当前位置:文档之家› 初中数学压轴题及答案

初中数学压轴题及答案

初中数学压轴题及答案
初中数学压轴题及答案

中考数学压轴题

1.

已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.

(1) 求该抛物线的解析式;

(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;

(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.

(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为???? ?

?--a b

ac a b 44,22

) 2. 如图,在Rt ABC △中,90A ∠=o

,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交

AC 于

R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.

(1)求点D 到BC 的距离DH 的长;

(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);

(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.

3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .

(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?

(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?

P

图 3

B

D 图 2

B

图 1

A B

C D E

R P H Q

4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积

等于

4

3

,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由. 5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.

(1)求证:△BDE ≌△BCF ;

(2)判断△BEF 的形状,并说明理由;

(3)设△BEF 的面积为S ,求S 的取值范围.

6如图,抛物线2

1:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平

移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;

(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;

(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.

7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .

(1)求梯形ABCD 的面积;

(2)求四边形MEFN 面积的最大值.

(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.

8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数x

k

y =的图象上. (1)求m ,k 的值;

(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,

C D A B

E F N

M

1,

,抛物线2

(0)y ax x c a =+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;

(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.

10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =

ABOC 绕点O 按顺时针方向旋转60o 后得到

矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2

y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;

(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.

x

图16

11.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线3

4

y x b =-+相交于点B ,点C ,直线3

4

y x b =-

+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.

(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?

12.在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若C 的坐标为(0,2),AB=5, A,B 两点的横坐标X A ,X B 是关于X 的方程2

(2)10x m x n -++-=的两根:

(1) 求m ,n 的值

(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`

l 分别交射线CA ,CB (点C 除外)于点M ,N ,则

11

CM CN

+

的值是否为定值,若是,求出定值,若不是,请说明理由

13.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.

(1)求该抛物线的解析式;

(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;

L`

(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.

(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为???? ?

?--a b

ac a b 44,22

) 14.已知抛物线c bx ax y ++=232,

(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;

(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; (Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<

15.已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?

(2)设△AQP 的面积为y (2

cm ),求y 与t 之间的函数关系式;

(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;

(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

16.已知双曲线k y x =

与直线1

4y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线k

y x

=上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双

曲线k

y x

=于点E ,交BD 于点C.

(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.

(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.

(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.

压轴题答案

图①

1. 解:( 1)由已知得:3

10

c b c =??

--+=?解得 c=3,b =2

∴抛物线的线的解析式为2

23y x x =-++ (2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E 关于x=1对称,所以

设对称轴与x 轴的交点为F

所以四边形ABDE 的面积=ABO BOFD S S S ?++梯形=

111

()222AO BO BO DF OF EF DF ?++?+?=111

13(34)124222

??++?+?? =9

(3)相似

如图,== ==所以2220BD BE +=, 2

20DE =即: 222

BD BE DE +=,所以BDE ?是直角三角形

所以90AOB DBE ∠=∠=?,且

2

AO BO BD BE ==, 所以AOB DBE ??:.

2 解:(1)Q Rt A ∠=∠,6AB =,8AC =,10BC ∴=.

Q 点D 为AB 中点,1

32

BD AB ∴=

=. 90DHB A ∠=∠=o Q ,B B ∠=∠.

BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105

BD DH AC BC ∴==?=g . (2)QR AB Q ∥,90QRC A ∴∠=∠=o

C C ∠=∠Q ,RQC ABC ∴

△∽△, RQ QC AB BC ∴

=,10610

y x

-∴=,

即y 关于x 的函数关系式为:3

65

y x =-+. (3)存在,分三种情况:

①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.

1290∠+∠=o Q ,290C ∠+∠=o ,

1C ∴∠=∠.

84

cos 1cos 105

C ∴∠===,45QM QP ∴=, 1364251255

x ??-+ ??

?∴=,185x ∴=. ②当PQ RQ =时,312655

x -

+=, 6x ∴=.

③当PR QR =时,则R 为PQ 中垂线上的点,

于是点R 为EC 的中点,

11

224CR CE AC ∴===.

tan QR BA

C CR CA ==

Q , 3

6

6

528

x -+∴=,152x ∴=.

综上所述,当x 为185或6或15

2时,PQR △为等腰三角形.

3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .

∴ △AMN ∽ △ABC . ∴ AM AN AB AC

=,即43x AN

=.

∴ AN =

4

3

x . ……………2分 ∴ S =2133

248

MNP AMN S S x x x ??==

??=.(0<x <4) ……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =2

1

MN . 在Rt △ABC 中,BC

. 由(1)知 △AMN ∽ △ABC .

