当前位置:文档之家› [典型例题]_第三章_一阶微分方程的解的存在定理

[典型例题]_第三章_一阶微分方程的解的存在定理

[典型例题]_第三章_一阶微分方程的解的存在定理
[典型例题]_第三章_一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理

例3-1 求方程

22y x dx

dy

+= 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。

解 函数2

2

),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域

b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0

)0(22y y

x dx

dy 的解在],[h h -上存在唯一,其中)(max ),,

min(22),(y x M M

b

a h D y x +==∈。

因为逐次逼近函数序列为

?-+=x

x n n dx x y x f y x y 0

))(,()(10,

此时,2

200),(,0,0y x y x f y x +===,所以

0)(0=x y ,

?=+=x

x dx x y x x y 03

2

02

13

)]([)(,

63

3)]([)(7

032

12

2x x dx x y x x y x

+=+=?,

??

+++=+=x

x

dx

x x x x dx x y x x y 0

14

1062

2

223)3969

18929()]([)(

59535

20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),,

min(2

2b

a b

a h += 对任给的正数

b a ,,ab b a 22

2

≥+,上式中,当 b a = 时,

2

2b a b

+取得最大值

a

ab b 21

2=

此时,)21,min()2,

min(a a ab b a h ==,当且仅当a

a 21

=

,即22==b a 时,h 取得最大值为

2

2

。 评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。特别地,对其中的b

y a x D y x f M M

b

a h D y x ≤≤==∈,:),,(max ),,

min(),(等常数意义的理解和对逐次逼近函数列?

-+=x

x n n dx x y x f y x y 0

))(,()(10的构造过程的理

解。

例3-2 证明下列初值问题的解在指定区间上存在且唯一。 1) 2

1

0,0)0(cos 2

2≤

≤=+='x y x y y ,。 2) 32

2

)2

1(0,0)0(≤≤=+='x y y x y ,

。 证 1) 以原点为中心作闭矩形区域1,2

1

:≤≤

y x D 。 易验证2

2

cos ),(x y y x f +=在区域D 上满足解的存在唯一性定理的条件,求得

2cos m ax 22),(=+=∈x y M D y x ,则2

1

)21,21min(==h 。

因此初值问题

??

?=+='0

)0(cos 2

2y x y y 的解在]21,21[-

上存在唯一,从而在区间]2

1

,0[上方程 cos 22,

x y y +='满足条件0)0( =y 的解存在唯一。

2) 以原点为中心作闭矩形区域b y a x D ≤≤,:。

易验证x y y x f +=2

),(在D 上满足解的存在唯一性定理的条件,并求得

22),(m ax b a x y M D

y x +=+=∈,

则),

min(2

b a b

a h +=。 由于

b a b a 22

≥+,所以当2b a =时,当2

b a +取到最小值b a 2,从而

2

b

a b

+可

取到最大值

a

b

a b 212=

,故)21,

min(a

a h =。

当且仅当a

a 21

=,即31

32

)21(,)21(==b a 时,h 取到最大值为32

)21

(=h 。

即证明了初值问题???=+='0

)0(2y x y y 的解在区间])21(,)21([3

2

32-上存在唯一。

从而在区间])2

1

(,0[32

上解存在唯一。

评注:此例是应用解的存在唯一性定理,求出初值问题解存在唯一的区间。一般解法是先作出适当的闭矩形区域;然后验证在此区域中满足解的存在唯一性定理的条件;最后求出定理3.1中的h 。

例3-3 证明如果在闭矩形域D 上y

f

??存在且连续, 则),(y x f 在D 上关于y 满足利普希兹条件,反之不成立。

证 因为在闭矩形域D 上

y f ??存在且连续,所以y

f ??在区域D 上有界,即0>?M ,D y x ∈?),(有

M y

y x f ≤??)

