当前位置:文档之家› 各种电压电流采样电路设计讲课教案

各种电压电流采样电路设计讲课教案

各种电压电流采样电路设计讲课教案
各种电压电流采样电路设计讲课教案

各种电压电流采样电

路设计

常用采样电路设计方案比较

配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。

控制电路电路主电路

图2-1 DSTATCOM系统总体硬件结构框图

1.1常用电网电压同步采样电路及其特点

1.1.1 常用电网电压采样电路1

从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压

矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-

STATCOM工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1

从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1K ,C4=15pF,则时间常数

<

LM311构成,实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求[1]。

1.1.2 常用电网电压采样电路2

常用电网电压同步信号采样电路2如图2-3所示。ADMC401芯片的脉宽调制PWM发生器有专门的PWMSYNC引脚,它产生与开关频率同步的脉宽调制PWM的同步脉冲信号。

图2-3 同步信号发生电路2

图2-3中的输入端信号取自a相的检测电压,经过过零检测电路后得到正负两个电平,随后进入光电隔离TLP521产生高电平和低电平进入D触发器

MC14538的正的触发使能输入引脚A,当A为高电平时,输出引脚Q输出一个脉冲,这个脉冲宽度由电阻R l。和电容C决定。当然这里希望脉冲宽度越小越好,否则将影响STATCOM的输出电压与其接入点电压的同步。与此同时,可以通过设置ADMC401的内部寄存器PWMSYNCWT寄存器与信号脉

冲相匹配[2]。

1.1.3 常用电网电压采样电路3

电网电压同步电路可以实现精确的过零点检测,并输出高电平,将输出信号脉冲的上升沿输入捕获单元三即可获得同步信号[3]。图2-4即为一种常见的电网电压同步信号产生电路。

图2-4 同步信号产生电路3

图2-4所示同步电路由三部分组成,第一部分是由电阻、滑线变阻器和电压比较器LM353组成的缓冲环节。第二部分由电压比较器LM353构成,实现过零比较。最后一部分为输入DSP系统箝位保护电路[3]

1.1.4常用电网电压采样电路4

常用网电压同步信号产生电路4如图2-5所示:

图2-5 同步信号产生电路4

图2-5所示同步电路由两部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该环节主要是滤除电网的毛刺干扰。滤波电路造成的延时可在程序中补偿。第二部分由电压比较器LM311构成,实现过零比较,同时设计了一个滞环环节来抑制干扰和信号的震荡[4]。

1.1.5常用电网电压采样电路5

图2-6所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节主要是滤除电网的谐波干扰。滤波电路造成的延时可在程序中补偿起来。其中凡R341=1 KΩ,

C341=0.luF;第二部分由电压比较器LM3ll构成,实现过零比较,同时设计了一个滞环来抑制干扰和信号的振荡[2]。

图2-6 同步信号产生电路5

1.2 常用交流电压采样电路及其特点

1.2.1常用交流电压采样电路1

为了实现对STATCOM的控制,必须要检测三相瞬时电压U a、U b和U c。如下图2-7为电路一相电压采样电路:

a.电压转换电路

U a

图2-7 交流电压采样电路图

电压转换电路通过霍尔电压传感器CHV-50P 实现。CHV-50P 型电压传感器输出端与原边电路是电隔离的,可测量直流、交流和脉动电压或小电流。磁补偿式测量,过载能力强,性能稳定可靠,易于安装,用于电压测量时,传感器通过与模块原边电路串联的电阻R u1与被测量电路并联连接,输出电流正比于原边电压。上图电压转换电路为a 为单相电压转换电路,这里对电阻R u1和电阻R u2的选择作一些说明。

由于CHV-50P 的输入额定电流I n1为10mA ,本电路检测的电压是220V

的交流电压,则

u1n1U 220V R ===2.2K ΩI 10mA

(2.1)

电阻R u1消耗的功率P 1为

1122010 2.2n P UI mA W ==?= (2.

2)

因此电阻R u1选择阻值为2.2 k Ω,功率为5W 的大功率电阻。另外为了抑制共模干扰,在交流输入侧并联了两个电容C 。当然为了更好地消除这些干扰,可

以在电压变换电路之前再加隔离变压器,那么电阻R u1的选择就要对应于经过隔离变压器后电压的改变而改变。

由于CHV-50P的输入额定电流I n2为50mA,为了ADMC40l的A/D转换通道检测,必须把输出电流转换为电压,所以在电压传感器的输出侧串联了电阻R u2。ADMC401的A/D转换通道检测电压范围-2V~+2V,则

u22V

R==40Ω

50mA

(2.3)

由于电阻R u2消耗功率比较小,电阻R u2选择上对功率没有特殊的要求。

b.滤波补偿电路

由于电压电流的检测点就是STATCOM接入电网的同一点,其谐波干扰还是比较大的滤波补偿电路。,那么三相电压电流经过各自的转换电路后必须进入了滤波补偿电路包含两部分:一部分为RC滤波,另一部分为相位补偿,

如图上图中所示[5]。

1.2.2常用交流电压采样电路2

此三相电压采样电路包括信号放大电路,二阶滤波电路,单极性转换电路。

a.信号放大电路

交流信号放大电路见图2-8所示。本设计采用的互感器为国内最新的高精度电压互感器(SPT204A)。其中SPT204A实际上是一款毫安级精密电压互感器,输入额定电流为2mA,额定输出电流为2mA,线性范围±10mA,非线性度<0.1%,相移经过补偿后小于5’。SCT254AZ是一款毫安级精密电流互感器,输入额定电流为5A,额定输出电流为2.5mA,线性范围0~20A,非线性

度小于0.1%,相移经过补偿后小于5’。由于该电压传感器采用的为1:1电流变电流型,所以要在电压互感器前面加R1,将电压信号转变为电流信号,而电流互感器就不需要加电阻R1。这样电压互感器副边输出为电流信号,这与电流互感器副边输出信号相似。

交流信号放大电路工作原理可由下式表示:

(2.4)

通过R2将传感器输出的电流信号转变为电压信号

Ui

Ui

SPT204A

PTI

Io2

Io1

Va R1

100K

1

2

图2-8 信号放大电路

b.二阶滤波电路

图2-9为二阶滤波电路,截至频率为2.5KHz。

图2-9 二阶滤波电路

c.单极性转换电路

由于设计采用的DSP自带的AD,其采样要求输入信号为0~3.3V,故接入其引脚的信号电压也不能超过3.3V所以必须对放大电路给出的双极性信号做进一步处理。单极性转换电路如下图2-10所示[6]。

图2-10 单极性转换电路

1.2.3常用交流电压采样电路3

交流电压变送器以0~5 V的交流电压作为输出信号。因TMS320F2812的

A/D输入信号范围为0~3 V.因此必须添加合适的调理电路以满足A/D输入的要求。

交流电压调理电路见图2-11,由图可知该电路由3部分组成:第1部分为射极跟随器.以提高电路的输入阻抗:第2部分是电压偏移电路:第3部分为箝位限幅电路,以保证输出电压信号在0~3 V,满足TMS320F2812的A/D输入信号范围[7]。