A

B

C

D E

R

P H Q

M

2

1 H

Q

A B C

D E R P

H

Q

B

图 1

B

D 图 2

Q

∴ AM MN AB BC

=,即45x MN

=.

∴ 54MN x =

, ∴ 5

8

OD x =. …………………5分

过M 点作MQ ⊥BC 于Q ,则5

8

MQ OD x ==

. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC

=.

∴ 5

5258324

x

BM x ?=

=,25424AB BM MA x x =+=+=. ∴ x =

49

96

. ∴ 当x =49

96

时,⊙O 与直线BC 相切.…………………………………7分

(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.

∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC

∴ △AMO ∽ △ABP .

∴ 12AM AO AB AP ==. AM =MB =2. 故以下分两种情况讨论:

① 当0<x ≤2时,2Δ83

x S y PMN ==.

∴ 当x =2时,233

2.82

y =

?=最大 ……………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .

∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,

∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .

∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .

∴ 2

PEF ABC S PF AB S ????= ?

??

. ∴ ()2

322

PEF S x ?=

-. ……………………………………………… 9分 MNP PEF y S S ??=-=()2

22339266828

x x x x --=-+-.……………………10分

P

图 4

B

P 图 3

当2<x <4时,29668y x x =-+-2

98283x ??

=--+ ???

∴ 当8

3x =

时,满足2<x <4,2y =最大. ……………………11分 综上所述,当8

3

x =时,y 值最大,最大值是2. …………………………12分

4 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o

=

B(∵A(0,4),设AB 的解析式为4y kx =+,

所以42+=,

解得3

k =-

, 以直线AB

的解析式为4y x =+ (2)由旋转知,AP=AD, ∠PAD=60o

, ∴ΔAPD 是等边三角形,

=

如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°

∴GD=12

BD=

2

,DH=GH+GD=2

+

2,

32,OH=OE+HE=OE+BG=37

222+=

,72

)

(3)设OP=x,则由(2)可得

D(,22x x +

)若ΔOPD

的面积为:1(2)224

x x +=g

解得:3x -=所以

P(3

-

5

6

7解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H . ……………1分

∵ AB ∥CD ,

∴ DG =CH ,DG ∥CH .

∴ 四边形DGHC 为矩形,GH =CD =1.

∵ DG =CH ,AD =BC ,∠AGD =∠BHC =90°,

∴ △AGD ≌△BHC (HL ).

A B

E F G H

∴ AG =BH =2

1

72-=

-GH AB =3. ………2分 ∵ 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.

∴ ()174162

ABCD S +?=

=梯形. ………………………………………………3分

(2)∵ MN ∥AB ,ME ⊥AB ,NF ⊥AB ,

∴ ME =NF ,ME ∥NF .

∴ 四边形MEFN 为矩形.

∵ AB ∥CD ,AD =BC , ∴ ∠A =∠B .

∵ ME =NF ,∠MEA =∠NFB =90°, ∴ △MEA ≌△NFB (AAS ).

∴ AE =BF . ……………………4分 设AE =x ,则EF =7-2x . ……………5分 ∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA .

∴ DG

ME AG AE =

. ∴ ME =x 34

. …………………………………………………………6分

∴ 6

49

4738)2(7342

+

??? ??--=-=?=x x x EF ME S MEFN 矩形. ……………………8分 当x =

47时,ME =37

<4,∴四边形MEFN 面积的最大值为6

49.……………9分 (3)能. ……………………………………………………………………10分

由(2)可知,设AE =x ,则EF =7-2x ,ME =x 3

4

若四边形MEFN 为正方形,则ME =EF .

即 =34x 7-2x .解,得 10

21

=x . ……………………………………………11分

∴ EF =2114

7272105x -=-?=<4.

∴ 四边形MEFN 能为正方形,其面积为251965142

=??

?

??=MEFN

S 正方形.

8解:(1)由题意可知,()()()131-+=+m m m m .

解,得 m =3. ………………………………3分

∴ A (3,4),B (6,2);

∴ k =4×3=12. ……………………………4分

(2)存在两种情况,如图:

①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).

∵ 四边形AN 1M 1B 为平行四边形,

∴ 线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2

A B E F G H

由(1)知A 点坐标为(3,4),B 点坐标为(6,2),

∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分

设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得3

2

1-=k .

∴ 直线M 1N 1的函数表达式为23

2

+-=x y . ……………………………………8分

②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).

∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.

∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.

∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分

设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得3

2

2-=k ,

∴ 直线M 2N 2的函数表达式为23

2

--=x y .

