当前位置:文档之家› 恒功率控制

恒功率控制

恒功率控制

激光脉冲的平均功率和功率

激光脉冲的平均功率和功率, 设脉冲激光器输出的单个脉冲持续时间(脉冲宽度)为:t,(实际为FWHM宽度) 单个脉冲的能量:E, 输出激光的脉冲重复周期为:T, 那么,激光脉冲的平均功率Pav = E/T,(即在一个重复周期内的单位时间输出的能量) 脉冲激光讲峰值功率(peak power)Ppk = E/t 能量密度=(单脉冲能量*所用频率)/光斑面积算 通常也用单位时间内的总能量除以光斑面积 峰值功率=脉冲能量除以脉宽 平均功率=脉冲能量*重复频率(每秒钟脉冲的个数) 脉冲激光器的能量换算 脉冲激光器的发射激光是不连续,一般以高重频脉冲间隔发射。发射能量以功的单位焦耳J) 计,即每次脉冲做功多少焦耳。 连续激光器发射的能量以功率单位瓦特(W)计量,即每秒钟做功多少焦耳,表示单位时间内 做功多少。 瓦和焦耳的关系:1W=1J/秒。 一台脉冲激光器,脉冲发射能量是1焦耳/次,脉冲频率是50Hz,则每秒钟发射激光50次,每秒钟内做功的平均功率为:50X 1焦耳=50焦耳,所以,平均功率就换算为50瓦。再举例 说明峰值功率的计算,一台绿光脉冲激光器,脉冲能量是0.14mJ/次,每次脉宽20 ns,脉冲 频率100kHz, 平均功率为:0.14mJ X 100k=14J/s=14W,即平均功率为14瓦;峰值功率是每次脉冲能量与脉宽之比,即 峰值功率:0.14mJ/20ns=7000W=7kW,峰值功率为7千瓦。 要想知道镜片的脉冲激光损伤阈值是否在承受极限内,既要计算脉冲激光的峰值功率,也要计算脉冲激光的平均功率,综合考虑。 如某ZnSe镜片的激光损伤阈值时是500MW/cm2,使用在一台脉冲激光器中,脉冲激光器的 脉冲能量是10J/cm2,脉宽10ns,频率50kHz。首先,计算平均功率:10J/cm2 X 50kHz =0.5MW/cm2 其次,再计算峰值功率:10J/cm2 / 10ns = 1000MW/cm2 从脉冲激光器的平均功率看,该镜片是能承受不被损伤的,但从脉冲激光器的峰值功率看, 是大于该镜片的激光损伤阈值的。所以,综合判断,该ZnSe镜片不宜用于此脉冲激光器。如果有条件,对脉冲激光器镜片,应当分别测试平均功率和峰值功率的激光损伤阈值。 Ave. Power :平均功率Pulse energy :脉冲能量Pulse Width :脉宽Peak Power:峰值功率Rep. Rate :脉冲频率ps:皮秒,10-12 S ns:纳秒,10-9S M: 兆, 106 J:焦耳W:瓦 氙灯作为激光设备一个常用光源,通常被人们也叫做激光氙灯、脉冲氙灯。氙灯是一 种填充氙气的光电管或闪光电灯。氙气化学性质不活泼,不能燃烧,也不助燃。是天然的稀

半导体激光器自动功率控制电路设计_张莹

图3 电容充放电模块电路图图1 激光器自动功率控制系统原理图图2 具有关断功能的阴极共地型激光 器电流源 2014.1 57 https://www.doczj.com/doc/d315769049.html,

PIN探测电流变大,从而导致反馈回路输出电压升高,直至高过比较器正端电压V SET后,比较器输出由低电平跳变为高电平,接着执行上述过程的反过程:电容放电、激光器功率减小,由此循环往复,最终稳定激光器发光功率。 恒流源 半导体激光器的可靠稳定工作需为伏特,即当输入电压由0V变化到 2.5V时,可实现激光器电流由0mA到 250mA的线性变化。 电容充放电模块 电容充放电模块是形成反馈回 路、实现自动功率控制至关重要的一 部分。稳定激光器功率是通过微调流 经激光器的电流实现的,这种微调功 能的实现是需要某种自动起伏变化的 了Q5通路,通路上的1k电阻可在电路 停止工作后迅速对大电容放电。 为了对电容充放电过程进行定量 分析,可将充放电电路等效成如图4 所示的电路模型: 假设在t=0时刻,U C=0,根据电 路理论,易得电容电压U C随时间t的 变化关系式为: (1exp(/)) C U E t RC =??(2) 图4 电容充电与放电等效电路模型图图5 电容电压充放电过程仿真波形图