图2-11 交流电压信号调理电路

1.2.4常用交流电压采样电路4

系统电压经过相应的传感器后,统一变换为适当幅值的电压信号,经调理电路后,进行A/D转换。图2-12为采样电路原理图。

图2-12 系统电压的采样电路

从图2-12可知,系统输出电压的采样电路由四部分组成,第一部分是由LF353的运放构成的电压跟随器,R131和C109是为了抑制干扰。第二部分为电平抬升电路,将围绕零电平波动的信号提升为单极性信号,第三部分进行跟随,第四部分为进入A/D前的保护部分,防止信号异常导致DSP芯片损坏[4]。

1.2.5常用交流电压采样电路5

相电压检测电路如图2-13所示,该电路采用了运算放大器加电压跟随器的方式,电压跟随器起到了隔离作用,以便在A/D入口前进行阻抗匹配。在A/D入口端采用二极管钳位,防止A/D输入电压越界。来自检测通道的电压互感器的电流号经运算放大器转换为电压信号后经电压平移后将交流量信号转换为

0~3.3V的单极性电压信号接入DSP的A/D通道引脚[8]。

图2-13 相电压采样电路

1.3 常用交流电流采样电路及其特点

1.3.1常见交流电流采样电路1

a.电流转换电路

图2-14电流转换电路,其中CT为霍尔电流传感器DT50-P,它的性能也稳定可靠,易于安装。如何选择电阻R比较简单,可以参考上面交流电压转换电路,这里就不再赘述。

图2-14 交流信号采样电路

图2-15 电流转换电路

b.滤波补偿电路

由于电压电流的检测点就是STATCOM接入电网的同一点,其谐波干扰还是比较大的滤波补偿电路。那么三相电压电流经过各自的转换电路后必须进入了滤波补偿电路包含两部分:一部分为RC滤波,另一部分为相位补偿,如图2-16所示[5]。

图2-16 滤波补偿电路

1.3.2常见交流电流采样电路2

a.信号放大电路

交流信号放大电路见图2-17所示。本设计采用的互感器为国内最新的高精度电流互感器(SCT254AZ)。SCT254AZ是一款毫安级精密电流互感器,输入额定电流为5A,额定输出电流为2.5mA,线性范围0~20A,非线性度

<0.1%,相移经过补偿后小于5’。因电流互感器输出的是电流信号,故电流互感器就不需要加电阻R1。

图2-17电流信号放大电路

b.二阶滤波电路

图2-18为二阶滤波电路,截至频率为2.5KHz

图2-18 二阶滤波电路

c.单极性转换电路

由于设计采用的DSP自带的A/D,其采样要求输入信号为0~3.3V,故接入其引脚的信号电压也不能超过3.3V所以必须对放大电路给出的双极性信号做进一步处理。单极性转换电路如下图2-19所示[6]。

图2-19 单极性转换电路

1.3.3常见交流电流采样电路3

相电流检测电路如图2-20和所示,该电路采用了运算放大器加电压跟随器的方式,电压跟随器起到了隔离作用,以便在A/D入口前进行阻抗匹配。在A/D入口端采用二极管钳位,防止A/D输入电压越界。来自检测通道的电流互感器的电流号经运算放大器转换为电压信号后经电压平移后将交流量信号转换为0~3.3V的单极性电压信号接入DSP的A/D通道引脚[8]。

图2-20 相电流检测电路

1.3.4常见交流电流采样电路4

霍尔电流传感器以-100~+100 mA的交流电流作为输出信号,TMS320F2812的A/D输入信号范围为0~3 V.因此必须添加合适的调理电路以满足A/D输入

的要求。交流电流调理电路见图2-21,与交流电压调理电路不同的是.第1部分是经电容C4滤波后流经精密采样电阻尺,将电流信号变换为电压信号,第2部分是由运放构成的反相器:第3部分为箝位限幅电路,以保证输出电压信号在0~3 V,满足TMS320F2407的A/D输入信号范围[7]。

图2-21 交流电流信号采样电路

1.3.5常用交流电流采样电路5

电流采集采用 TA1014-2K卧式穿芯微型精密交流电流互感器,其额定输

入为5A,额定输出为2.5mA,工作频率范围为20Hz~20kHz,相移小于5’,

线性范围大于10A,非线性度小于0.1%,是比较理想的交流电流检测器件。

图2-22为电流采集电路原理图。

图2-22 交流电路采样电路

由于DSP的A/D输入信号范围为0~3.3V,而经电流互感器测得的电流信号经转化后变成-1.5V~+l.5V的交流信号,故对其进行了1.5V的平移[9]。

1.4 常用直流电压采样电路及其特点

1.4.1常用直流电压采样电路1

a.直流电压传感器采用LEM公司的电压传感器LV100。LV100为霍尔效应的闭环电压传感器,所以有非常良好的原副边隔离作用,可测的电压范围为100V~2500V。图2-23为直流电压采样电路图。电压传感器LV100有如下优点:

精度高;线性度好;频带宽;抗干扰能力强[10]。

图2-23 直流电压采样传感器

电压传感器LV100的原边额定有效电流为10mA,在原边为额定电流时传感器精度最高。采样电阻R1 =80千欧,按原副边1:5的变比设计,副边电流为50 mA,副边采样电阻为150欧,原边电压为800V时副边电压为7.5V。副边信号经二阶滤波电路以减小干扰,由于采样直流信号,滤波器截止频率可以选取的较低,实际设计的滤波器截止频率为2k Hz。

b.电压检测电路

图2-24 电压检测电路1

霍尔电压传感器及采样电阻采集的直流电容电压从U dc端输入图2-24的模拟电路,经电位器调节使U16A的3脚变化范围限制在0~3.3V,同时用RC滤波器滤除输入信号的噪声,0~3.3V的电压信号经过电压跟随器,电压跟随器可保证在进行电阻匹配时防止其输入输出电路的电阻干扰。电压跟随器输出接的R64=51欧。电阻是DSP接口的电阻要求,DSP接口端的串联二极管是为了确保输入DSP的电平限制到0~3.3V[3]。

1.4.2常用直流电压采样电路2

直流电压的采样电路与交流电压采样电路略有不同,如图2-25所示:

图2-25 直流电压采样电路2

直流电压与交流电压采样电路不同主要有两点,其一,因为传感器不同,前者采用直流电压霍尔,输出信号为电流信号,后者为电压变送器,输出信号为交流信号,因此直流采样电路前端需接地电阻将电流信号转换为电压信号;其二,前者信号为直流信号的,后者为交流信号的,因此,直流电压采样不用电压偏移[1]。