所以,直线MN 的函数表达式为23

2

+-=x y 或232--=x y . ………………11分

(3)选做题:(9,2),(4,5). ………………………………………………2分 9解:(1)Q

直线y =-x 轴交于点A ,与y 轴交于点C .

(10)A ∴-,

,(0C , ·················································································· 1分 Q 点A C ,都在抛物线上, ∴

抛物线的解析式为233

y x x =

-- ······················································ 3分 ∴

顶点1F ?- ?

?, ······················································································· 4分 (2)存在 ····································································································· 5分

1(0

P ··································································································· 7分

2(2P ··································································································· 9分 (3)存在 ··································································································· 10分 理由: 解法一:

延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ·············································································· 11分 过点B '作B H AB '⊥于点H .

B Q

点在抛物线233

y x x =

-(30)B ∴,

x

在Rt BOC △

中,tan 3

OBC ∠=

, 30OBC ∴∠=o

,BC =

在Rt BB H '△

中,1

2

B H BB ''=

=

6BH H '==,3OH ∴=

,(3B '∴--, ············································· 12分

设直线B F '的解析式为y kx b =+

33k b k b ?-=-+?∴?-=+??

解得2k b ?=????=-??

62

y x ∴=

- ······················································································· 13分

62y y x ?=?∴?=-??

解得37x y ?=????=??

377M ?∴- ??, ∴在直线AC 上存在点M ,使得MBF △

的周长最小,此时37M ?- ??

,. ······· 14分

解法二:

过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. ·

······························· 11分 过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.

90BOC FGH ∴∠=∠=o ,BCO FHG ∠=∠ 同方法一可求得(30)B ,

. 在Rt BOC △

中,tan OBC ∠=

,30OBC ∴∠=o

,可求得GH GC ==,

GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,

AC ∴垂直平分FH .

x

即点H 为点F 关于AC

的对称点.03H ?

∴- ??

, ··········································· 12分 设直线BH 的解析式为y kx b =+,由题意得

03k b b =+???

=??

解得k b ?

=????=??

y ∴=

······················································································ 13分

y y ?=-?∴??=?

解得37x y ?=????=??

377M ?∴- ??, ∴在直线AC 上存在点M ,使得MBF △

的周长最小,此时37M ?- ??

,. 1

10解:(1)点E 在y 轴上 ··············································································· 1分 理由如下:

连接AO ,如图所示,在Rt ABO △中,1AB =Q

,BO =2AO ∴=

1sin 2

AOB ∴∠=

,30AOB ∴∠=o

由题意可知:60AOE ∠=o

Q 点B 在x 轴上,∴点E 在y 轴上. ································································· 3分

(2)过点D 作DM x ⊥轴于点M

1OD =Q ,30DOM ∠=o

∴在Rt DOM △中,1

2

DM =

,OM =Q 点D 在第一象限,

∴点D

的坐标为122??

? ???

, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上

∴点E 的坐标为(02),

∴点A

的坐标为( ·················································································· 6分 Q 抛物线2y ax bx c =++经过点E ,

由题意,将(A ,12D ???

??

,代入22y ax bx =++中得

32131

242a a ?+=??+=??

解得89a b ?=-????=??

所求抛物线表达式为:2829y x x =--+ ·················································· 9分

(3)存在符合条件的点P ,点Q . ································································· 10分 理由如下:Q 矩形ABOC

的面积AB BO ==g ∴以O B P Q ,,,

为顶点的平行四边形面积为

由题意可知OB 为此平行四边形一边,

又OB =Q

OB ∴边上的高为2 ······················································································· 11分 依题意设点P 的坐标为(2)m ,

Q 点P

在抛物线2829y x x =-+上 解得,10m =

,28

m =-

1(02)P ∴,

,228P ??

- ? ???

Q 以O B P Q ,,,为顶点的四边形是平行四边形,

PQ OB ∴∥

,PQ OB == ∴当点1P 的坐标为(02),时,

点Q

的坐标分别为1(Q

,2Q ;

当点2P

的坐标为28??

-

? ???

时,

点Q

的坐标分别为328Q ??-

? ???

,428Q ??

? ???

. ··········································· 14分 (以上答案仅供参考,如有其它做法,可参照给分) 11解:(1)在2

334

y x =-

+中,令0y = 12x ∴=,22x =-

(20)A ∴-,,(20)B , (1)

又Q 点B 在34

y x b =-

+上 BC ∴的解析式为33

42

y x =-+ ······························· (2)由23343342

y x y x ?