,( 成立,利用中值定理,D y x y x ∈?),(),,(21

2121)

,(),(),(y y y

x f y x f y x f -???-ξ=

21y y M -≤, 其中ξ是介于21,y y 之间的点,命题得证。

反之不成立。 因为对于方程

y dx

dy

=,取以原点为中心的矩形域D ,y y x f =),(在0=y 无导数, 但212121),(),(y y y y y x f y x f -≤--=,

故),(y x f 在D 上关于y 满足利普希兹条件。

评注:通过本例的证明显然可以得到下面结论:若

y

f

??在某矩形区域D 某一点),(00y x 处不存在,且在),(00y x 的邻域无界,则),(y x f 在D 上关于y 不满足利普希兹条件。

例3-4 举例说明定理3.1 中的两个条件是保证初值问题的解存在唯一的充分条件,而非必要条件。

解 1) 当连续条件不满足时,解也可能存在唯一。如方程

??

?≠≠===ax

y a ax y a y x f dx dy

00 ),(, 显然),(y x f 在以原点为中心的矩形域中不连续,间断点为直线ax y =,但解存在唯一,过原点的解为ax y =,0≠a 。

2) 当利普希兹条件不满足时,解也可能存在唯一。如方程

??

?=≠==0

00 ln ),(y y y y y x f dx dy

, 由于

0ln 0ln )0,(),(11111-=-=-y y y y x f y x f , ∞→→11ln ,0y y ,无界,

因而),(y x f 在)0,(x 的任何邻域不满足利普希兹条件。然而

y y dx

dy

ln =,

dx y y dy =ln 1ln ln C x y +=,x e C y 2ln =,

????

?=±=0

2y e y x

e

C , 可见方程通过)0,(x 解存在唯一。

评注:在应用定理3.1时,一定要注意,当条件不满足时,不能得出解不存在唯一的结论。

例3-5 利用解的存在唯一性定理,寻找区域G ,使得G y x ∈?),(00,方程

21y dx

dy

-= 满足初始条件00)(y x y =的解存在唯一。

解 设21),(y y x f -=,显然,它在整个平面上连续。

2

1),(y y

y y x f --

=??,由例3-3,在不包含1±=y 的区域,有21),(y y x f -=满足利普希兹条件。

若1±=y 时,

y y x f ??),(不存在,但当1±→y ,y

y x f ??)

,(无界,即在包含点)1,(x 或)1,(-x 的任何区域中利普希兹条件不成立。

故得所求区域为{}

+∞<<<<--<<-∞+∞<<∞-=x x y x y x G 1,11,1,),(。 评注:寻找解的存在唯一性定理中的条件所满足的区域,就是寻找),(y x f 连续和关于

y 满足利普希兹条件的区域。对于所得到的区域G ,G y x ∈?),(00,都能存在一个完全包

含在G 的闭矩形区域,使得在此矩形域中满足解的存在唯一性定理的条件,从而保证初值问题的解存在唯一。

例3-6 对于方程

x

y

dx dy =和点),0(0y 能否应用定理3.1? 解 当00≠y 时,我们可以考虑方程

y

x dy dx =, 其右端函数y x y x f =),(满足定理3.1的条件,即方程

y

x

dy dx =通过点),0(0y 的解存在唯一,此时解为0=x 。

00=y 时,定理3.1不能用。事实上,由方程x

y

dx dy =的通解表达式Cx y =知,方程通过)0,0(的解不为一。

评注:在研究解的存在唯一性时,也可以将x 视为y 的函数。

例3-7 能否用逐次逼近序列求初值问题

??

???==0)0(3

1

y y dx

dy

的解。

解 不能,因为用逐次逼近函数序列00)(y x y =,?

-+

=x

x n n dx x y x f y x y 0

))(,()(10得

0)(0=x φ,00)(0

1==?x

dx x φ,...,0)(=x φn ,...。

即{})(x φn 收敛于解0≡y 。但另一方面,通过方程直接求解得2

332)(??

?