1.4.3常用直流电压采样电路3

直流侧电容电压的采集是经过两个电阻分压后,接二个电压跟随器,同样电压跟随器起防止电压冲击的作用。输出端加入钳位二极管,把电压钳制在3.3V以内,输出信号接入DSP的ADCIN端口,如图2-26所示[9]:

图2-26 直流电压采样电路3

1.4.4常用直流电压采样电路4

目前,对于直流电压的精确检测基本上都是基于磁补偿原理进行的,又因为本系统直流侧电压值较高,而直流电压传感器本身电流又很小,故从采用均压以后的电容器组上,可以只采一定比例的直流电压,不会影响测量精度,同时还保证了器件的安全性。作为磁补偿的结果,传感器输出信号为一精确的电流信号,直流电压采样电路设计如图2-27所示[4]:

各种电压电流采样电路设计

常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制 电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压 同步信号采样电路即电网电压同步信号。 信号调 理 TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 1.1常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路 1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢 量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变 器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统 的输出频率,即该误差可忽略不计。其中R5=1K,C4=15pF,则时间常数错误!未找到引用源。<

电流采样电路的设计

电流采样电路的设计 文中研制了一套模拟并网发电系统,实现了频率跟踪、最大功率跟踪、相位跟踪、输入欠压保护、输出过流保护、反孤岛效应等功能;采用Atmega16高速单片机,实现了内部集成定时、计数器功能;利用定时器T/C2的快速PWM功能,实现SPWM信号的产生;采用T/C1的输入捕获功能,实现了频率相位监测和跟踪以及对失真度、输入电压、输出电流等物理量的检测与控制。 1 整体方案设计 设计采用Atmega16单片机为主体控制电路,工作过程为:与基准信号同频率、同相位正弦波经过SPWM调制后,输出正弦波脉宽调制信号,经驱动电胳放大,驱动H桥功率管工作,经过滤波器和工频变压器产生于基准信号通频率、同相位的正弦波电流。其中,过流、欠压保护由硬件实现,同步信号采集、频率的采集、控制信号的输出等功能,均由Atmega16完成。系统总体设计框图如图1所示。 2 硬件电路设计 分为DC/AC驱动电路、DC/AC电路和滤波电路3部分和平滑电容C1,电路原理如图2所示。 2.1 DC—AC驱动电路 是由R1、R2、R3、R4、R5、R6、Q3、Q4、P3和P4组成,其中P3和P4是控制信号输入

端,R3和R4为限流电阻。集电极的电流直接影响波形上升沿的陡峭度,集电极电流越大输出的波形越陡峭。因为R2和R1与集电极pn节的寄生电容形成了一个RC充放电的时间常数,集电极pn结的寄生电容无法改变,只有通过改变R1和R2的值来改变时间常数,所以R1和R2值越小,Q3和Q4的集电极电流就越大;RC的充电时间常数越小,波形的上升沿越陡峭,而增加集电极电流,会增加系统的功耗,权衡利弊选择一个合适的值。其次,射级pn 结的寄生电容也会影响Q3和Q4的关断时间和波形上升沿的陡峭度。所以在驱动电路中各加了一个放电回路,即拉地电阻R5和R6,R5和R6的引入,加快了Q3和Q4的关闭速度,这样就使集电极的波形更陡峭。同样在保证基极射极pn不损坏的条件下,基极的电流也是越大越好,但也会带来损耗问题,权衡利弊选择一个合适的值。关于两个电阻的取值,这里假设三极管的放大倍数为β,基极电流Ib,集电极电流Ic,流过R5的电流为I5,流过R3的电流为I3,R3的压降为V3,驱动信号为V,R5的压降为V5,有 实际中R3和R5应该比计算值小,这样是为了让三极管工作在饱和状态,提高系统稳定 性。 2.2 DC-AC电路 是由两只p沟道MOSFET。Q1、Q2和两只n沟道MOSFET Q5、Q6组成。在这里没有采用4只n沟道MOSFET,原因是驱动电路复杂,如果采用上面的驱动电路接近电源的两个导体管不能完全导通,发热量为接近地一侧导体管4倍以上,功耗增加,所以采用对管逆变即减小了功耗,而且驱动电路简单。通过控制4个导体管的开关速度再通过低通滤波器即可实 现DC/AC功能。 2.3 滤波电路 两个肖特基整流二极管1N5822为续流二极管,这里为防止产生负电压,C2、C3、C4、C5、L1、L2组成低通滤波器,其中C5、C6为瓷片电容,C2、C3用电解电容,充放电电流可以流进地,L1、L2为带铁芯的电感,带铁芯的电感对高频的抑制比空心电感更好,电感值 更高。关于参数的选取和截止频率的计算如下 3 采样电路 3.1 电流采样电路的设计 由于终端负载一定,所以电流采样实际等同于一个峰值检测的过程,此电路实际是一个峰值检测电路,P3为信号的2个输入端,调整R10,R11和R17、R18取值来实现峰值测功能,电路中的阻值并不准确,需要实际中根据信号的幅值来调整R10、R11和R17、R18阻值

三相电源检测

三相电源检测系统设计三相电源检测系统设计 摘 要 本设计采用AT89C51单片机实现三相电压与电流的检测。该设计可检测三相交流电压(AC220V×3)及三相交流电流(A、B、C 线电流0~5A)。本系统的变压器、放大器、A/D 转换和计算产生的综合误差满足5%的精度要求。输出采用128×64 LCD 方式显示,单片机电源部分直接由AC220V 交流电经整流、滤波、稳压供电。系统采用数字时钟芯片和8kB 的RAM 进行存储器的扩展。 关键词关键词::三相交流电 AD 转换 变压器 LCD 显示 8KB RAM

1.引言 当前电力电子装置和非线性设备的广泛应用,使得电网中的电压、电流波形发生严重畸变,电能质量受到严重的影响和威胁;同时,各种高性能家用电器、办公设备、精密试验仪器、精密生产过程的自动控制设备等对供电质量敏感的用电设备不断普及对电力系统供电质量的要求越来越高,电能质量问题成为各方面关注的焦点,电能质量检测是当前的一个研究热点,有必要对三相电信号进行采样,便于进一步分析控制。 目前,精度要求不高的交流数字电压表大多采用平均值原理,只能测量不失真时的正弦信号有效值,因此受到波形失真的限制而影响测量精度和应用范围。真有效值数字仪表可以测量在任何复杂波形而不必考虑波形种类和失真度的特点以及测量精确度高、频带范围宽、响应速度快的特点而得到广泛应用。提高系统的测量精度、稳定性特性是设计中的关键。 真有效值的数字电压数字电压表和以往的仪表有所不同的是可以检测波形复杂的三相交流电压电流。这些都是以单片机为基础的智能化仪表,同时充分表明单片机是一个应用于对象体系的智能化工具。 本设计用单片机进行三相电压与电流的硬件检测系统。该系统检测三相交流电压(AC220V×3)及三相交流电流(A、B、C线电流0~5A)。本系统的变压器、放大器、A/D转换和计算产生的综合精度满足5%要求。输出显示采用128×64点阵的LCD,单片机电源由AC220V交流供电通过变压与整流稳压电路实现。系统配有数字时钟芯片、8kB的RAM存储器扩展芯片。 2总体设计方案 总体设计方案框架如图2-1所示,由交流信号处理部分、A/D转换电路、51单片机控制、数据存储器电路、LCD显示电路以及稳压电源电路组成。 图2-1总体系统原理图