=-+????=-+??,得11194x y =-???=??

22

2

0x y =??=? ·················································· 4分 914C ?

?∴- ??

?,,(20)B ,

4AB ∴=,9

4CD =

······················································································· 5分 199

4242

ABC S ∴=??=△ ·

················································································· 6分 (3)过点N 作NP MB ⊥于点P

BNP BEO ∴△∽△ ·

······················································································ 7分 BN NP

BE EO

∴=

································································································· 8分 由直线3342y x =-

+可得:302E ?? ???

, ∴在BEO △中,2BO =,32EO =

,则5

2

BE = 25322t NP

=

,65NP t ∴= ················································································ 9分 2312

(04)55

S t t t =-+<< ············································································· 10分

2312

(2)55

S t =--+ ·

···················································································· 11分 Q 此抛物线开口向下,∴当2t =时,12

5

S =最大

∴当点M 运动2秒时,MNB △的面积达到最大,最大为12

5

12解:

(1)m=-5,n=-3 (2)y=

4

3

x+2 (3)是定值.

因为点D 为∠ACB 的平分线,所以可设点D 到边AC,BC 的距离均为h , 设△ABC AB 边上的高为H, 则利用面积法可得: (CM+CN )h=MN ﹒H 又 H=

CM CN

MN

?

化简可得 (CM+CN)﹒1

MN CM CN h

=?

111CM CN h

+= 13解:( 1)由已知得:3

10

c b c =??

--+=?解得 c=3,b =2

∴抛物线的线的解析式为2

23y x x =-++ (2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0) 设对称轴与x 轴的交点为F

所以四边形ABDE 的面积=ABO DFE BOFD S S S ??++梯形

=

111

()222AO BO BO DF OF EF DF ?++?+? =111

13(34)124222

??++?+?? =9

(3)相似

如图,

=

=

==

所以2

2

20BD BE +=, 2

20DE =即: 222BD BE DE +=,所以BDE ?是直角三角形 所以90AOB DBE ∠=∠=?,

且AO BO BD BE ==所以AOB DBE ??:.

14解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,3

1

2=

x . ∴该抛物线与x 轴公共点的坐标是()10-,和103?? ???

. ········································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.

对于方程0232=++c x x ,判别式c 124-=?≥0,有c ≤31

. ·································· 3分

①当31=

c 时,由方程031232=++x x ,解得3

121-==x x . 此时抛物线为31

232+

+=x x y 与x 轴只有一个公共点103??- ???

,. ···························· 4分

②当3

1

<

c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.

由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为3

1

-=x ,

应有12

00.y y ??>?≤, 即1050.c c +??+>?≤,

解得51c -<-≤.

综上,31

=c 或51c -<-≤. ····································································· 6分

(Ⅲ)对于二次函数c bx ax y ++=232,

由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .

∴0>>c a . ···························································································· 7分

∵关于x 的一元二次方程0232=++c bx ax 的判别式 0])[(412)(4124222>+-=-+=-=?ac c a ac c a ac b ,

∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ························· 8分 又该抛物线的对称轴a

b

x 3-

=, 由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2, ∴

3

2331<-y ;12=x 时,02>y ,观察图象,

可知在10<

∵PQ ∥BC ,∴△APQ ∽△ABC ,

∴AP ∶AB =AQ ∶AC ,即(5-t )∶5=2t ∶4,解得:t =107

∴当t 为

10

7

秒时,PQ ∥BC ………………2分

(2)过点Q 作QD ⊥AB 于点D ,则易证△AQD ∽△ABC ∴AQ ∶QD =AB ∶BC

∴2t ∶DQ =5∶3,∴DQ =65

t

∴△APQ 的面积:

12×AP ×QD =12(5-t )×65

t ∴y 与t 之间的函数关系式为:y =2

335

t t -

………………5分

(3)由题意:

当面积被平分时有:2

335

t t -=

12×1

2

×3×4,解得:t

当周长被平分时:(5-t )+2t =t +(4-2t )+3,解得:t =1

∴不存在这样t 的值

………………8分

(4)过点P 作PE ⊥BC 于E

易证:△PAE ∽△ABC ,当PE =

1

2

QC 时,△PQC 为等腰三角形,此时△QCP ′为菱形 ∵△PAE ∽△ABC ,∴PE ∶PB =AC ∶AB ,∴PE ∶t =4∶5,解得:PE =4

5

t

∵QC =4-2t ,∴2×45t =4-2t,解得:t =10

9

∴当t =10

9时,四边形PQP ′C 为菱形

此时,PE =89,BE =23,∴CE =7

3

………………10分

在Rt △CPE 中,根据勾股定理可知:PC

∴此菱形的边长为

9

cm ………………12分

16 解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入1

4

y x =

中,得y =-2. ∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2) 从而k =8×2=16

(2)∵N (0,-n ),B 是CD 的中点,A ,B ,M ,E 四点均在双曲线上, ∴mn =k ,B (-2m ,-

2

n

),C (-2m ,-n ),E (-m ,-n ) DCNO S 矩形=2mn =2k ,DBO S △=12mn =12k ,OEN S △=12mn =1

2

k.

