当前位置:文档之家› 浅谈定积分应用之微元法

浅谈定积分应用之微元法

浅谈定积分应用之微元法
浅谈定积分应用之微元法

浅谈定积分应用之微元法

作者:任凤丽

来源:《科技创新导报》2011年第35期

摘要:本文简单阐述了定积分应用中的微元法,基于微元法的理论依据,指出了为什么在计算旋转体侧面积时选用的是圆台微元,而不是像计算旋转体的体积时那样选取圆柱微元,即而不是。对初学者进一步理解并正确应用微元法有一定的指导作用。

关键词:定积分应用微元法

中图分类号:O17 文献标识码:A 文章编号:1674-098X(2011)12(b)-0143-01

我们知道在几何、物理或者其他科学技术中有很多量都需要用定积分来表达,而建立这些量的积分表达式的常用方法就是微元法。换句话说微元法思想在定积分的应用中占有很重要的地位。具体怎样求微元,即如何正确的选取微元这是问题的关键,对初学者来说也是一个难点。这就需要我们细细分析一下微元法的实质,明白微元法的理论依据是什么。

一般来说,用定积分表达的量应具备如下特征[1]:(1)所求量都具有对于区间的可加性,即分布在区间上的总量等于分布在各子区间上的局部量之和,即;(2)所求量是分布在区间上的非均匀连续分布的量。具备了上述特点,因而我们可以利用“分割-近似-求和-取极限”的方法来计算整体量。把上述四步归纳简化后就是通常说的微元法,有时也称无穷小元素的求和法:

1 在区间上任取一个小区间,并取在该区间上局部量的近似值

(1)

2 在区间上积分得

(2)

其中称为积分微元,简称微元。

初学者对于微元法求平面图形的面积及旋转体的体积时,一般都能够准确的找到面积微元及体积微元,对于书上给出的计算公式也能理解并接受。如以及曲线为

边界的曲边图形的面积微元为底为,高为的小矩形的面积,即。以曲边梯形绕轴旋转一周所成的旋转体的体积微元为底面半径为,高为的小圆柱体的体积,即。但是在选取由曲线段及轴围成的平面图形绕轴旋转一周所成的旋转体的侧面积的面积微元时,常存在疑问。不明白为什么计算侧面积时选用的是圆台微元,而不是像计算旋转体的体积时那样选取圆柱微元呢,即为什么而不是?这得从微元法的理论依据说起。由(2)式我们知道,其中,所以的微分。的所需要的近似

值就是的微分。确切的说,积分微元就是的微分,它们的差是关于的高阶无穷小,这也保证了近似过程的准确性。我们可以通过理论方法证明当时,不是比高阶的无穷小,而是比更高阶的无穷小[2][3]。因此在计算旋转体的侧面积时只能选取作为面积微元,而不是选取作为面积微元。

通过上面的分析可知,弄清楚微元法中的微元的实质或者说理论依据对微元的正确选取起着至关重要的作用,是准确写出积分表达式的关键。这也要求我们从一开始便要深刻理解微分的概念,以及微分与原函数之间的关系,为以后的学习打下坚实的基础。

参考文献

[1] 何柏庆,等.高等数学(物理类,上册).北京:科学出版社,2007.

[2] 朱惠延.旋转体侧面积公式的另一推导.数学理论与应用,1999,第19卷第4期:44~45.

[3] 王荣乾,余小飞.正确使用微元法解决旋转体的侧面积问题.数学学习与研究(教研版),第2期,105,2009.