带有PIN或PD光电探测器用于探测光强,光电探测器能够得到与检测光强成一定比例关系的电流信号,通过对该电流信号进行电压转换、放大处理即可得到实用的监测信号,这一过程可以体现于图6。 MAX4008是一款高精度电流检测芯片,在光纤应用中专门用于检测PD或PIN光电探测器的电流,它的REF引脚是参考电流输入引脚,OUT 引脚是检测电压输出引脚,其电压值考电流值对应的输出电压范围是 0.25mV~2.5V。 0.25mV~2.5V的电压值需要变换 放大到所需要的电压范围,这通过由 运算放大器A4组成的同相比例运算电 路实现,如图6所示,其比例系数为 1+R f/R。注意到一点,MAX4008的输 出电阻为10kΩ,而根据PIN、光强度 等的不同,MAX4008的输出电压可能 会低至几毫伏,为了防止输出电压在 下一级输入会有衰减,在MAX4008与 同相比例运算电路之间加一级电压跟 实验结果与分析 光电探测器选用S I E M E N S SRD00111Z硅PIN光电探测器来模拟 激光器集成光电探测器,该光电探 测器最高功率谱密度集中在800nm; 作为实验,选用红色发光二极管 (LED)来模拟激光器。DFB蝶形激 光器工作电流一般达到70mA,远超 过普通发光二极管的正常工作电流, 因此用20只发光二极管并联构成一只 图6 PIN光电探测器构成的固定增益反馈回路图7 根据采样点拟合得到电流源输入电 压与MAX4008输出电压关系曲线图 图9 连续6小时采样MAX4008输出电压 图8 电压比较器输出波形

NewFocus可调谐激光器选型指南

New Focus可调谐激光器选型指南 一、TLB-6000 Vortex TM可调谐激光器 提示:TLB-6000采用PZT调谐(压电精密调谐),窄线宽是该型号的最大特点,主要性能: ◆PZT调谐范围:75GHz; ◆线宽:<300K; ◆支持FM、电流调制; ◆支持固定功率输出; ◆支持固定电流; ◆支持RS232和GPIB接口;

二、TLB-6300 Velocity TM可调谐激光器 提示:TLB-6300采用DC调谐(直流电机调谐)+ PZT调谐(压电精密调谐),灵活的波长和功率选择是该型号的最大特点,PZT细调分辨率:0.02nm,DC粗调范围:>80nm,实现真正实时、线性、无跳模波长扫描,支持扫描、单步和精密调谐,支持FM、电流调制,支持恒功率、恒电流输出,支持RS232和GPIB接口。

三、TLB-6600 Venturi TM可调谐激光器 1、无综合选项(5)的基准模块; 2、最大测量功率; 3、用0.1nm带宽测量的信号(载波) /自发辐射噪声(ASE)比,距离载波1-3nm处信号/ 最大自发辐射噪声(ASE)比; 4、无综合选项(5); 5、WR =波长基准,VOA =可调衰减器,PC =偏振控制器,PS =偏振扰频器 综合选项

提示:TLB-6600是调谐速度最快的产品,有高功率和低噪声不同选择,主要性能: ◆波长范围:C+L波段(1550nm)和O波段(1330nm); ◆调谐速度:2000nm/s; ◆调谐范围:>110nm; ◆波长精度:<±30pm; ◆波长稳定性:<±15pm; ◆ASE噪声:>70dB; ◆通过OEM-Proven 24/7可靠性论证; ◆支持以太网、USB和GPIB接口;