∴OBCE S 矩形=DCNO S 矩形―DBO S △―OEN S △=k.∴k =4. 由直线14y x =

及双曲线4

y x

=,得A (4,1),B (-4,-1) ∴C (-4,-2),M (2,2)

设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得

4222

a b a b -+=-??

+=?,解得a =b =23 ∴直线CM 的解析式是y =

23x +23

.

(3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1,M

设A 点的横坐标为a ,则B 点的横坐标为-a.于是111A M MA a m

p MP M O m

-=

==, 同理MB m a

q MQ m

+=

= ∴p -q =

a m m --m a

m

+=-2

初中中考数学压轴题及答案-中考数学压轴题100题及答案

中考数学专题复习——压轴题 1. 已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式; (2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; (3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2 +bx+c(a ≠0)的顶点坐标为??? ? ??--a b ac a b 44,22) 2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交 AC 于 R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长; (2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM A B C D E R P H Q

=x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少? 4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积 等于 4 3 ,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由 . 5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2. (1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围 . P 图 3 B D 图 2 B 图 1

近年来中考数学压轴题大集合

近年来中考数学压轴题大集合 【一】函数与几何综合的压轴题 1.〔2004安徽芜湖〕如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 假如有一抛物线通过A ,E ,C 三点,求此抛物线方程. (3) 假如AB 位置不变,再将DC 水平向右移动k (k >0)个单位,如今AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解]〔1〕 〔本小题介绍二种方法,供参考〕 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ' '''== 又∵DO ′+BO ′=DB ∴1EO EO AB DC ' ' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ' '=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D 〔1,0〕,A 〔-2,-6〕,得DA 直线方程:y =2x -2① 再由B 〔-2,0〕,C 〔1,-3〕,得BC 直线方程:y =-x -2② 联立①②得 2 x y =?? =-? ∴E 点坐标〔0,-2〕,即E 点在y 轴上 〔2〕设抛物线的方程y =ax 2+bx +c (a ≠0)过A 〔-2,-6〕,C 〔1,-3〕 E 〔0,-2〕三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 〔3〕〔本小题给出三种方法,供参考〕 由〔1〕当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同〔1〕可得:1E F E F AB DC ''+=得:E ′F =2 图①

2017年挑战中考数学压轴题(全套)

第一部分函数图象中点的存在性问题 §1.1 因动点产生的相似三角形问题§1.2 因动点产生的等腰三角形问题§1.3 因动点产生的直角三角形问题§1.4 因动点产生的平行四边形问题§1.5 因动点产生的面积问题§1.6因动点产生的相切问题§1.7因动点产生的线段和差问题 第二部分图形运动中的函数关系问题 §2.1 由比例线段产生的函数关系问题 第三部分图形运动中的计算说理问题 §3.1 代数计算及通过代数计算进行说理问题 §3.2 几何证明及通过几何计算进行说理问题 第四部分图形的平移、翻折与旋转 §4.1 图形的平移§4.2 图形的翻折§4.3 图形的旋转§4.4三角形§4.5 四边形§4.6 圆§4.7函数的图象及性质§1.1 因动点产生的相似三角形问题 课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两 边表示出来,按照对应边成比例,分AB DE AC DF =和 AB DF AC DE =两种情况列方程. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好. 如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢? 我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减. 图1 图1 图2 例 1 湖南省衡阳市中考第28题 二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示); (2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值; (3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?