??=x x y 也是方程31

y dx

dy

=满足条件0)0(=y 的解,即用逐次逼近函数序列就不能得到此解。 评注:应在保证初值问题解存在唯一的情况下,利用逐次逼近序列序列求近似解。 例3-8 证明:如果函数),(y x f 于整个xoy 平面上连续有界,且关于y 满足局部利普希兹条件,则方程

),(y x f dx

dy

=的任一解均可以延拓到区间+∞<<∞-x 。 证 易验证),(y x f 满足延拓定理的推论的条件,则过平面上任一点),(00y x 的解存在唯一且可延拓,设过),(00y x 的解为),,(00y x x ?。

因为),(y x f 有界,即2

),(,0R y x M ∈?>?,均有不等式M y x f <),(成立,我们考虑下列三个初值问题

?????=-=00)(y x y M dx dy , ?????==00)(),(y x y y x f dx dy , ?????==0

0)(y x y M

dx

dy

, 显然,M y x f M <<-),(,由第一比较定理,得,

当0x x >时,000000)(),,()(y x x M y x x y x x M +-<<+--? , 当0x x <时,000000)(),,()(y x x M y x x y x x M +--<<+-?,

即对任何有限区间),(βα,当x 趋于区间端点时,),,(00y x x ?都不可能无界,由延拓定理的推论知,),,(00y x x ?的解可延拓到整个区间),(+∞-∞。又由),(00y x 的任意性,命题得证。

余弦定理知识点+经典题(有答案)

余弦定理 余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- 2.利用余弦定理解三角形: (1)已知两边和它们所夹的角: (2)已知三边: 余弦定理 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( )A .6 B .2 6 C .3 6 D .4 6 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B = 3ac , 则∠B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3 5.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 6.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4

7.在△ABC中,b=3,c=3,B=30°,则a为( ) A. 3 B.2 3 C.3或2 3 D.2 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 9.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.10.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c 的值为________. 11.在△ABC中,a=32,cos C=1 3 ,S△ABC=43,则b=________. 12.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________. 13.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c2 4 ,则角C=________. 14.(2015年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 15.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

小学解方程经典50题

小学解方程(经典50题) 35 3141=+ x x 2、45 9 4=- x )( 3、 18 5 1=+ x x 4、8 516 5=+ x 5、15 84 3 = ÷x 6、185 1=+x x 7、2753=x 8、 14 17 2= - x x 9、 9 88 9= ÷ x 10、33 211 3=-x 11、 0.4x=0.72 12、 3212 5=-x 13、283 11(=+x ) 14、 40 )7 21(=- x 15、 365 2=- x x 16、5574=+ x x 17、 16 5 4=÷ x 18、 6 53 2= x

19、10 495 13 2= - x x 20 5)4 18 3( =- x 21、 4 92 14 3= + x x 22、8 35 4= -x x 23、 9 55 68= ÷ x 24、 16 510 9=- x x 25、3 216 34 12 1? = - x x 26、 10 95 14 1= + x x 27、 6 53 510 15 3= ? + x 28、40 7)4 13 1(= + ?x 29、 10 1489 1÷ =- x x 30、 18 59 5= x 31、5 412=x 32、 156 5=x 33、 3 28 3= ÷ x

34、9 84 3= +x 35、 5 215 4= - x 36、 20 74 3= + x x 37、3 27 6= ÷x 38、 2 74 72 3= - x 39、 8 9 44 3÷= ÷ x 40、56 1=-x x 41、 214 3=+ x x 42、 12 )3 11(=+ x 43、15 5 25 1=+ x x 44、10 )4 18 3( =+ x 45、 24)7 11(=- x 46、4 36 1= ÷x 47、 5 215 7= ? x 49、 3 17 6= ÷ x 50、25 1852= x 51、6x+4(50-x)=260 52、 8x+6(10-x)=68 53、5x+2(20-x)=82 54、 4x+2(35-x)=94

垂径定理经典练习题.

圆垂径定理专题练习题 1.垂径定理:垂直于弦的直径____这条弦,并且____弦所对的两条弧. 2.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=( ) A.3 cm B.4 cm C.5 cm D.6 cm 3.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是( ) A.2.5 B.3.5 C.4.5 D.5.5 4. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为___. 5. 如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于点E. (1)请写出四个不同类型的正确结论; (2)若BE=4,AC=6,求DE的长. 6. 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )

A.4 B.5 C.6 D.8 7. 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的 直径为____. 8. H5N1亚型高致病性禽流感是一种传染速度很快的传染病,为防止禽流感蔓延,政府规定:离疫点3 千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区, 如图所示,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在免疫区内有多少千米? 9.如图,直线与两个同心圆交于图示的各点,MN=10,PR=6,则MP=____. 10.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8 cm,AG=1 cm,DE=2 cm, 则EF=____cm. 11. 如图,⊙O的直径AB=16 cm,P是OB的中点,∠APD=30°,求CD的长.

