性代数的一个重要结论已经渗透到各章节之中,他把线性代数的内容紧紧联系在一起,矩阵的秩作为矩阵的一个重要本质属性则贯穿矩阵理论的始终,所以对矩阵秩的研究不仅能帮助我们更好地学习矩阵,而且也是我们学习好线性代数各章节的有力保证。 关键词:矩阵秩结论证明 英文题目 Abstract: Matrix rank is an extremely important and widely us ed in the mathematical concept, is an important res earch object of linear algebra, as a result, the c onclusion of the rank of matrix as an important co nclusion of linear algebra has penetrated into chapt er, associate the content of the positive linear al gebra and matrix of rank as an important essential attribute of the matrix, however, throughout the c ourse of the theory of matrix so that the study o f matrix rank can not only help us better learning matrix and chapter we learn good linear algebra Key words:matrix rank conclusion proof

矩阵秩的等式与不等式的证明及应用

矩阵秩的等式与不等式的证明及应用 矩阵是高等代数的一个重要概念,也是线性代数中的主要研究对象,同时也是一种应用广泛的数学工具.不管是在数学学习还是实际问题中,我们常常会遇到许多比较复杂的计算问题,而使用矩阵来解决这些难题,往往会使问题简单化.早在古代,我国的《九章算术》就已经对矩阵有了初步的描述.而矩阵的理论起源,可追溯到18世纪.高斯在1801年、艾森斯坦在1844-1852年,先后把一个线性变换的全部系数用一个字母来表示,艾森斯坦还强调乘法次序的重要性.这些工作都孕育了矩阵的思想,但矩阵的正式定义直到1858年才由凯莱给出来.凯莱在《矩阵论的研究报告》中全面阐述了矩阵的一些理念,同时他还在文中给出了许多矩阵的运算法则以及矩阵转置的定义,证明了矩阵加法中的可交换性与可结合性,更为重要的是他还给出了伴随矩阵、矩阵可逆的概念.由于凯莱的奠基性工作,一般认为他是矩阵理论的创始人. 而矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.对于矩阵的秩的等式与不等式,近年来有一些学者对其进行了研究.张英,乔世东利用同解方程组、标准形、线性空间和同态基本定理来证明矩阵秩的一些性质;王廷明利用构造分块矩阵并通过广义初等变换的方法,证明矩阵秩的(不)等式;殷倩把分散的知识点及重要的常用结论整合在一起,归纳整理出若干常用有效的证明方法;徐小萍给出五个矩阵秩的不等式,并利用代数理论对其进行证明,然后用一些典型例题对其应用进行分析.在前人研究的基础上,本文进一步系统的探究了矩阵秩的等式与不等式及其应用.首先介绍矩阵秩的等式与不等式的研究背景和国内外的研究现状,其次介绍矩阵秩的定义与简单性质,然后给出一些矩阵秩的等式与不等式的证明,最后通过例子研究其在多方面的应用。 1

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归纳小结 林 松 (莆田学院数学系,福建,莆田) 摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。 关键词:矩阵的秩,矩阵的初等变换 引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。 一 基本的定理 1 设A 是数域P 上n m ?矩阵,B 是数域上m s ?矩阵,于是 秩(AB )≤min [秩(A ),秩(B )],即乘积的秩不超过个因子的秩 2 设A 与B 是m n ?矩阵,秩(A ±B )≤秩(A )+秩(B ) 二 常见的秩的不等式 1 设A 与B 为n 阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n 证:设r(A) = r,r(B )= s,则由AB = 0,知,B 的每一列向量都是以A 为系数方阵的齐次线性方程组的解向量。 当r = n 时,由于该齐次方程组只要零解,故此时 B = 0,即此时 r(A) = n ,r(B) = 0,结论成立。 当r 〈 n 时,该齐次线性方程组的基础解系中含n-r 个向量, 从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n 2设A 为m n ?矩阵,B 为n s ?矩阵,证明不等式r(AB)≤r(A)+r(B)-n 证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于 000S E B A AB A E E E B ??????= ? ? ?-??????