初三数学压轴题

1.如图,直线3y x =-+与x 轴,y 轴分别相交于点B ,点C ,经过B C ,两点的抛物线 2 y ax bx c =++与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2x =. (1)求A 点的坐标; (2)求该抛物线的函数表达式; (3)连结A C .请问在x 轴上是否存在点Q ,使得以点P B Q ,,为顶点的三角形与 A B C △相似,若存在,请求出点Q 的坐标;若不存在,请说明理由. [解] 直线3y x =-+与x 轴相交于点B ,∴当0y =时,3x =, ∴点B 的坐标为(30), . 又 抛物线过x 轴上的A B ,两点, 且对称轴为2x =,根据抛物线的对称性,∴点A 的坐标为(10),. (2)3y x =-+ 过点C ,易知(03)C ,,3c ∴=. 又 抛物线2y ax bx c =++过点(10)(30)A B ,,,, 309330a b a b +==?∴?++=?,. 解得14a b =??=-?,. 2 43y x x ∴=-+. (3)连结P B ,由22 43(2)1y x x x =-+=--,得(21)P -,, 设抛物线的对称轴交x 轴于点M ,在R t P B M △中,1PM M B ==, 452PBM PB ∴== ,∠.由点(30)(03)B C ,,,易得3O B O C ==, 在等腰直角三角形O BC 中,45ABC = ∠,由勾股定理,得32BC =. 假设在x 轴上存在点Q ,使得以点P B Q ,,为顶点的三角形与A B C △相似. ①当 B Q P B B C A B =,45PBQ ABC == ∠∠时,PBQ ABC △∽△. 即 2232 B Q = ,3BQ ∴=,又3B O = ,∴点Q 与点O 重合,1Q ∴的坐标是(00),. ②当 Q B P B A B B C = ,45Q BP ABC == ∠∠时,QBP ABC △∽△. A B C P O y 2x = A B C P O x y 2x =

中考数学压轴题100题精选及答案

中考数学压轴题100题精选 【001 】如图,已知抛物线 2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【 C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒 1个单位长的速度向点A 匀速运动,到达点 A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿A B 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到A C 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值. 【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8, 8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式; A P 图16

中考数学压轴题100题精选

我选的中考数学压轴题100题精选 【001 】如图,已知抛物线2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线 OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形直角梯形等腰梯形 (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小并求出最小值及此时PQ 的长. ! , 【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形若能,求t (4)当DE 经过点C 时,请直接..写出t

中考数学压轴题(含答案)

2016中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

答题规范动作 1.试卷上探索思路、在演草纸上演草。 2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练)

一、图形运动产生的面积问题 一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态: ①由起点、终点确定t 的范围; ②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3. 分段画图,选择适当方法表达面积. 二、精讲精练 1. 已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1 厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积. (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 1题图 2题图 2. 如图,等腰梯形ABCD 中,AB ∥CD ,AB = CD 高CE =,对角线AC 、BD 交于点H .平 行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记 等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S ,求x . 3. 如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、 CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2). (1)t 为何值时,点Q' 恰好落在AB 上 (2)求S 与t 的函数关系式,并写出t 的取值范围. (3)S 能否为9 8 若能,求出此时t 的值; 若不能,请说明理由. C B A B C P R Q Q' l A C M N Q P B C H D C B A A B C H H D C B A A B C D M N R Q F G H E H D C B A H D C B A

中考数学压轴题精选及答案(整理版)

20XX 年全国各地中考数学压轴题精选 1、(黄石市20XX 年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1 O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合) ,直线CB 与⊙1O 交于另一点D 。 (1)如图(8),若 AC 是⊙2O 的直径,求证:AC CD =; (2)如图(9),若C 是⊙1O 外一点,求证:1O C AD ⊥; (3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。 2、(黄石市20XX 年)(本小题满分10分)已知二次函数 2248y x mx m =-+- (1)当2x ≤时,函数值 y 随x 的增大而减小,求m 的取值范围。 (2)以抛物线 2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接 正三角形 AMN (M ,N 两点在抛物线上) ,请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线 2248y x mx m =-+-与x 轴交点的横坐标均为整数,求整数m 的值。

3、(20XX 年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0) ,与x 轴相交于点A (5,0),过点A 的直线AB 与 y 轴的正半轴交于点B ,与⊙P 交于点C . (1)已知AC=3,求点B的坐标; (4分) (2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明 理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数 x k y = 的图象经过点1O ,求k 的值(用含a 的代数式表示). 4、庆市潼南县20XX 年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物 线的顶点为D . (1)求b ,c 的值; (2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的 垂线 交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标; (3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛 物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由. 第3题图 χ y

初中数学压轴题及答案

中考数学压轴题 1. 已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式; (2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; (3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2 +bx+c(a ≠0)的顶点坐标为??? ? ??--a b ac a b 44,22) 2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交 AC 于 R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长; (2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM A B C D E R P H Q

=x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少? 4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积 等于 4 3 ,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由 . 5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2. (1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围 . P 图 3 B D 图 2 B 图 1

2018年中考初中数学压轴题及详解

2018年中考初中数学压轴题(有答案) 一.解答题(共30小题) 1.(2014?攀枝花)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB. (1)求B、C两点的坐标; (2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标; (3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q 为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由. 2.(2014?苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD 的移动速度为4cm/s,设移动时间为t(s) (1)如图①,连接OA、AC,则∠OAC的度数为_________°; (2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长); (3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t 的取值范围(解答时可以利用备用图画出相关示意图). 3.(2014?泰州)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别 相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.