恒功率调速

恒转矩调速的实质在于电机的轴功率控制 滑环电机无刷无环液阻起动器、磁控(磁饱和)软启动器、高低压电机液 阻起动器与液阻调速器 关键字:电机调速功率控制原理 引言: 电机调速实质的探讨,是关系到近代交流调速发展的重要理论问题。随着近代变频调速矢量控制及直接转矩控制等调速控制理论的提出和实践,很多有关文献和论著都把调速的转矩控制确认为调速的普遍规律,并提出调速的实质和关键在于电磁转矩控制。然而,这种观点尚缺乏理论和实践的证明,值得商榷。 本文根据电机功率转换的普遍原理,提出并证明恒转矩调速的实质在于电机的轴功率控制,转速调节是功率控制的响应,其关键为如何通过电功率控制轴功率。 转矩控制仅适于恒功率调速,它只是电机调速的局部,而不是调速的普遍规律。变频调速所依据的是转矩控制,实际执行的却是功率控制,因此才没有影响到应用的正确性。 一、功率控制与转矩控制 根据机电能量转换原理,凡电动机都可划分为主磁极和电枢两个功能部分。主磁极的作用是建立主磁场,电枢则是与磁场相互作用将电磁功率转换为轴功率。 直流电动机的主磁极和电枢不仅结构鲜明,而且功能独立,无疑符合以上定义。而交流(异步)电动机通常以定子、转子划分构成,需加说明。 根据所述电枢定义,异步机的轴功率产生于转子,因此,异步机真正的电枢是转子。问题在于定子,一方面定子励磁产生主磁场,故定子是主磁极。另一方面,定子又通过电磁感应为电枢(转子)输送电磁功率,却不产生轴功率,因此定子又具有电枢的部分特征,这里我们把它称为伪电枢。定子的这种复合功能,是异步机区别于直流机的主要特征。 从电枢输出角度观察,电动机的轴功率与电磁转矩机械转速的关系为:PM=MΩ (1)

半导体激光器加速寿命测试系统研制

文章编号:100123806(2004)0320228203半导体激光器加速寿命测试系统研制 亢俊健1,张世英2,苏美开3,王大成4 (1.石家庄经济学院光电技术研究所,石家庄050031;2.西安武警工程学院通信系,西安710086;3.北京理工大学 光电工程系,北京100081;4.交通部水运科学研究所,北京100088) 摘要:介绍了半导体激光器(LD )加速寿命测试的理论依据,给出了寿命测试的数学模型,并据此研制了新型LD 寿命测试系统。该系统在密封抽真空充氮环境下,通过采集恒功工作LD 的工作电流随时间变化的信息及所处环境的温度,绘制出LD 的老化曲线,即恒功条件下的“I 2t 曲线”,然后推断LD 的使用寿命。 关键词:激光与光电子学;半导体激光器;加速寿命测试;Arrhenius 模型中图分类号:T N248.4 文献标识码:A Development for semiconductor laser accelerating lifetime testing system K ANG Jun 2jian 1 ,ZH ANG Shi 2ying 2 ,SU Mei 2kai 3 ,WANG Da 2cheng 4 (1.Institute of Opto 2electronic ,Shijiazhuang University of Economics ,Shijiazhuang 050031,China ;2.Department of C ommunica 2tion ,X i ’an Engineering C ollege of Armed P olice F orce ,X i ’an 710086,China ;3.Department of Opto 2electronic Engineering ,Bei 2jing Institute of T echnology ,Beijing 100081,China ;4.Institute of Waterborne T ransportation ,Ministry of C ommunications ,Beijing 100088,China ) Abstract :This paper introduces the theory of laser diode (LD )accelerating lifetime testing and mathematic m odel of life testing ,based on wihich a new type of LDs burn 2in &automatic life testing system was developed.It continuously samples the power of LDs which w orks under automatic current control and under the airproof condition filled with nitrogen at testing temperature ,plots power 2time curve of LD and deduces the w orking life of LD. K ey w ords :laser and optoelectronics ;semiconductor laser ;accelerating lifetime testing ;Arrhenius m odel 作者简介:亢俊健(19602),男,副教授,博士,主要从事智能及LD 参数测试仪器等方向的研究。 E 2mail :kangjj @https://www.doczj.com/doc/d315769049.html, 收稿日期:2002212202;收到修改稿日期:2003211216 引 言 随着半导体激光器(LD )广泛应用于光纤通信、 激光唱盘、信息存储、医疗、泵浦固体激光器等领域,其可靠性测试研究已成为当前的热点问题[1~5]。这些研究归纳起来有电导数测量法、热阻测量法[6]等等,但是这些研究大多只做了些理论的研究和探讨,很少涉及实际应用系统研究。笔者根据半导体激光器研发需要提出了研制“新型LD 寿命测试系统”。该系统处于密封抽真空充氮环境,通过高精度采集恒功工作LD 的工作电流、在高温环境下随时间变化的数据,绘制LD 的退化曲线,即恒功条件下的“I 2 t 曲线”,推断LD 的使用寿命。 1 理论依据 LD 的寿命测试原理是基于Arrhenius 模型[7],利 用该模型可以发现由温度应力决定的反应速度的依 赖关系,即: ln L =A +E a /kT (1)式中,L 为寿命,E a 为激活能,A ,k 为常数,T 为绝 对温度。根据(1)式可计算出理论寿命,而实际应用是通过试验来测得。 大量的实验表明,LD 失效随时间的统计分布规律呈浴盆状[8]。可将失效过程分为3个失效时域,即早期的快速退化失效、中期的偶然失效与后期的又一快速失效。早期失效主要是激光器材料生长不均匀,在外延片局部形成较多的晶体缺陷,这可将外延片解理并制成激光器芯片后经过室温较长时间老化后筛选掉;偶然失效期的时域较宽,在此期间只是由于一些偶然因素(如焊料侵爬至解理面,引线脱落等)而引起的几率较小的失效;在后期主要是各种失效机理发展、积累与综合爆发引起较高几率的失效[9]。 半导体激光器的加速老化研究表明[10]:一些半导体激光器在其工作特性稳定之后会阻止初期的迅 第28卷 第3期 2004年6月 激 光 技 术LASER TECH NO LOGY V ol.28,N o.3June ,2004