电压电流采样

电压电流采样 前言:在学习这个主题的时候,上网查了大量的资料,但大多都是基于电网里的交流大电压和大电流的采样,我个人觉得关于交流的采样以下链接有非常详尽的介绍,而我自己也只是对其进行了较为细致的阅读 https://www.doczj.com/doc/d114339722.html,/view/2d389e06a6c30c2259019e2f.html?from=search 因为我们队里用的直流电压最大为24V,所以接下来我就直流电压及电流的采样说一下自己的见解。 一、基本电路设计及原理学习 1、电压采集回路的设计 工作原理如下所述:从分压电阻取来的电压信号经滤波后,被单片机周期采样。将采样信号转化为0~5V的模拟电压量送给单片机的A/D采样通道,使单片机能采集到当时的电压,以便进行稳压、稳流或限压、限流调节,为控制算法的分析、处理,实现控制、保护、显示等功能提供依据。 (公式推导参见电气专业的模电书,不作详细介绍) 根据上述原理,设计电压采样电路如图下图所示 由于521-4的四个光耦制的电流放电倍数是相同的。即

即把输入电压从较大的直流电压衰减到0~5V。 2、电流采集回路的设计 电流采集的原理图如上图所示。其工作原理与电压采集的原理基本相同,区别主要在电流的输入信号为分流器输出的信号,信号范围为0-75mV,显然信号太弱,对于分辨率不高的A/D精度显然不够。通过LM324将其放大。根据放大器的工作原理,放大的倍数为β=R63B/R61B=400K/10K=40。从而使得VI点的电压范围为0-3V,而VI点相对于AGNDW的电压与AC1点相对于AGND的电压的关系跟中,Vi点电压与AC0点电压的关系类似。在此处我们通过调节RW6,将0-75mV 的电压信号(分流器上的电压)放大到0-5V,供单片机采样。 二、自己设计(DIY) 经过一段时间的学习,我根据上述基本原理和所学知识设计了一款新的采样电路

常用电流和电压采样电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 图2-1 DSTATCOM 系统总体硬件结构框图 2.2.11 常用电网电压同步采样电路及其特点 .1 常用电网电压采样电路1 从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R 5=1K Ω,5pF,则时间常数错误!未 因此符合设计要求;第二部分由电压比较器LM311构成, 实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。 C 4=1找到引用源。<

电压源与电流源

课题:电压源与电流源 教学目标: 1.了解实际和理想电压源和电流源 2.掌握电压源与电流源的变换 教学重点: 电压源与电流源的变换 教学难点: 电压源与电流源的变换 教学过程: 2.5 电压源与电流源 电源是将其它形式的能量(如化学能、机械能、太阳能、风能等)转换成电能后提供给电路的设备。本节主要介绍电路分析中基本电源:电压源和电流源。 2.5.1电压源和电流源 我们所讲的电压源和电流源都是理想化的电压源和电流源。 1.电压源 电压源是指理想电压源,即内阻为零,且电源两端的端电压值恒定不变(直流电压), 如图2.17所示。 它的特点是电压的大小取决于电压源本身的特性,与流过的电流无关。流过电压源的电流大小与电压源外部电路有关,由外部负载电阻决定。因此,它称之为独立电压源。 电压为Us的直流电压源的伏安特性曲线,是一条平行于横坐标的直线,如图2.18所示,特性方程 U = Us (2-26)如果电压源的电压Us=0,则此时电压源的伏安特性曲线,就是横坐标,也就是电压源相当于短路。 图2.17 电压源图2.18 直流电压源的伏安特性曲线 2.电流源 电流源是指理想电流源,即内阻为无限大、输出恒定电流I S的电源。如图2.19所示。 它的特点是电流的大小取决于电流源本身的特性,与电源的端电压无关。端电压的大小与电流源外部电路有关,由外部负载电阻决定。因此,也称之为独立电流源。

图2.19 电流源 图2.20 直流电流源的伏安特性曲线 电流为I S 的直流电流源的伏安特性曲线,是一条垂直于横坐标的直线,如图2.20所示,特性方程 I = I S (2-27) 如果电流源短路,流过短路线路的电流就是I S ,而电流源的端电压为零。 2.5.2实际电源的模型 1. 实际电压源 实际电压源可以用一个理想电压源Us 与一个理想电阻r 串联组合成一个电路来表示,如图2.21(a)所示。 特征方程 U = U S –Ir (2-28) 实际电压源的伏安特性曲线如图2.21(b)所示,可见电源输出的电压随负载电流的增加而下降。 I U s U i u o r s U r I (a) 实际电压源 (b) 实际电压源的伏安特性曲线 图2.21 实际电压源模型 2.实际电流源 实际电压源可以用一个理想电流源I S 与一个理想电导G 并联组合成一个电路来表示,如图 2.22(a)所示, s I I s I i u o r G u (a) 实际电流源 (b) 实际电流源的伏安特性曲线 图2.22 实际电流源模型 特征方程 I = I S – UG (2-29) 实际电流源的伏安特性曲线如图1-22b 所示,可见电源输出的电流随负载电压的增加而

电压源与电流源

电压源与电流源(理想电流源与理想电压源)的串、并、和混联 1. 电压源的串联,如图2-1-7所示: 计算公式为: u s =u s1+u s2+u s3 2. 电压源的并联,如图2-1-8所示:只有电压源的电压相等时才成立。 12==s s s u u u 3. 电流源的串联,如图2-1-9所示: 只有电流源的电流相等时才成立。 12 s s s i i i == 4. 电流源的并联,如图2-1-10所示:公式为:12s s s I I I =+ 5. 电流源和电压源的串联,如图2-1-11所示: u s1 u s2 u s3u s I 图2-1-7 电压源串联 图2-1-8 电压源并联 u I I 图2-1-9 电流源串联

6. 电流源和电压源的并联,如图2-1-12所示: 实际电源模型及相互转换 我们曾经讨论过的电压源、电流源是理想的、实际上是不存在的。那实际电源是什么样的呢?下面我门作具体讨论。 1. 实际电压源模型 实际电压源与理想电压源的区别在于有无内阻R s 。我们可以用一个理想电压源串一个内阻Rs 的形式来表示实际电压源模型。如图2-1-13所示 u s1 u s2 I s3 Is3 I I 图2-1-11 电流源和电压源串联 u I I I 图2-1-12 电流源和电压源的并联 a b R s U a b I U (a)实际电源 (b)实际电压源模型