最新2020中考数学压轴题精选

最新2020中考数学压轴题精选 A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G、过点G作GF⊥x轴于点F、当矩形PEFG的周长最大时,求点P的横坐标;BACODEFGP yx图1图2ABCD yxMNO(3)如图2,连接A D、BD,点M在线段AB上(不与 A、B重合),作∠DMN=∠DBA, MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由、2、(甘肃)如图,已知二次函数y= x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点 A、 B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.3、(广安)如图,抛物线y=-x2+bx+c与x轴交于 A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=-x2+bx+c的另一个交点为D,已知A(-1,0),D(5,-6),P点为抛物线y=-x2+bx+c上一动点(不与

A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE//x轴交直线l于点E,作PF//y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l 上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.4、(武威)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC 于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?5、(无锡)已知二次函数(a>0)的图像与x轴交于 A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.D 为顶点,直线AC交对称轴于点E,直线BE交y轴于点F,AC:CE =2:1.(1)求C点坐标,并判断b的正负性;(2)设这个二次函数的图像的对称轴与直线AC交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC.①若△BCE的面积为8,求二次函数的解析式;②若△BCD为锐角三角形,请直接写出OA的取值范围.6、(菏泽)如图,抛物线与x轴交于A,B两点,与y轴

精选初中数学压轴题及答案

初中数学经典压轴题汇总(附答案) 1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式; (2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的 面积; (3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如 果不相似,请说明理由. (注:抛物线y=ax 2 +bx+c(a ≠0)的顶点坐标为 ??? ? ??--a b ac a b 44,22) 2. 如图,在Rt ABC △中,90A ∠=o ,6AB =,8AC =,D E ,分别是边AB AC ,的中点, 点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于 R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长; (2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所

有满足要求的x 的值;若不存在,请说明理由. 3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少? 4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使 B 图 1 B D 图 2 P 图 3 A B C D E R P H Q

2015年中考初中数学压轴题(有答案)

2015年1中考初中数学压轴题(有答案) 一.解答题(共30小题) 1.(2014?攀枝花)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB. (1)求B、C两点的坐标; (2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标; (3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q 为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由. 2.(2014?苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s) (1)如图①,连接OA、AC,则∠OAC的度数为_________°; (2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长); (3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t 的取值范围(解答时可以利用备用图画出相关示意图). 3.(2014?泰州)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别 相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.

中考数学压轴题100题精选

中考数学压轴题100题精选 【001】如图,已知抛物线2 (1)33y a x =-+(a≠0)经过点(2)A -,0,抛物线的顶点为D ,过 O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. x y M C D P Q O A B

【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接.. 写出t 的值. 【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式; (2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长? A C B P Q E D 图16

初中数学十大经典压轴题

初中数学十大经典压轴题选 一、三角形面积等于水平宽与铅垂高乘积的一半 如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0), 交y轴于点B. (1)求抛物线和直线AB的解析式; (2)点P是抛物线(在第一象限内)上的一个动点,连接PA, PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB; (3)在(2)条件下,是否存在一点P,使S△PAB=S△CAB?若 存在,求出P点的坐标;若不存在,请说明理由. 二.利用相似解决面积问题、等腰三角形的分类讨论 已知:如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0). (1)求该抛物线的解析式; (2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标; (3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由. 三、直角三角形分类讨论问题、利用对称求最大值

如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E 两点,与x轴交于B、C两点,且B点坐标为(1,0). (1)求该抛物线的解析式; (2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P; (3)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点 M的坐标. 四、平行四边形的分类讨论 如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的两个根. (1)求抛物线的解析式; (2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标; (3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由. 五、重叠部分面积的求解