半导体激光器LD脉冲驱动电路的设计与实验

半导体激光器LD脉冲驱动电路的设计与实验 进行脉冲驱动电路的设计主要是由于,半导体激光器在脉冲驱动电路驱动时,其结温会在半导体激光器不工作的时刻进行散热,因此半导体激光器在脉冲电源驱动下,对半导体激光器的散热要求不高。在设计半导体激光器的脉冲驱动电源时,也是先仿真后设计的思想,在电路选型上也是力求简单。 1 脉冲电源的仿真 在进行脉冲电源仿真时,同样选用的NI公司的这款Multisim10这款电路仿真软件。选用的器件是IRF530,信号源是5V,占款比为50%,频率为50Hz的方波信号源;用电阻1R代替半导体激光器、且将1R的阻值设置为1Ω,用Multisim10的自带示波器对电阻1R两端的电信号进行测量。 脉冲电源仿真 在仿真电路设计的过程中,选用了功率管IRF530作为主开关,对电阻1R上的电压进行采样,信号源选取的是输出5V方波的、频率是50Hz、占款比是50%的信号源。在进行仿真前、将示波器的A通道接在电阻1R的两端,对整个电路的电流信号进行监测。将示波器的B通道接在信号源的两端,对信号源的输出

电信号进行采样,这样通过A、B两通道的电信号进行对比,看脉冲驱动电路能否满设计要求。 根据仿真示波器监测到的数据显示,电阻1R两端的电信号完全是跟信号源的电信号同步变化的,而且波形完全一致。仿真结果显示电阻1R的峰值电压是为1.145V,说明电路的峰值电流也是1.145A。 在仿真过程中,通过不断的调整信号源的特性,发现电阻1R两端的电压值的大小只与信号源的电压值大小有关系,而与信号源的频率和占空比关系不大,这说明此脉冲仿真电路输出电流值的大小只与信号源输出的电压值大小有关。出现这样的结果主要是选取的信号源的频率过低,功率管IRF530完全可以做到对电路的开断控制。 以上仿真结果显示,当信号源的峰值电压是5V的时候,所对应的流过IRF530的峰值电流是1.145A。根据IRF530的输出特性,通过调节信号源的加载在IRF530GS V的电压就可以改变功率管IRF530的输出电流值,从而改变整个脉冲电源输出电流的值。 2 脉冲电源的设计 从上面的电路仿真可以看出,脉冲电源的设计主要是脉冲信号源的设计、电路的主体部分还是用IRF530来实现的,通过控制信号源的加载在GS V的电压来控制流通IRF530的电流。要调整输出电流信号的频率得通过信号源进行控制。 图 3-25 基于单片机脉冲电源