矩阵秩重要知识点总结_考研必看

一.矩阵等价 行等价:矩阵A经若干次初等行变换变为矩阵B 列等价:矩阵A经若干次初等列变换变为矩阵B 矩阵等价:矩阵A经若干次初等行变换可以变为矩阵B,矩阵B经若干次初等行变换可以变成矩阵A,则成矩阵A和B等价 矩阵等价的充要条件 1.存在可逆矩阵P和Q,PAQ=B 2.R(A)=R(B) 二.向量的线性表示 Case1:向量b能由向量组A线性表示: 充要条件: 1.线性方程组A x=b有解 (A)=R(A,b) Case2:向量组B能由向量组A线性表示 充要条件: R(A)=R(A,B) 推论∵R(A)=R(A,B),R(B)≤R(A,B) ∴R(B)≤R(A) Case3:向量组A能由向量组B线性表示 充要条件: R(B)=R(B,A) 推论∵R(B)=R(A,B),R(A)≤R(A,B) ∴R(A)≤R(B) Case4:向量组A和B能相互表示,即向量组A和向量组B等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n维单位坐标向量组能由矩阵A的列向量组线性表示 充要条件是: R(A)=R(A,E) n=R(E)<=R(A),又R(A)>=n,所以R(A)=n=R(A,E) 三.线性方程组的解 1.非齐次线性方程组 (1)R(A)=R(A,B),方程有解. (2)R(A)=R(A,B)=n,解唯一. (3)R(A)=R(A,B)

考研数学考试大纲

2013考研数学(三)考试大纲 考试科目:微积分.线性代数.概率论与数理统计 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 微积分 约56% 线性代数 约22% 概率论与数理统计22% 四、试卷题型结构 试卷题型结构为: 单项选择题选题 8小题,每题4分,共32分 填空题 6小题,每题4分,共24分 解答题(包括证明题) 9小题,共94分 微积分 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 0sin lim 1x x x →= 1lim 1x x e x →∞??+= ??? 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性.单调性.周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.了解数列极限和函数极限(包括左极限与右极限)的概念. 6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法. 7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系. 8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质. 二、一元函数微分学 考试内容

矩阵的秩及其多样性的解法

矩阵的秩及其多样性的解法 数学学院 数学与应用数学(师范)专业 摘 要:矩阵论是代数学中一个重要组成部分和主要研究对象,而矩阵的秩又是矩阵的一个重要指标,本文研究了与矩阵的秩的相关性质及其多样性的解法, 用定理和实例说明了行列式、线性空间、线性方程组、分块矩阵和矩阵秩的关系及其在求矩阵的秩中的应用。 关键词: 矩阵的秩; 行列式; 线性方程组; Abstract :Matrix theory is an important part of the main object of study in algebra and rank of the matrix is an important indicator of the matrix, we study the rank of the matrix solution of the nature and diversity of theorems and examples illustratedeterminant, linear space, linear equations, the block matrix and the matrix rank and matrix rank. Keywords: Rank of matrix; V ector; Linear equations; 引言、引理 矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩相关性质及等价条件,并从行列式、线性方程组、线性空间以及分块矩阵的角度来阐述矩阵秩的不同解法。 矩阵的秩的等价刻划 设A F m n ?∈ ,则rank(A)=r ?A 中不为零的子式的最大阶数是r ; ?A 中有一个r 阶子式D 不等于零,所有包含D 作为子式的 r+1阶子式全为零; ? 存在可逆矩阵m n P F ?∈,m n Q F ?∈,使得000r E P A Q ?? = ??? ; ? A 的行(列)向量的极大无关组所含向量的个数为r;