中考数学压轴题汇总

中考数学压轴题汇总(一) 17.(2005)如图,在平面直角坐标系,⊙C 与y 轴相切于D 点,与x 轴相交于A (2,0)、B (8,0)两点,圆心C 在第四象限. (1)求点C 的坐标; (2)连结BC 并延长交⊙C 于另一点E ,若线段..BE 上有一点P ,使得 AB 2 =BP·BE,能否推出AP⊥BE?请给出你的结论,并说明理由; (3)在直线..BE 上是否存在点Q ,使得AQ 2 =BQ·EQ?若存在,求出点Q 的坐标;若不存在,也请说明理由. [解] (1) C (5,-4); (2)能。连结AE ,∵BE 是⊙O 的直径, ∴∠BAE=90°. 在△ABE 与△PBA 中,AB 2 =BP· BE , 即AB BE BP AB = , 又 ∠ABE=∠PBA, ∴△ABE∽△PBA . ∴∠BPA=∠BAE=90°, 即AP⊥BE . (3)分析:假设在直线EB 上存在点Q ,使AQ 2 =BQ· EQ. Q 点位置有三种情况: ①若三条线段有两条等长,则三条均等长,于是容易知点C 即点Q ; ②若无两条等长,且点Q 在线段EB 上,由Rt△EBA 中的射影定理知点Q 即为AQ⊥EB 之垂足; ③若无两条等长,且当点Q 在线段EB 外,由条件想到切割线定理,知QA 切⊙C 于点A.设Q()(,t y t ),并过点Q 作QR⊥x 轴于点R,由相似三角形性质、切割线定理、勾股定理、三角函数或直线解析式等可得多种解法. 解题过程: ① 当点Q 1与C 重合时,AQ 1=Q 1B=Q 1E, 显然有AQ 12=BQ 1· EQ 1 , ∴Q 1(5, -4)符合题意; ② 当Q 2点在线段EB 上, ∵△ABE 中,∠BAE=90° ∴点Q 2为AQ 2在BE 上的垂足, ∴AQ 2= 10 48=?BE AE AB = 4.8(或 5 24 ). ∴Q 2点的横坐标是2+ AQ 2·cos ∠BAQ 2= 2+3.84=5.84, 又由AQ 2·sin ∠BAQ 2=2.88,

挑战中考数学压轴题(全套)

第一部分函数图象中点的存在性问题 § 1.1因动点产生的相似三角形问题§ 1.2因动点产生的等腰三角形问题§ 1. 3因动点产生的直角三角形问题§ 1. 4因动点产生的平行四边形问题§ 1. 5 因动点产生的面积问题§ 1. 6 因动点产生的相切问题§ 1. 7因动点产生的线段和差问题 第二部分图形运动中的函数关系问题 §2. 1 由比例线段产生的函数关系问题 第三部分图形运动中的计算说理问题 §3. 1 代数计算及通过代数计算进行说理问题 §3. 2 几何证明及通过几何计算进行说理问题 第四部分图形的平移、翻折与旋转 § 1 图形的平移§4. 2 图形的翻折§ 4. 3 图形的旋转§ 4. 4三角形§ 4. 5四边形§ 4. 6圆§ 4. 7函数的图象及性质 § 1. 1 因动点产生的相似三角形问题 课前导学相似三角形的判定定理有 3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知/ A=Z D,探求△ABC0),顶点为D. (1 )求该二次函数的解析式(系数用含m的代数式表示); (2) 如图1,当m^

(完整版)2019中考数学压轴题

2019中考数学压轴题 52.(2017内蒙古赤峰市,第21题,10分)如图,一次函数 3 1 3 y x =-+ 的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC. (1)若点C在反比例函数 k y x = 的图象上,求该反比例函数的解析式; (2)点P(23,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明. 【答案】(1) 3 y x = ;(2)P(231)在反比例函数图象上. 【分析】(1)由直线解析式可求得A、B坐标,在Rt△AOB中,利用三角函数定义可求得∠BAO=30°,且可求得AB的长,从而可求得CA⊥OA,则可求得C点坐标,利用待定系数法可求得反比例函数解析式; (2)分△PAD∽△ABO和△PAD∽△BAO两种情况,分别利用相似三角形的性质可求得m的值,可求得P点坐标,代入反比例函数解析式进行验证即可. 【解析】(1)在 3 1 3 y x =-+ 中,令y=0可解得3,令x=0可得y=1,∴A30),B(0,1),∴ tan∠BAO= 3 3 OB OA == ,∴∠BAO=30°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠CAO=90°,在Rt△BOA中,由勾股定理可得AB=2,∴AC=2,∴C3,2),∵点C在反比例函数 k y x = 的图象上,∴k=233 3 y x = ; (2)∵P(23m)在第一象限,∴AD=OD﹣OA=2333,PD=m,当△ADP∽△AOB时,则有PD AD OB OA = ,即 3 13 m = m=1,此时P点坐标为(231);

中考数学压轴题精选及详解

中考数学压轴题精选解析 Word 版 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

相关主题
文本预览
相关文档 最新文档