依照图中U 和I 的参考方向 得 S S U U R I =- (2-1-5) 由式(2-1-5)得到图2-1-13(c )实际电压源模型的伏安关系。该模型用U S 和R s 两个参数来表征。其中U S 为电源的开路U oc 。从式(2-1-5)可知,电源的内阻R s 越小,实际电压源就越接近理想电压源,即U 越接近U S 。 2. 实际电流源模型 实际电流源与理想电流源的差别也在于有无内阻R s ,我们也可以用一个理想电流源并一个内阻R s 的形式来表示实际的电流源,即实际电流源模型。如图2-1-14所示: 若实际的电流源与外电阻相接后如图2-1-14(b )可得外电流 U I Is R s =- (2-1-6) Is :电源产生的定值电流 U R s :内阻R s 上分走的电流 由式(2-1-6)可得:实际电流源模型的伏安特性曲线,又知端电压U 越高,则内阻分流越大,输出的电流越小。显然实际电流源的短路电流等于定值电流Is 。因此,实际电源可由它们短路电流sc s I I =以及内阻R s 这两个参数来表征。由上式可知,实际电源的内阻越大,内部分流作用越小,实际电流源就越接近于理想电流源,即I 接近I s 。 3. 实际电压源与实际电流源的互换 依据等效电路的概念,以上两种模型可以等效互换。对外电路来说,任何一个有内阻的电源都可以用电压源或电流源表示。因此只要实际电源对外电路的影响相同,我们就认为两种实际电源等效。对外电路的影响表现在外电压和外电流上。换句话说,两种模型要等效,它们的伏安特性就要完全相同。下面以实际电压源转换成实际电流源为例说明其等效原理。 U I I I s I U (a)电流源模型 (b)与外电阻相接 (c)电流源模型的伏安特性 图2-1-14实际电流源模型

电压电流采样电路设计

- 常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 控制电路电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 】 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1K ,C4=15pF,则时间常数 <

DSP交流采样电路设计..

DSP 交流采样电路设计

1.实验目的 本次实验针对电气工程及其自动化专业及测控专业。通过综合实验,使学生对所学过的DSP在继电保护中的应用有一个系统的认识,并运用自己学过的知识,自己设计模拟继电保护过程实验系统。要求用DSP完成对电网的电压的采样,然后经过DSP的处理,可以对系统继电器的跳合进行控制,自己设计,自己编程,最后自行调试,自行实现自己的设计。在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。学生试验应做到以下几点: 1. 通过DSP程序的设计模拟继电保护跳闸实验,进一步了解DSP在继电保护中的应用。 2. 通过实验线路的设计,计算及实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。 3. 培养动手能力,增强对DSP运用的能力。 4..培养分析,查找故障的能力。 5. 增加对DSP外围电路的认识。 2.实验设备 DSP板、仿真器、面包板、采样板器件,电烙铁,其它工具。

3.实验原理 1、DSP最小系统电路图

1、模拟电子线路 (一)、电流采样电路的设计

本次电流采样电路选择的电流互感器总共由两级,前一级互感器变比为4A :1A ,第二级互感器采用TA1015-1,其变比为5A:5mA ,也就是1000:1,两级总共的互感器比例为4000:1。 即电流互感器一次侧的电流大小为4A ,二次侧的电流大小为1A ,二级互感器的二次侧电流大小为1mA 。如图3-6,在互感器二次侧并一个1K 的电阻即可将一次侧的4A 的强电流信号变换为二次侧的弱电压信号,其计算公式为: )(0.14000/4/12mA A k i i === (3-1) )(0.1101100.13322V R i u =***==- (3-2) 其峰值为: )(414.10.1222V u u p =*== (3-3) 即电流互感器二次侧输出的电压范围为-1.414V 至+1.414V ,即一次回路里的220V 的工频交流便被线性转化为-1.414V 至+1.414V 。 信号电路共有三级,第一级为偏置放大环节,它能够将交流信号调理成DSP 能准确进行AD 转换的0V 至3.3V 的直流信号。第二级为有源滤波环节,该环节能够滤去信号调理电路里的高频干扰信号。第三极为跟随环节,其输入高阻抗,输出低阻抗,进一步增加了信号调理电路的抗干扰能力。

采样调理电路

3.4 A/D采样电路及信号调理电路 对连续信号) x,按一定的时间间隔s T抽取相应的瞬时值(即通常所 (t 说的离散化),这个过程称为采样。) x经过采样后转换为时间上离散的模拟 (t 信号) x,简称为采样信号。 (s s nT 本系统中采集的模拟量主要是交流电压/电流(计算功率用)、整流输出直流电压/电流(用作脉冲调整)等交流量和直流量,此外加调理电路的作用是把采样信号进行硬件上的定标,变成DSP的A/D口可以识别的0~电平以内的信号。 3.4.1互感器电路原理及选型 图电压互感器原理图 如图,电流型电压互感器采用星格SPT204A(2mA/2mA),R1是熔断电阻防止电流过大烧坏互感器,R2为限流电阻将电压信号转化为2mA电流信号,R3为压敏电阻起过电压保护作用,二次侧输出为2 mA电流信号送至采样模块。 5A输入 2.5mA输出 图电流互感器原理图 如图,电流互感器采用互感器采用星格SCT254AZ,将一次侧5A交流输入转化为输出送至采样板。 3.4.2交流电压/电流采样电路 交流电压/电流采样电流采样信号来自同步变压器经霍尔电压/电流传感器的电压电流源。

为了更清楚的阐述采样电路的工作原理,首先需对电路中的重要器件LM358作简要说明: LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 (1)交流电压采样电路整流器的输入是三相三线制,无中线,交流电压采集的是经过电流型电压互感器后的交流电流信号,以A相采样电路为例,如下图所示,输入电压经过放大电路电压跟随之后,叠加+的直流量,确保正弦电压的负半周上移到DSP能处理的单极性电压信号+电压范围之内: 图交流采样电路 Rd0为熔断电阻,防止电流过大;Rd1, Rd2为限流电阻,LM358作电压跟随。滑动变阻器Wd0另一侧输入+电压,将电压信号变为单极性信号;电容Cd2、Cd3起去耦作用;电阻Rd3为限流电阻,限定电路的工作电流.,使电路在一个合适的工作状态下运行。稳压管Dd0电压设为3V,使得ADCINB1口的输出电压基本稳定在3V及其以下。采样之后的信号送至TMS320F2812的A/D口进行处理。 (2) 交流电流采样电路交流电流采样电路与电压采样原理基本相同,但相比较而言,电流采样电路更为复杂,同样以A相电流采样为例,采样电路图如下图所示:

采样调理电路

采样调理电路 Hessen was revised in January 2021

3.4 A/D采样电路及信号调理电路 对连续信号) x,按一定的时间间隔s T抽取相应的瞬时值(即通常所说的 (t 离散化),这个过程称为采样。) x经过采样后转换为时间上离散的模拟信 (t 号) (s x,简称为采样信号。 s nT 本系统中采集的模拟量主要是交流电压/电流(计算功率用)、整流输出直流电压/电流(用作脉冲调整)等交流量和直流量,此外加调理电路的作用是把采样信号进行硬件上的定标,变成DSP的A/D口可以识别的0~电平以内的信号。 3.4.1互感器电路原理及选型 图电压互感器原理图 如图,电流型电压互感器采用星格SPT204A(2mA/2mA),R1是熔断电阻防止电流过大烧坏互感器,R2为限流电阻将电压信号转化为2mA电流信号,R3为压敏电阻起过电压保护作用,二次侧输出为2 mA电流信号送至采样模块。 5A输入 2.5mA输出 图电流互感器原理图 如图,电流互感器采用互感器采用星格SCT254AZ,将一次侧5A交流输入转化为输出送至采样板。

3.4.2交流电压/电流采样电路 交流电压/电流采样电流采样信号来自同步变压器经霍尔电压/电流传感器的电压电流源。 为了更清楚的阐述采样电路的工作原理,首先需对电路中的重要器件LM358作简要说明: LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 (1)交流电压采样电路整流器的输入是三相三线制,无中线,交流电压采集的是经过电流型电压互感器后的交流电流信号,以A相采样电路为例,如下图所示,输入电压经过放大电路电压跟随之后,叠加+的直流量,确保正弦电压的负半周上移到DSP能处理的单极性电压信号+电压范围之内: 图交流采样电路 Rd0为熔断电阻,防止电流过大;Rd1, Rd2为限流电阻,LM358作电压跟随。滑动变阻器Wd0另一侧输入+电压,将电压信号变为单极性信号;电容Cd2、Cd3起去耦作用;电阻Rd3为限流电阻,限定电路的工作电流.,使电路在一个合适的工作状态下运行。稳压管Dd0电压设为3V,使得ADCINB1口的输出电压基本稳定在3V及其以下。采样之后的信号送至TMS320F2812的A/D口进行处理。

《电工基础》教案2-8电压源与电流源及其等效变换

第周第课时月日课题电压源与电流源及其等效变换 知识目标理解电压源与电流源的概念 能力目标掌握电压源与电流源等效变换的条件 教学内容及组织教法 [课题引入]1、提问相关知识2、引入本节课题 [新课内容](以讲解为主) 一、电压源 实际电源可以用恒定电动势E和内阻r串联起来表示,它以输出电压的形式向负载供电,输出电压(端电压)的大小为 如果电源的内阻r越大,则在输出相同电流的条件下,端电压越小。若电源内阻,r=0,则端电压U=E与输出电流的大小无关。这种内阻r=0,输出恒定电压U=E的电源叫做理想电压源或恒压源,其符号如图2—34所示。如果电源的内阻极小,可近似看成理想电压源,如稳压电源。一般电源内部的电阻不可忽略,可用一个理想电压源E和内阻r串联起来表示,叫做实际电源的电压源模型,简称电压源。 二、电流源 电流源的路端电压U=E-rI,电路中的电流(参考方向如图2—36所示)为 式中 I s——电源的短路电流, I0——内阻上的电流, I——电源的输出电流。I0=U/r 电源以输出电流的形式对负载供电,恒定电流I s在内阻上的分流为I0,在负载R上的分流为I。电源的输出电流I总是小于电源的短路电流I s,当电源的内阻r远大于负载电阻R时,内阻上的电流I0减小,输出电流加大,接近I s值。如果内阻r=∞时,则不管负载电阻如何变化,电源输出的电流I=I s恒定不变。把内阻r=∞的电流源叫做理想电流源。实际的电流源可用一个理想电流源与内阻r并联表示,叫做实际电源的电流源模型,简称电流源。 三、电压源与电流源的等效变换 电压源以输出电压的形式向负载供电,电流源以输出电流的形式向负载供电。电压源和电流源可以等效变换。等效变换指对外电路等效,即把它们与相同的负载连接,负载两端的电压,负载中的电流,负载消耗的功率都相同,如图2—38所示。两种电源等效变换关系由下式决定

电流采样电路的设计

电流采样电路的设计 电流采样电路的设计 摘要:文中研制了一套模拟并网发电系统,实现了频率跟踪、最大功率跟踪、相位跟踪、输入欠压保护、输出过流保护、反孤岛效应等功能;采用Atmega16高速单片机,实现了内部集成定时、计数器功能;利用定... 文中研制了一套模拟并网发电系统,实现了频率跟踪、最大功率跟踪、相位跟踪、输入欠压保护、输出过流保护、反孤岛效应等功能;采用Atmega16高速单片机,实现了内部集成定时、计数器功能;利用定时器T/C2的快速PWM功能,实现SPWM信号的产生;采用T/C1的输入捕获功能,实现了频率相位监测和跟踪以及对失真度、输入电压、输出电流等物理量的检测与控制。 随着国际工业化的进程,全球未来能源消耗预计以3%的速度增长,常规能源面临日益枯竭的窘境。人们开始了可再生能源与新能源技术的开发,最具发展前景的当属风力发电和太阳能发电,即光伏并网发电。 1 整体方案设计 设计采用Atmega16单片机为主体控制电路,工作过程为:与基准信号同频率、同相位正弦波经过SPWM调制后,输出正弦波脉宽调制信号,经驱动电胳放大,驱动H桥功率管工作,经过滤波器和工频变压器产生于基准信号通频率、同相位的正弦波电流。其中,过流、欠压保护由硬件实现,同步信号采集、频率的采集、控制信号的输出等功能,均由Atmega16完成。系统总体设计框图如图1所示。 2 硬件电路设计 分为DC/AC驱动电路、DC/AC电路和滤波电路3部分和平滑电容C1,电路原理如图2所示。 2.1 DC—AC驱动电路 是由R1、R2、R3、R4、R5、R6、Q3、Q4、P3和P4组成,其中P3和P4是控制信号输入端,R3和R4为限流电阻。集电极的电流直接影响波形上升沿的陡峭度,集电极电流越大输出的波形越陡峭。因为R2和R1与集电极pn节的寄生电容形成了一个RC充放电的时间常数,集电极pn结的寄生电容无法改变,只有通过改变R1和R2的值来改变时间常数,所以R1和R2值越小,Q3和Q4的集电极电流就越大;RC的充电时间常数越小,波形的上升沿越陡峭,而增加集电极电流,会增加系统的功耗,权衡利弊选择一个合适的值。其次,射级pn结的寄生电容也会影响Q3和Q4的关断时间和波形上升沿的陡峭度。所以在驱动电路中各加了一个放电回路,即拉地电阻R5和R6,R5和R6的引入,加快了Q3和Q4的关闭速度,这样就使集电极的波形更陡峭。同样在保证基极射极pn不损坏的条件下,基极的电流也是越大越好,但也会带来损耗问题,权衡利弊选择一个合适的值。关于两个电阻的取值,这里假设三极管的放大倍数为β,基极电流Ib,集电极电流Ic,流过R5的电流为I5,流过R3的电流为I3,R3的压降为V3,驱动信号为V,R5的压降为V5,有