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

【习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 x 2-1已知f(x) f(t)dt 1, x 0,试求函数f (x)的一般表达式。 0 x 解 对方程f(x) f (t)dt 1,两边关于x 求导得 x f (x) f (t)dt f 2(x) 0, f (X)丄 f(x) f 2(x) 0 , 分离变量,可求得 代入原方程可得 C 0,从而f(x)的一般表达式为f (x) 评注:本题中常数的确定不能直接通过所给积分方程得到, 确定。 解由导数的定义可得 x(t s) x(t) x (t) lim s 0 s 2 |im x(s) x (t)x(s) s 0 [1 x(t)x(s)]s lim 丄辿型 s 01 x(t)x(s) s 显然可得x(0) 0,故 分离变量,再积分可得 x(t) [1 2 x (t)] !i 叫 x(s) x(0) s x (0) [1 x 2(t)] f(x) 、2(x C)' 1 2x 。 而是需将通解代回原方程来 2-2求具有性质x(t S) x(t) x(s) 1 x(t)x(s) 的函数x(t),已知x (0)存在。

x(t) tan[x(O)t C], 再由x(0) 0,知C 0,从而x(t) ta n[x(0)t]。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若M(x,y)x N(x,y)y 0,证明齐次方程M (x, y)dx N(x,y)dy 0 有积分因 1 xM(x,y) yN(x, y) 证方法1用凑微分法求积分因子。 我们有恒等式 M (x, y)dx N (x, y)dy 1 dx dv 2 {(M(x,y)x N(x,v)v)U 寺(M(x,v)x 鱼din (xy), x y 空翌din仝, x y y 所以原方程变为 -{( M (x, y)x N (x, y)y)d ln(xy) (M (x, y)x N (x, y)y)d ln —} 0。 2 y 1 1 M (x, y)x N(x, y)y「x -d ln(xy) d in 0, 2 2 M(x,y)x N(x,y)y y 由于M( x ,y) x N(x, y)y 为零次齐次函数,故它可表成仝的某一函数,记为f (上),M (x,y)x N(x, y)y y y I X MX" N(x,y)y % 巧F(in^), M(x,y)x N(x,y)y y y N (x,y)y)(¥3)} y 用(x,y) 1 M(x,y)x 乘上式两边,得 N(x,y)y

解方程练习题【经典】

解方程测试题 请使用任意方法解下列方程,带*的必须检验。 x-104=33.5 x+118=11.9 26.4×x=40 62.2-x=70.7 x÷31=21.0 69.4+x=87.4 94.8+x=48.2 37.3x=84.1 91.1x=38.7 x÷13.3=14.5 31.4x=59.8 41.7x=69.9 105x=82.6 x×7.1=10.7 x+75.4=16 x÷63=42.2 x-8=32.8 64.2x=78 14÷x=21 59.9-x=40 9.8+x=99.3 44.2-x=86.1 x÷35.0=9.0 52.6-x=52.0 x×63.4=62.7 2.8-x=52 x÷41.0=139 9.6x=97.2 51x=42.9 x-48.8=95 x×6.8=25.4 118+x=35 56.6x=54.0 23x=145 x+50.3=28.1 54.6+x=96.2 x+89.2=59.1 45x=48 28.7x=83.5 17.3x=60.8 x+101=20.8 55.9x=75.2 59.7-x=23 x÷61.6=55.0 45.3÷x=79.5 x-48.2=85 x×43.6=62.6 5.9x=6.1 80.3x=11.7 104x=47.7 x×100.7=70 92.1x=27.3