矩阵的秩的性质

矩阵的秩的性质和 矩阵秩与矩阵运算之间的关系 要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。” 那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质: 1、矩阵的初等变换不改变秩,任一矩阵的行秩等于列秩。 2、秩为r 的n 级矩阵(n r ≥),任意r+1阶行列式为0,并且至少有一个r 阶子式不为0. 3、)}(),(min{)(B rank A rank AB rank ≤ )'()(A r a n k A r a n k =,)()()(B rank A rank B A rank ±=± )()(A rank kA rank = 4、设A 是n s ?矩阵,B 为s n ?矩阵,则+)(A rank )}(),(min{)()(B rank A rank AB rank n B rank ≤≤- 5、设A 是n s ?矩阵,P,Q 分别是s,n 阶可逆矩阵,则 )()()(A rank AQ rank PA rank ==

6、设A 是n s ?矩阵,B 为s n ?矩阵,且AB=0,则 n B rank A rank ≤+)()( 7、设A 是n s ?矩阵,则)()'()'(A rank A A rank AA rank == 其中,也涉及到线性方程组解得问题: 8、对于齐次线性方程组,设其系数矩阵为A ,n A rank =)( 则方程组有惟一非零解,n A rank <)(则有无穷多解,换言之,即为克莱姆法则, 非齐次线性方程组有解时,n A rank =)(惟一解,n A rank <)( 有无穷多解。 还有满秩矩阵: 9、可逆?满秩 10、行(列)向量组线性无关,即n 级矩阵化为阶梯形矩阵后非零行数目为n 。 扩展到矩阵的分块后: 11、110(A )(A )0n n A rank rank rank A ?? ?=++ ? ??? 12、()()0A C rank rank A rank B B ??≥+ ???

利用分块矩阵证明有关矩阵的秩

第五章 利用分块矩阵证明有关矩阵的秩 定理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上的m ×s 矩阵,求证秩(AB )≤min {秩A ,秩B }。 证明:令B 1,B 2,…,B m 为B 的行向量,则有 由上可知,AB 的行向量是B 的行向量的线性组合,因此秩AB ≤秩B ; 同理,令A 1,A 2,…,A m 为A 的列向量,同样可得AB 的列向量是A 的列向量的线性组合,因此秩AB ≤秩A 。 综上所述,秩(AB )≤min {秩A ,秩B }。 命题1:证明秩(A+B )≤秩(A )+秩(B )。 证明:令A 1,A 2,…,A n 为A 的列向量,令B 1,B 2,…,B n 为B 的列向量,从而A+B=(A 1+B 1,A 2+B 2,…,A n +B n ),即其每个列向量均可由{A 1,A 2,…,A n ,B 1,B 2,…,B n }线性表出,不妨设{A 1,A 2,…,A r}{B 1,B 2,…B t}分别为{A 1,A 2,…,A n }{B 1,B 2,…,B n }的极大线性无关组。则A+B 的列向量均可由向量组{A 1,A 2,…,A r,B 1,B 2,…B t}线性表出。因此 秩(A +B )=秩{A 1+B 1,A 2+B 2,…,A n +B n }≤秩{A 1,A 2,…,A r,B 1,B 2,…B t}≤r+t ,即秩(A+B )≤秩(A )+秩(B )。 命题2:设A 为数域P 上的n 阶方阵,若A 2=E ,证明秩(A+E )+秩(A -E )=n 。 证明: 矩阵进行初等变换后秩不变,最后的矩阵秩为n 。由此可得 秩(A+E )+秩(A -E )=n 。 11111221m m 22112222m m m n11n22nm m B a B a B a B B a B a B a B B AB B a B a B a B +++???? ? ?+++ ? ?== ? ? ? ?+++???? L L M M L ,21 A+E A E 2 A E 0A E A E A E 2E 0A E 0A E 0A E 0-2E 02E 10A E (A E)(A E)A E 2=++-+-??????→→ ? ? ? ---?????? ??-?? ???????→???→ ? ?-+--???? 将二列的()倍加到一列 。

相关主题
文本预览
相关文档 最新文档