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

微元法及定积分的几何应用教案

教案 教学目的与要求: 1.正确理解和掌握定积分微元法的基本思想; 2.掌握用定积分解决平面图形面积的问题; 3.培养学生分析问题解决问题的能力和数形结合的观念 重点:1、微元法及其基本思想;2、求平面图形的面积 难点:微元法的基本思想 教学内容与教学组织设计(45分钟): 第6.5节:定积分的几何应用 1 复习定积分的概念,引入微元法的思想 ………………………..15分钟 定积分的概念 ? b a dx x f )(0 1 lim ()n i i i f x λξ→==?∑. 教学安排 课 型:理论 教学方式:讲授 教学资源 多媒体、板书 授课题目(章、节) 第6.5节:定积分的几何应用

2 介绍微元法 …………………………………..5分钟 通过对求曲边梯形面积问题的回顾、分析、提炼,可得用定积分计算某个量U 的步骤: (1) 选取积分变量,并确定它的变化区间[,]a b ; (2) 求微元:将区间[,]a b 分成若干小区间,取其中的任一小区间[,]x x dx +,求出它所对应的部分量的近似值: ()U f x dx ?≈ (()f x 为[,]a b 上的连续函数 ) 则称()f x dx 为量U 的微元,且记作()dU f x dx =; (3) 列积分:以U 的微元dU 作被积表达式,以[,]a b 为积分区间,得()b a U f x dx =? . 这个方法叫做微元法。 微元法实质:找出U 的微元dU 的微分表达式dU=f(x)dx 。 3 求平面图形的面积 …………………………………..17分钟 类型一:D1型区域 (教师主导并详细讲解) 如图1,由曲线()y f x =及直线x a =、()x b a b =<与x 轴 所围成的曲边梯形面积A. 讲解:(板书) (1) 选变量:选x 为积分变量 (2) 求微元:在区间微元[,]x x dx +上,取x ξ=,则 ()dA f x dx = 图1 (3) 列积分:()b a A f x dx = ? 练习:(学生自主根据微元法进行分析,然后教师讲解) 如图2,求由曲线 ()y f x = 与 ()y g x = 及直线 x a =、()x b a b =<且 ()()f x g x ≥所围成的图形面积A 。

浅谈定积分的应用

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definitio n of definite integral and geometric meaning, and through the example analysis of the definite integral in t he higher mathematics, physics, economics, and other fields of application condition and its applications, t hrough the analysis can be seen that the use of definite integral to solve some practical problems is very co nvenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5]。本文将举例介绍定积分在的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

微元法在物理习题中的应用(全)

电磁感应中的“微元法”和“牛顿第四定律” 江苏省特级教师,江苏省丰县中学——戴儒京 所谓:“微元法” 所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。 1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。 2. 关于微元法。在时间t ?很短或位移x ?很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ?=?,s x l t lv ?=?=?。微元法体现了微分思想。 3. 关于求和 ∑ 。许多小的梯形加起来为大的梯形,即 ∑?=?S s , (注意:前面的s 为小写,后面的S 为大写),并且0v v v -=?∑,当末速度 0=v 时,有∑=?0v v ,或初 速度00=v 时,有 ∑=?v v ,这个求和的方法体现了积分思想。 4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法. 如果既可以用动量定理也可以用动能定理解。对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。 微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。 电磁感应中的微元法 一些以“电磁感应”为题材的题目。可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为BL v E =,感应电流为R B L v I = ,受安培力为v R L B B I L F 2 2==,因为是变力问题,所以可以用微元法. 1.只受安培力的情况 例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场。质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。 (1) 求导体棒刚滑到水平面时的速度0v ; (2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关 系,并画出x v -关系草图。 (3)求出导体棒在水平导轨上滑行的距离分别为S/4、S/2时的速度1v 、2v ;

浅析微积分在中学数学中的应用

毕业论文(设计)论文(设计)题目:浅析微积分在中学数学中的应用 姓名 学号 院系 专业 年级 指导教师 2016年04月17日

目录 摘要 (1) ABSTRACT (2) 第1章引言 (3) 第2章中学微积分的基本数学思想方法 (4) 2.1 “极限”思想 (4) 2.2 化归思想[1] (5) 第3章微积分在中学数学中的应用 (7) 3.1 导数在函数单调性问题上的应用 (7) 3.2 利用导数求函数的极值问题 (7) 3.3 函数的变化形态及作图 (8) 3.4 微积分在解方程中的应用 (10) 3.5 不等式的证明 (10) 3.6 恒等式的证明 (11) 3.7 曲线的切线及求法 (12) 第4章结论 (13) 参考文献 (14) 致谢 (15)