56x=56 x÷16.8=88.3 95x=90.8 49.6x=125 2.1+x=73.4 16.7÷x=76.8 x+99=37.9 33÷x=56.6 48.5÷x=61.8 x÷3.6=96.5 68.0÷x=73 x×16.8=5.0 26.9x=88.0 45.5x=87 x×82=48.1 88.5+x=20.8 53.3x=21.3 95x=42.1 68÷x=139 x+34.7=135 x-63.1=43 19.5÷x=116 1.6x=5.7 2.3x=68.1 55.6+x=99.4 94.8÷x=28.9 100.3÷x=101 x+21.0=128 17-x=6.6 x-51=95.5 33.7×x=126 1.8x=111 48.4x=56 x×43.3=93.6 65.6x=100.9 6.8÷x=78.7 38.7-x=90.8 100x=143 64+x=31.9 x×122=28.7 x-55.1=95 17-x=92.8 x+20.8=53.1 90.9x=80.1 30.6x=58 43.9-x=37.2 6x=25.6 66.6x=113 x×21.0=65.6 x×30.6=51.1 58x=88.5 86.1x=89.5 x÷19.2=22.3 8.9×x=55 94.5+x=36.4 129x=86.3

垂径定理知识点及典型例题

垂径定理 一、知识回顾 1、到定点距离等于的点的集合叫做圆,定点叫做,定长叫做;连接圆上任意两点间的线段叫做,经过圆心的弦叫做;圆上任意两点间的部分叫做,它分为、、三种。 2、能够的两个圆叫做等圆;能够互相的弧叫做等弧,他只能出现在中。 3、圆既具有对称性,也具有对称性,它有对称轴。 4、垂直于弦的直径,并且;平分弦(不是直径)的直径,并且。 5、顶点在的角叫做圆心角;在同圆或等圆中,相等的圆心角所对的相等,所对的也相等,也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的、、;在同圆或等圆中,如果两条弦相等,那么它们所对的、、。 6、顶点在,并且相交的角叫做圆周角。在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧。 7、半圆(或直径)所对的圆周角是,900的圆周角所对的弦是。 8、如果一个多边形的都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的。圆的内接四边形。 二、典例解析 例1 如图,某市新建的滴水湖是圆形人工湖,为了测量该湖的半径,小明和小亮在湖边选取A、B、C三根木桩,使得A、B之间的距离等于A、C之间的距离,并测得BC=240m,A 到BC的距离为5m。请帮忙求出滴水湖的半径。 D两点,已知C(0,3)、D(0,-7),求圆心E的坐标。

变式2 已知O e 的半径为13cm ,弦AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。 变式3 如图,O e 的直径AB=15cm ,有一条定长为9cm 的动弦CD 在半圆AMB 上滑动(点C 与点A ,点D 与点B 不重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 于点F 。 (1)求证:AE=BF ;(2)在动弦CD 的滑动过程中,四边形CDFE 的面积是否发生变化?若变化,请说明理由;若不变化,请予以证明并求出这个值。 变式4 如图,某地方有一座圆弧形的拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一竹排运送一货箱欲从桥下通过,已知货箱长10米,宽3米,高2米,问货箱能否顺利通过该桥? 例2 如图,BC 是O e 的直径,OA 是O e 的半径,弦BE ∥OA 。求证:弧AC=弧AE 。 H D N M F E C B A

正弦定理、余弦定理经典练习题

学科数学版本人教版大开本、3+x 期数2339 年级高一编稿老师梁文莉审稿教师 【同步教育信息】 一. 本周教学内容: §5.9正弦定理、余弦定理 目标:使学生理解正弦定理、余弦定理的证明和推导过程,初步运用它们解斜三角形。并会利用计算器解决解斜三角形的计算问题。培养学生观察、分析、归纳等思维能力、运算能力、逻辑推理能力,渗透数形结合思想、分类思想、化归思想,以及从特殊到一般、类比等方法,进一步提高学生分析问题和解决问题的能力。 二. 重点、难点: 重点: 正弦定理、余弦定理的推导及运用。 难点: (1)正弦定理、余弦定理的推导过程; (2)应用正弦定理、余弦定理解斜三角形。 [学法指导] 学习本节知识时可采用向量法、等积法(面积相等)等不同方法来推导正弦定理,以加深对定理的理解和记忆,由于已知两边及其中一边的对角,不能唯一确定三角形,此时三角形可能出现两解、一解、无解三种情况,因此解此类三角形时,要注意讨论。 深刻领会向量的三角形法则及平面向量的数量积是用向量法推导余弦定理的关键。注意余弦定理的每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,便可求得第四个量。当有一个角为90°时,即为勾股定理。因此,勾股定理可看作是余弦定理的特例。 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。一般地,利用公式a=2RsinA,b=2RsinB,c=2RsinC(R 为ΔABC外接圆半径),可将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A+B+C=π。 可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题。在三角形中,有一个角的余弦值为负值,该三角形为钝角三角形;有一个角的余弦值为零,便是直角三角形;三个角的余弦值都为正值,便是锐角三角形。 【例题分析】