激光器的分级标准及激光安全管理讲解

激光器的分级标准及激光安全管理 激光器按波长分各种类型,由于不同波长的激光对人体组织器官伤害不同。因而在各类型的激光器中按其功率输出大小及对人体伤害分以下四级。 第一级激光器:即无害免控激光器。这一级激光器发射的激光,在使用过程中对人体无任何危险,即使用眼睛直视也不会损害眼睛。对这类激光器不需任何控制。 第二级激光器:即低功率激光器。输出激光功率虽低,用眼睛偶尔看一下不至造成眼损伤,但不可长时间直视激光束。否则,眼底细胞受光子作用而损害视网膜。但这类激光对人体皮肤无热损伤。 第三级激光器:即中功率激光器。这种激光器的输出功率如聚焦时,直视光束会造成眼损伤,但将光改变成非聚焦,漫反射的激光一般无危险,这类激光对皮肤尚无热损伤。 第四级激光器:即大功率激光器,此类激光不但其直射光束及镜式反射光束对眼和皮肤损伤,而且损伤相当严重,并且其漫反射光也可能给人眼造成损伤。 根据上述激光器的分级来看,对人眼睛及皮肤损害最大的是第四级激光器。前述了激光对人体的危害,尤其是对眼睛的损伤,其损伤程度可以使眼睛视力降低,甚至完全失明。但这种损伤并非所有量级激光能引起,而是有一最低限度——即致伤阈值,只有当激光能量密度或功率密度超过此阈值时才能对眼睛造成伤害。激光器的级别分类给我们提供了一个安全的参考值。 激光安全管理措施 使用不同级别激光器的管理措施 1.使用第一级激光器的管理 由于第一级激光器是无害免控激光器,因此不需任何控制措施。激光器不必使用警告标记,但须避免不必要长久地直视第一级激光束。 2.第二级激光器的使用安全措施

第二级激光器为低水平激光器,如偶尔照射到人眼还不至于引起伤害,可连续观察激光束时能损伤眼睛。因此,不能长时间地直视激光束,此是对第二级激光器的最重要控制措施。此外,还应该在安放第二级激光器的房门上及激光的外壳及其操作面板上张贴警告标记。3.第三级激光器的使用安全措施 由于第三级激光器是中等功率激光器,可能对眼有损伤,必须对这一级激光器定出措施,确保安全:(1)对操作激光器的工作人员进行教育和培训,使他(她)们明白操作此级激光器时可能出现的潜在危险,并对他(她)们进行恰当的激光安全训练,以及出现危险时紧急处理方法。由于激光对眼睛的损伤均为不可逆性,培训教育了解和掌握激光器的安全运用实属必要。 (2)工程技术管理 管理使用激光器必须由专业(职)人员来进行,未经培训教育人员不得擅自开启使用激光机。如激光器上的触发系统上装设联锁钥匙开关,确保只有用钥匙打开联锁开关以后才能触发启动,拔出钥匙就不能启动。对于安放激光器的房间要有明亮的光线,人在明亮光线的环境中,眼睛的瞳孔缩小,以防在激光光束射入眼睛时可减少透射到视网膜上的进光量。对于安放激光器的高度,激光束路径应避开正常人站立或坐着时的眼睛的水平位置,视轴不能与出光口平行对视。 (3)激光器应严格控制 在存放使用的激光器房间内不要无故地把激光束对准人体,尤其是眼睛。因为激光对眼睛的损伤要恢复极其困难,均为永久性损害,而且每一个人的一生中只有一双眼睛,大家务必时刻牢记,在开动激光器之前,必须告诫现场中人员可能出现的危害,并戴上安全防护眼镜。在有强激光器的工作区内外明显的位置上及激光手术室、实验室的房门上张贴出危险标记。 (4)激光受控区 第三级激光器必须只能在一定的区域内使用激光设备。按一般要求设立门卫及安全的弹簧锁、联锁等,以确保外人与未受保护人员不得进入受控区,即使意外门被打开时,激光器的激励也能立即停止。房间不应透光,以阻止有害