摘要 本文对微积分中的思想诸如如函数的思想、极限的思想、和化归思想等思想都有深浅不同的探讨。我们使用微积分的方法来讨论函数的单调性、函数的极值和最值、函数的变化形态及作图、微积分在解方程中的应用、不等式和恒等式的证明、曲线的切线及求法。这样就简化了解题思路和步骤,更深层次的体现出微积分与中学数学间的联系。 关键词:微积分;函数形态;思想方法

ABSTRACT This article focuses on the varying degrees of the main mathematical thinking in calculus,such as limit thought,the the thought of function,and the transforming thought.In discussions on the monotonicity of the function, and the function extreme value and maximum function, and the change of configuration and mapping, application of calculus in solving equations, inequalities and proof of identity, the tangent of the curve and the method, using the methods of calculus to solve problem more easy, in order to reflect calculus links with the middle school mathematics. Key words: Calculus;Function form;Math Thought

微元法在高中物理中的应用

微元法在高中物理中的应用 江苏省靖江市斜桥中学夏桂钱 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。它是将研究对象(物体或物理过程)进行无限细分,从其中抽取某一微小单元即“元过程”,进行讨论,每个“元过程”所遵循的规律是相同的。对这些“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法可以把一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化,从而起到巩固知识、加深认识和提高能力的作用。 一、挖掘教材中微元素材,认知微元思想 微元法思想在新课标教材(人教版)上时有渗透。如在引入瞬时速度的概念时,教材从平均速度出发,提出从t到t+△t这段时间间隔内,△t越小运动快慢的差异也就越小,运动的描述就越精确。在此基础上,再提出若△t趋向于零时,就可以认为△t的平均速度就是t时刻的瞬时速度。正是这种无限分割的方法,可以使原来较为复杂的过程转化为较简单的过程。再如,我们要推导匀变速直线运动的位移公式,显然不能直接用s=vt,原因就在于速度本身是变化的,不能直接套用匀速直线运动的公式。但是我们可以想象,如果我们把整个过程的时间分成无数微小的时间间隔,我们分得愈密,每一份的时间间隔也就愈小,此间隔内,速度的变化亦就愈小,如果分得足够细,就可以认为速度几乎不变,此时就可将每一份按匀速直线运动来处理,完毕之后,再累加即可。 必修2第五章第四节《重力势能》中,计算物体沿任意路径向下运动时重力所做的功时,先将物体运动的整个路径分成许多很短的间隔,由于每一段都很小很小,就可以将每一段近似地看做一段倾斜的直线,从而就能利用功的定义式计算出每一小段内重力的功,再累加得到整个过程重力的总功。第五节《弹性势能》中关于在求弹簧弹力所做的功时,先将弹簧拉伸的整个过程分成很多小段,在足够小的情况下,每一小段位移中可以认为拉力是不变的,从而也能直接利用功的定义式来计算每一小段内拉力所做的功,再累加得到整个过程拉力的总功。这两个功的计算,前者的难点在于物体运动的路径是曲线,后者的难点在于力的大小在变化。教材中的处理方法是前者采用了“化曲为直”的思想,后者采用了“化变为恒”的思想。

定积分的应用

定积分的应用

————————————————————————————————作者:————————————————————————————————日期:

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definition of defi nite integral and geometric meaning, and through the example analysis of the definite integral in the higher mathe matics, physics, economics, and other fields of application condition and its applications, through the analysis can be seen that the use of definite integral to solve some practical problems is very convenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5] 。本文将举例介绍定积分在 的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么 ()()()1)(Λa F b F dx x f b a -=?