九年级数学: 垂径定理典型例题及练习

典型例题分析: 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点,AD ⊥BC 于D ,求证:AD=21BF. O A E F

例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. 2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的 半径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

五年级数学简易方程典型练习题

简易方程 【知识分析】 大家在课堂上已经学了简单的解方程,现在我们学习比较复杂的解方程。首先,我们要对方程进行观察,将能够先计算的部分先计算或合并,使其化简,然后求出X的值。 【例题解读】 例1解方程:6X+9X-13=17 【分析】方程左边的6X与9X可以合并为15X,因此,可以将原方程转化成15X-13=17,从而顺利地求出方程的解。 解:6X+9X-13=17, 15X-13=17 15X=30 X=2。 例2解方程:10X-7=4.5X+20.5 【分析】方程的两边都有X,运用等式的性质,我们先将方程的两边同时减去4.5X,然后再在两边同时加上7,最后求出X. 解:10X-7-4.5X=4.5X+20.5-4.5X, 5.5X-7=20.5 5.5X-7+7=20.5+7 5.5X=27.5, X=5. 【经典题型练习】解方程:7.5X-4.1X+1.8=12 解方程:13X+4X-19.5=40

解方程:5X+0.7X-3X=10-1.9 解方程练习课【巩固练习】 1、解方程:7(2X-6)=84 2、解方程5(X-8)=3X 3、解方程4X+8=6X-4 4、解方程7.4X-3.9=4.8X+11.7

列方程解应用题 【知识分析】 大家在三四年级的时候一定学过“年龄问题”吧!记得那时候思考这样的问题挺麻烦的,现在可好啦!我们学习了列方程解应用题,就可以轻松地解决类似于这样的应用题。 【例题解读】 例题1 今年王老师的年龄是陈强的3倍,王老师6年前的年龄和陈强10年后的年龄相等,陈强和王老师今年各是多少岁? 【分析】要求陈强和王老师两个人的年龄,我们不妨设今年陈强的年龄是X岁,王老师的年龄是3X岁,然后根据“王老师在6年前的年龄和陈强10年后的年龄相等”这个数量关系式,列出方程。解:设今年陈强的年龄是X岁,王老师的年龄是3X岁,可列方程:3X-6=X+10,2X=16,X=8 3X=3×8=24 答:陈强今年8岁,王老师今年24岁。 例题2 今年哥哥的年龄比弟弟年龄的3倍多1岁,弟弟5年后的年龄比3年前哥哥的年龄大1岁,兄弟俩现在各多少岁? 【分析】先表示出哥哥和弟弟今年的年龄,然后运用弟弟5年后,哥哥3年前的年龄作为等量关系。 解:设弟弟今年X,那么哥哥今年(3X+1)岁,可列方程 X+5=3X+1-3+1,X+5=3X-1,6=2X,X=3。 3X+1=3X3+1=10 答:哥哥今年10岁,弟弟今年3岁。