三相电压采样电路

(10)申请公布号 CN 102662095 A (43)申请公布日 2012.09.12C N 102662095 A *CN102662095A* (21)申请号 201210137462.9 (22)申请日 2012.05.07 G01R 19/00(2006.01) (71)申请人无锡智卓电气有限公司 地址214174 江苏省无锡市惠山区堰桥镇金 惠西路118号(无锡智卓电气有限公 司) (72)发明人白建社 戈浩 吴振锋 (74)专利代理机构北京品源专利代理有限公司 11332 代理人 冯铁惠 (54)发明名称 三相电压采样电路 (57)摘要 本发明公开一种三相电压采样电路,其包括 接入三相供电系统的信号检测电路、所述信号检 测电路的输出端连接信号放大电路,所述信号放 大电路的输出端和用于控制开关的单片机连接, 所述信号检测电路主要由采样电阻R4、R10、R16 组成,新增了三相电压保护功能,采用电阻进行信 号检测,在提高抗干扰能力和可靠性的同时,尽可 能的降低了成本,可根据需要通过不同的连接方 法:星形接法和三角形接法,可以实现相电压和 线电压的检测,采样到的信号通过运算放大器处 理后送至单片机计算处理。若信号正常,则由单片 机继续处理信号;若信号异常,则由单片机向保 护执行机构发出指令,为负载设备提供保护。 (51)Int.Cl. 权利要求书1页 说明书2页 附图1页 (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 1 页 说明书 2 页 附图 1 页

1/1页 1.一种三相电压采样电路,其包括接入三相供电系统的信号检测电路、所述信号检测电路的输出端连接信号放大电路,所述信号放大电路的输出端和用于控制开关的单片机连接,其特征在于,所述信号检测电路包括采样电阻R4、R10、R16,所述采样电阻R4的两端分别串联限流电阻R3、R18、R19并入三相供电系统且与信号放大电路的输入端连接,所述采样电阻R10的两端分别串联限流电阻R9、R18、R19并入三相供电系统且与信号放大电路的输入端连接,所述采样电阻R16的两端分别串联限流电阻R15、R18、R19并入三相供电系统且与信号放大电路的输入端连接。 2.根据权利要求1所述的三相电压采样电路,其特征在于,所述信号放大电路包括运算放大器U1、U2、U3,所述运算放大器U1的同相输入端串联电阻R5与采样电阻R4的一端连接,反相输入端串联电阻R2与采样电阻R4的另一端连接,所述运算放大器U1的反相输入端与输出端之间串联电阻R1,所述运算放大器U1的同相输入端串联电阻R6接入基准电压,且所述运算放大器U1的正电源引脚通过滤波电路接入系统电源,所述运算放大器U2的同相输入端串联电阻R11与采样电阻R10的一端连接,反相输入端串联电阻R8与采样电阻R10的另一端连接,所述运算放大器U2的反相输入端与输出端之间串联电阻R7,所述运算放大器U2的同相输入端串联电阻R12接入基准电压,所述运算放大器U3的同相输入端串联电阻R17与采样电阻R16的一端连接,反相输入端串联电阻R14与采样电阻R16的另一端连接,所述运算放大器U3的反相输入端与输出端之间串联电阻R13,所述运算放大器U3的同相输入端串联电阻R20接入基准电压,上述运算放大器U1、U2、U3的输出端连接用于控制开关的单片机。 3.根据权利要求2所述的三相电压采样电路,其特征在于,所述滤波电路包括两个并联的电容C1、C2,所述电容C2的正极连接系统电源。权 利 要 求 书CN 102662095 A

电压采样电路设计总结报告

电压采样电路设计总结报告 专业班级:电气工程及其自动化 实习日期:2013年7月22日---7月26日 2013年7月26日

目录 一、设计要求及目的: (2) 二、所用元件: (2) 三、设计思路: (2) 1、电源部分电路 (3) 2、电流-电压转化电路 (4) 3、电压抬升电路: (5) 4、二阶滤波电路 (6) 5、方波转换电路 (7) 四、课程设计中出现的问题及解决方案 (9) 五、设计总结 (9)

一、设计要求及目的: 1、设计目标:设计一个电压采样电路,对220v交流信号进行采样,并利用运放对其进行处理,使其成为数模转换器(A/D)能够处理的信号。 2、基本要求:根据元件列表设计采样电路及其工作电源回路,将220v交流输入信号变为0-3v信号,并对其进行二阶有源滤波,滤除高频干扰信号,滤波后的信号平滑无畸变。 3、扩展:设计电路,将交流信号变为方波,过零点处干净无毛刺信号。 4、设计目的: 1)加强自主性学习、研究性学习,加强团队合作,提高创新意识; 2)通过该设计学会并掌握常用电子元器件的选择和使用方法; 3)结合所学的电子电路的理论知识完成电压采样课程设计。 二、所用元件: 变压器 1个、 1N4007单向二极管 5个、 470uF电解电容 4个 芯片7815和7915、紧密电流型电压互感器 1个、 LM324芯片 10K电位器 1个、 201pF电容 2个 电阻:110KΩ1个、 10KΩ5个、 1Ω1个、 1KΩ2个、 470Ω1个、200Ω1个 三、设计思路: 电压采样电路基础模块的设计思路首先是220v交流电源经过电流型电压互感器使强电转换为弱电,再通过电流/电压变换电路使其输出电压为-1.5v~+1.5v,接着通过一个反相加法运算电路使其输出电压抬升为0~3v,最后经过一个二阶有源低通滤波电路对其进行滤波,滤除高频干扰信号,滤波后的信号平滑无畸变,最后用一迟滞比较器将正弦波变成方波信号。 总电路图为:

伺服驱动器中电流采样电路的设计

伺服驱动器中电流采样电路的设计 引言现如今,交流伺服电机因为其优良的性能,已经在工业生产中占据了举足轻重的地位,而伺服驱动器作为伺服电机的控制系统,其本身的优劣将直接影响到驱动电机的使用性能。在伺服驱动控制系统中,为实现磁场定向控制,需要至少对两相电机绕组的电流进行采样,这两路电流采样将作为电流反馈信号使伺服驱动实现电流闭环,可以这样说,电流信号采样是伺服控制系统硬件的一个重要模块,也是一大难点。常规电流采样电路设计如今,大多数伺服驱动使用采样电阻和线性光耦搭建的一路电流采样电路,如图1所示。其中,rsense是功率型采样电阻,mc34081为运算放大器,78l05为三端稳压电源。hcpl-7840为线性光耦,其2,3引脚为信号输入端,6,7引脚为信号输出端,在输入端输出端供电电压均为5v的情况下,当2,3引脚输入的差值电压变化时,6,7引脚的输出信号将随着输入信号分别进行递增和递减的线性变化。由图1 所示可知,当伺服电机正常工作时,将采集通过绕组的电流信号转变为采集采样电阻两端电压值,并将该电压值通过线性光耦进行隔离放大,再经过运算放大器,a/d转换送给dsp进行数据分析,进而实现电流环闭环控制。在实际实验过程中,由于伺服电机等外界条件干扰,dsp所接收到的电流采样信号会有相 对较大程度的干扰,故必须在电路中增加相应的滤波措施。新型电流采样电路设计采用采样电阻和线性光耦搭建的采样电路均为模拟电路,很容易受到外界的干扰,在电路调试过程中,滤除杂波尤为繁琐。为使得电流采样信号更精确,使电流环闭环效果更好,我们又设计了一种采用高压线性电流传感器ir2175来实现电流采样的方案,并做对比实验。芯片概述ir2175是ir公司专为交流或直流无刷电机的驱动应用而设计的高压线性电流传感器,它内置电流检测和保护电路,可通过串联在绕组回路的采样电阻来进行电流采样,并且该芯片能自动

电压源与电流源等效变换教案20.doc

课题课时上课时间课型任课教师 电压源与电流源的等效变换39---40 新课王老师 教学目标专业能力掌握电压源与电流源的等效变换相关条件 社会能力培养学生理论指导实践的能力,增强同学间的团结协作的意识协作能力、组织能力 方法能力探究式学习,发挥学生学习的主动性,理实结合 重点电压源与电流源的等效变换条件难点电压源与电流源的等效变换注意事项 解决结合电路讲解 方法强化记忆 课 前 训 时间分课堂设计教学设想配 复习电流源、电流源向外电路输出电流计算公式、理想电流源 导语我们已经学习了电压源和电流源的相关知识,本节课我们在学习他们互换的条件 新课一、电压源与电流源的等效变换条件 内容1、同一个电源即可用电压源来代替也可以用电流源来代替,电压源与内阻串联,电流源与内阻并联。 2 、对于同一个负载来说,电压源和电流源是等效的。 3 、电压源的输出 I E - U 电流源的输出 I I S U 4 、等效变换条件: I E r0 r0 r0 r0 r0 r0 二、注意事项 1、电压源与电流源的等效变换只是对外电路而言,两种电源的内部不等效。当发生短路时,电 压源内部没有电流,电流源内部有电流。 2、由于理想电压源的内阻定义为零,理想电流源的奶子定义为无穷大,因此两者之间不能等效 变换 3、电源的等效方法可以推广,如果理想电压源与外接电阻串联,可以把外接电阻看做是电源的 内阻,等效互换为电流源的形式,理想电流源与外接电阻并联,可以把外接电阻看做是电源的 内阻,等效互换为电压源的形式 4、电压源的电动势 E 和电流源的恒定电流 Is 在电路中保持方向一致,即,Is 的方向从 E 的“ - ”端指 向“ +”端 三、例题 1、电动势为12V、内阻为3Ω的电压源等效变换为电流源 解: Is=E/r0=4A内阻为3Ω 2、如图所示电路,恒定电流为2A,内阻为1Ω,等效变换为电压源 解: E=Is r o=2V r o=1Ω 小结作业回顾板书,强调知识点 注意事项 电压源与电流源的等效变换条件、注意事项、整理例题

智能多通道电压电流采集器

智能多通道电压电流采集器 使用说明书 一、概述 YK-DCD系列智能多通道电压电流采集器采用微处理器进行控制运算,可以满足直流DC5A以内的电流直接测量,电压DC500V以内的测量。配合不同的量程的分流器/分压器可满足各种测量量程的要求,配上显示器可对电压电流进行高精度的显示、控制及变送输出,配有RS485/RS232通讯模块,可以与计算机、PLC、触摸屏、显示屏等配套显示使用,构成一个完美的测控系统。 本产品多应用在新能源、高铁、太阳能、电动汽车的测试等新行业,新科研领越。产品精度高,低温环境适应强,每通道采集单独隔离,抗干扰性能强。 主要特点: ●采用当今先进的ATMEL单片微机作主机,减少了外围部件,提高了可靠性。 ●集多种输入型号、输出方式于一机。 ●采用WATCHDOG电路、软件陷阱与冗余、掉电保护、数字滤波等技术,注重现场容错能力,使整机具有很强的抗干扰能力。 二、主要技术指标: 基本误差:0.2%FS±1个字 分辨力:0.01 显示:液晶屏显示

输入信号:DC0-75mV 变送输出:4~20mA(负载电阻≤500Ω)、0~10mA(负载电阻≤1000Ω)1~5V、0~5V(负载电阻≥200KΩ) 通讯输出:接口方式——隔离串行双向通讯接口RS485/RS422/RS232/Modem 波特率——9600bps内部自由设定 电源:开关电源 85~265VAC 功耗:4W 环境温度:0~50℃ 环境湿度:<85%RH 尺寸:深445mm×宽400mm×高300mm 三、选型:

四、通讯说明

本仪表可另配RS232、RS485接口,直接与计算机通讯,RS485标准通讯距离1.5km,可以挂接多个仪表。RS232标准通讯距离15m,只能挂接一个仪表。RS232接口的TXD、RXD、GND分别接计算机串口的第2、3、5管脚。数据格式为1个起始位﹑8个数据位﹑无校验﹑1个停止位。为避免通讯冲突,仪表都处于侦听方式。计算机按规定地址向某一仪表发出一个命令,然后等待一段时间,等候仪表回答,仪表收到正确命令后再发送出数据。发送结束后仪表又处于侦听方式。同一系统中,仪表地址不能相同,波特率要一致。 仪表采用标准Modbus-rtu通讯协议,在使用组态软件时,须选用的设备为modicon(莫迪康)的PLC,Modbus-RTU地址型,数据为整型16位,使用组态王寄存器从4001或4000开始,别的组态软件有可能是从3001或3000开始。通讯为整数,需用户根据实际情况处理小数点位数。通讯传输数据为有符号的整型数据,用户编程建议定义有符号的整型数据即可。当数据大于0X8000时,数据取反加1即为负数的实际数值,例如通讯传输数据为0XFFFF,对应数据值为-1。对于长整型数据如累积量等,数据值=高位×65536+低位。组态时用户也可以选择数据类型为长整型(long),系统自动计算出累积量。 寄存器对应表(对应的具体含义请参见操作说明的设置部分)

相关主题
文本预览
相关文档 最新文档