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

最新微元法在几何与物理中的一些应用邓智维

微元法在几何与物理中的一些应用邓智维

微元法在几何与物理中的一些应用 摘要:微元法在几何、物理、力学和工程技术等方面都有着极其广泛的应用,是解决定积分应用问题的重要思想方法。本文特别阐述了微元法的原理及其过程,对微元法在几何问题和物理问题中的应用进行了研究。分析了微元法在定积分的应用中如何确定所求量的微元,在解决实际问题时,应先将实际问题合理转化为适合的数学模型,设定积分变量,然后运用微元法建立积分表达式。因此使用微元法的关键是在局部上建立微元表达式,从而可将讨论问题表示为定积分。 关键词:微元法;微元;几何应用;物理应用 Micro Element Method In Geometrical And Physical Abstract:Micro element method has widely application in geometry, physics, and mechanics and engineering technology, it is an important method to solve the definite integral problem .This paper expounds the principle and process of micro element method, to discuses the application problems of geometrical problems and physics. It is analyzed that how a solid is divided into some microelements when definite integral is applied to calculating its volume, when solving practical problems, firstly let the actual problem turn into suitable mathematical model rationally and set the integral variable, and then apply the micro elements method to establish the integral expression. The key point of using micro element is established the micro elements expression in local, thus, to discuss problems expressed as definite integral. Keywords:Micro element method; Micro element; Geometric applications; Physics application

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

微元法及其在物理中的应用(大 整理好)

三、举例 例2:如图3—2所示,一个半径为R 的四分之一光 滑球面放在水平桌面上,球面上放臵一光滑均匀铁链,其 A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T. 解析:以铁链为研究对象,由由于整条铁链的长度不 能忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况. 在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足: θθθθT G T T +?=?+cos θρθθcos cos Lg G T ?=?=? 由于每段铁链沿切线向上的拉力比沿切线向下的拉力大 △T θ,所以整个铁链对A 端的拉力是各段上△T θ的和, 即 ∑∑∑?=?=?= θρθρθcos cos L g Lg T T 观察 θcos L ?的意义,见图3—2—乙,由于△θ很小, 所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R , 所以 ∑=?R L θcos 可得铁链A 端受的拉力 ∑=?=gR L g T ρθρcos 例5:半径为R 的光滑球固定在水平桌面上,有一质量 为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈 的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上, 使弹性绳圈水平停留在平衡位臵上,如图3—5所示,若 平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k. 解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙. 先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角 是△θ,则每一小段的质量 M m π θ 2?=? △m 在该平面上受 拉力F 的作用,合力为 2 sin 2)2 cos( 2θθ π?=?-=F F T 因为当θ很小时,θθ≈sin 所以θθ ?=?=F F T 2 2 再看正视图3—5—乙,△m 受重力△mg ,支持力N ,

定积分在生活中的应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 孙天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

1.7定积分的简单应用

§1.7定积分的简单应用(二课时) 一:教学目标 知识与技能:初步掌握利用定积分求曲边梯形的几种常见题型及方法;让学生深刻理解定积 分的几何意义以及微积分的基本定理。 过程与方法:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方 法 情感态度与价值观:体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功), 培养学生唯物主义思想。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程:(第一课时) 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x y x ?=?==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 20 0x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y = x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形 2 x y =y x A B C D O