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

小学解方程经典例题

列方程解应用题及解析 例1甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45.求甲、乙二数. 分析:被除数、除数、商和余数的关系:被除数=除数×商+余数.如 果设乙数为x,则根据甲数除以乙数商2余17,得甲数=2x+17.又 根据乙数的10倍除以甲数商3余45得10x=3(2x+17)+45,列出 方程. 解:设乙数为x,则甲数为2x+17. 10x=3(2x+17)+45 10x=6x+51+45 4x=96 x=24 2x+17=2×24+17=65. 答:甲数是65,乙数是24. 例2电扇厂计划20天生产电扇1600台.生产5天后,由于改进技术,效率提高25%,完成计划还要多少天 思路1: 分析依题意,看到工效(每天生产的台数)和时间(完成任务 需要的天数)是变量,而生产5天后剩下的台数是不变量(剩余工作 量).原有的工效:1600÷20=80(台),提高后的工效:80×(1+25 %)=100(台).时间有原计划的天数,又有提高效率后的天数,因 此列出方程的等量关系是:提高后的工效x 所需的天数=剩下台数. 解:设完成计划还需x天. 1600÷20×(1+25%)×x=1600-1600÷20×5 80×=1600-400 100x=1200 x=12. 答:完成计划还需12天.例4 中关村中学数学邀请赛中,中关村一、二、三小六年级大约有380~450人参赛.比赛结果全体学生的平均分为76分,男、女生平均分数分别为79分、71分.求男、女生至少各有多少人参赛 分析若把男、女生人数分别设为x人和y 人.依题意全体学生 的平均分为76分,男、女生平均分数分别为79分、71分,可以确 定等量关系:男生平均分数×男生人数+女生平均分数×女生人数= (男生人数+女生人数)×总平均分数.解方程后可以确定男、女生 人数的比,再根据总人数的取值范围确定参加比赛的最少人数,从而 使问题得解. 解:设参加数学邀请赛的男生有x人,女生有y人. 79x+71y=(x+y)×76 79x+71y=76x+76y 3x=5y ∴x:y=5:3 总份数:5+3=8. 在380~450之间能被8整除的最小三位数是384,所以参加邀 请赛学生至少有384人. 男生:384×=240(人) 5 8 女生:384×=144(人) 3 8 答:男生至少有240人参加,女生至少有144人参加. 例 5 瓶子里装有浓度为15%的酒精1000克.现在又分别倒入 100克和400克的A、B两种酒精,瓶子里的酒精浓度变为14%.已 知A种酒精的浓度是B种酒精的2倍,求A

垂径定理典型例题及练习

垂径定理练习题 典型例题分析: 例题、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度 为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=2 1 BF. 例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. O A E F

2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2 、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半 径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

余弦定理教学设计经典

1.1.2余弦定理教学设计 一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。 难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股02220定理的知识,即当∠C=90时,有c=a+b。作为一般的情况,当∠C≠90时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学内容分析 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

《垂径定理》典型例题

《垂径定理》典型例题 例1. 选择题: (1)下列说法中,正确的是() A. 长度相等的弧是等弧 B. 两个半圆是等弧 C. 半径相等的弧是等弧 D. 直径是圆中最长的弦答案:D (2)下列说法错误的是() A. 圆上的点到圆心的距离相等 B. 过圆心的线段是直径 C. 直径是圆中最长的弦 D. 半径相等的圆是等圆答案:B 例2. 如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB。 分析:要证弧相等,可证弧所对的弦相等,也可证弧所对的圆心角相等。 证明:连结OC、OD ∵M、N分别是OA、OB的中点 ∵OA=OB,∴OM=ON 又CM⊥AB,DN⊥AB,OC=OD ∴Rt△OMC≌Rt△OND ∴∠AOC=∠BOD 例3. 在⊙O中,弦AB=12cm,点O到AB的距离等于AB的一半,求∠AOB的度数和圆的半径。 分析:根据O到AB的距离,可利用垂径定理解决。 解:过O点作OE⊥AB于E ∵AB=12 由垂径定理知:

∴△ABO为直角三角形,△AOE为等腰直角三角形。 例4. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E。求AB、AD的长。 分析:求AB较简单,求弦长AD可先求AF。 解:过点C作CF⊥AB于F ∵∠C=90°,AC=3,BC=4 ∵∠A=∠A,∠AFC=∠ACB ∴△AFC∽△ACB 例5. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA=4cm,OP=5cm,求⊙O的半径。 分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。 解:连OA,过点O作OM⊥AB于点M ∵点P在AB上,PA=4cm

相关主题
文本预览
相关文档 最新文档