微元法在物理学中的应用

微元法在物理学中的应用 在物理学问题中,往往是针对一个对象经历某一过程或外于某些状态来进行研究,而在这些过程或状态之间,描述研究对象的物理量有的可能是不变的,更多的则是变化的,对于那些变化量的研究,有一种方法是把全过程分成很多微小的局部来考察,然后通过这些小过程或微小局部的研究而归纳出适用于全过程或者是整体的结论,这些微小过程或者微小局部常被称为微元法。 微元法也是一种转化问题的手段,这种转化的目的主要体现在以下几点: 1、将变化的问题转化为恒定的问题,比如,物体做变速直线运动,物体运动的速度是变化的,但只要取一段很小的过程,在这一段很小过程中,就可以认为物体运动的速度是不变的。 将弯曲的转化为直线的,如果物体运动的轨迹是一条曲线,只要在曲线上取段足够短的长度,这个长度就可以看成是直线的。 微元法只是解题的一种手段,或者说是一种中间过程,这种“微”的无限收缩就变成了瞬时状态,而“微”的无限累积又可以演变为全过程,所以学习和掌握微元法不但要弄清楚这种方法的基本思路,还要知道这两种不同的发展趋势。 粗细忽略,质量分布均匀,半径分别为与的两圆环相切,若在切点处放一质点m ,恰好使其两边圆环对m 的万有引力的合力为零,问大小圆环的线密度须满足什么样的条件? 分析:连接O 1、O 2交两圆于A 、B ,过切点P 作弦交 两圆于C 、D ,设α=∠=∠DBP CPA αcos 2R CP = αc o s 2r CD = 将CD 绕P 点顺时针转动到C 'D ',如图且α?='∠='∠D DP C CP ,再由C C '向O 1;D D '向O 2连线,则α?='∠='∠221D DO C CO 故,R C C α?='2 r D D α?='2 所以C C '所对应的质量与D D '所对应的质量对质点的引力若满足 ()()2 22 122DP m r G CP m R G αραρ?=? α ρα ρ2 2 22 2 1c o s 4c o s 4r r R R = r R 2 1 ρρ= 试证明质量均,厚度均匀的球壳内一质点,受到球壳万有引力为零。 证明:设球壳单位面积的质量为ρ,球壳内P 点外有一质点m ,过P 点作两个顶角很小的锥面,截球壳的面积为1S ?和2S ?,且P 点到两球壳的距离分别为1r 2r ,所以1S ?和2S ?所对应的质量对P 质点的万有引力之和为2 2 22 1 1r m S G r m S G F ?-?=ρρ 由图可知,由于1S ?和2S ?都很小

概述定积分的发展及应用

概述定积分的发展与应用 摘要:概述了定积分发展的三个历史阶段,讨论了定积分在各个学科中的具体应用. 关键词:分割近似; 定积分; 流数法; 应用 微积分创立是数学史上一个具有划时代意义的创举,也是人类文明的一个伟大成果.正如恩格斯评价的那样:"在一切理论成就中,未必再有什么象17世纪下半叶微积分的发明那样被当作人类精神的最高胜利了." 它是科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具; 如数学研究, 求数列极限, 证明不等式等. 而在物理方面的应用,能够说是定积分最重要的应用之一,正是因为定积分的产生和发展,才使得物理学中精确的测量计算成为可能, 如:气象,弹道的计算,运动状态的分析等都要用的到微积分. 定积分的发展大致能够分为三个阶段:古希腊数学的准备阶段,17世纪的创立阶段以及19世纪的完成阶段. 1准备阶段 主要包括17世纪中叶以前定积分思想的萌芽和先驱者们大量的探索、积累工作.这个时期随着古希腊灿烂文化的发展,数学也开始散发出它不可抵挡的魅力.整个16世纪,积分思想一直围绕着"求积问题"发展,它包括两个方面:一个是求平面图形的面积和由曲面包围的体积,一个是静力学中计算物体重心和液体压力.德国天文学家、数学家开普勒在他的名著《测量酒桶体积的新科学》一书中,认为给定的几何图形都是由无穷多个同维数的无穷小图形构成的,用某种特定的方法把这些小图形的面积或体积相加就能得到所求的面积或体积,他是第一个在求积中使用无穷小方法的数学家.17世纪中叶,法国数学家费尔玛、帕斯卡均利用了"分割求和"及无穷小的性质的观点求积.可见,利用"分割求和"及无穷小的方法,已被当时的数学家普遍采用. 2 创立阶段 主要包括17世纪下半叶牛顿、莱布尼兹的积分概念的创立和18世纪积分概念的发展.牛顿和莱布尼兹几乎同时且互相独立地进入了微积分的大门. 牛顿从1664年开始研究微积分,早期的微积分常称为"无穷小分析",其原因在于微积分建立在无穷小的概念上.当时所谓的"无穷小"并不是我们现在说的"以零为极限的变量",而是含糊不清的,从牛顿的"流数法"中可见一斑,"流数法"的主要思想是把连续变动的量称为"流量",流量的微小改变称为"瞬"即"无穷小量",将这些变量的变化率称为"流数".用小点来

相关主题
文本预览
相关文档 最新文档