A10V恒功率带LS控制、压力切断油泵的恒功率调节

请假大家一个问题:以力士乐A10V泵为例,同时具有LS,PC和恒功率阀,我的问题是如何在试验台上调定恒功率阀的起调压力呢?恒功率阀的第二级弹簧需不需要调节?如何调节? 游勇 这个比较复杂。A10V..DFLR的恒功率控制是用双弹簧来实现,一般在出厂时己调好,功率曲线不能改变。 所需工具较多: 1. 手动溢流阀安装在油泵出口作负载; 2. 流量计及压力表。 步骤如下: 1. 把X口及P口连接; 2. 手动溢流阀全开; 3. 油泵起动; 4. 手动溢流阀加压直至恒功率控制的起点压力; 5. 调整泵体上的恒功率阀,直至流量计显示流量开始发生变化; 6. 完成。 需要检测泵出口流量的变化来判断恒功率阀的调定压力是吧,但是另外一个问题是:流量变化多少才能认定恒功率阀的压力已经调定到指定值了呢?谢谢 补充一下第五步恒功率阀的调节方法。 1、将一级弹簧顺时针向里调节(感觉调到起调压力以上即可)。 2、将溢流阀调至起调压力向上一点。 3、回调一级弹簧至起调压力。 至此一级弹簧调节完毕(在此过程中流量应保持在最大流量) 4、将溢流阀压力向上调节,取出不同的几组P、Q数据(P应大于起调压力)做出P-Q曲线,调节二级弹簧使其尽量接近恒功率曲线。 调节过程较为繁琐,出厂时基本已调节好,若非出现故障一般不要调节。 需要检测泵出口流量的变化来判断恒功率阀的调定压力是吧,但是另外一个问题是:流量变化多少才能认定恒功率 ... 当压力上升到一级弹簧控制的起调压力后流量才会发生变化的。也就是说自下而上调节溢流阀当流量开始减小时的压力即为一级弹簧控制的起调压力! |补充一下第五步恒功率阀的调节方法。 1、将一级弹簧顺时针向里调节(感觉调到起调压力以上即可)。 2、将 ... 通过观测流量的方式可以设定一级弹簧的调定值; 那么对于二级弹簧的调节,如果在试验台上取几点的话,这样耗费的时间是不是会很长?如何根据测的几组PQ数据来调节二级弹簧呢?魏兄能不能在详细描述一下呢?谢谢

激光器驱动电流源电路设计方案

激光器驱动电流源电路设计方案 本文设计了一种数控直流电流源的方案,给出了硬件组成和软件流程及源程序。以STC89C52单片机为核心控制电路,利用12位D/A模块产生稳定的控制电压,12位A/D模块完成电流测量。输出电流范围为20~2000mA,具有“+”“-”步进调整功能,步进为1mA,纹波电流小,LCD同时显示预置电流值和实测电流值,便于操作和进行误差分析。 基于以上分析,选择方案二,利用STC89C52单片机将电流步进值或设定值通过换算由D/A转换,驱动恒流源电路实现电流输出。输出电流经处理电路作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。在器件的选取中,D/A转换器选用12位优质D/A转换芯片 TLV5618,直接输出电压值,且其输出电压能达到参考电压的两倍,A/D转换器选用高精度12数转换芯片ADS7816。. 恒流源模块设计方案 方案一:由三端可调式集成稳压器构成的恒流源。其典型恒流源电路图如图1.2.1所示。一旦稳压器选定,则U0 是定值。若R固定不变,则I0不变,因此可获得恒流输出。若改变R值,可使输出 I0改变。因此将R设为数控电位器,则输出电流可以以某个步长进行改变。此电路结构简单,调试方便,价格便宜,但是精密的大功率数控电位器难购买。 图1.2.1 三端集成稳压器构成的恒流源框图 方案二:由数控稳压器构成的恒流源方案一是在U0不变的情况下,通过改变R的数值获得输出电流的变化。如果固定R不变,若能改变U0的数值,同样也可以构成恒流源,也就是说将上图中的三端可调式集成稳压源改为数控电压源,其工作原理和上图类似。此方案原理清楚,若赛前培训过数控电压源的设计的话,知识、器件有储备,方案容易实现。但是,由1.2.2图可知,数控稳压源的地是浮地,与系统不共地线,对于系统而言,地线不便处理。

K3V川崎交叉恒功率调节系统

现在的挖掘机多为斜盘式变量双液压泵,所谓变量泵就是泵的排量可以改变,它是通过改变斜盘的摆角来改变柱塞的行程从而实现泵排出油液容积的变化。变量泵的优点是在调节范围之内,可以充分利用发动机的功率,达到高效节能的效果,但其结构和制造工艺复杂,成本高,安装调试比较复杂。按照变量方式可分为手动变量、电子油流变量、负压油流变量、压力补偿变量、恒压变量、液压变量等多种方式。现在的挖掘机多采用川崎交叉恒功率调节系统,多为反向流控制,功率控制,工作模式控制(电磁比例减压阀控制)这三种控制方式复合控制。

调节器代码对应的调节方式

调节器内部结构 各种控制都是通过调节伺服活塞来控制斜盘角度,达到调节液压泵流量的效果。大家知道在压强相等的情况下,受力面

积的受到的作用力就大。 调节器就是运用这一原理,通过控制伺服活塞的大小头与液压泵出油口的联通关闭来控制伺服活塞的行程。在伺服活塞大小头腔都有限位螺丝,所以通过调节限位螺丝可以调节伺服活塞最大或最小行程,达到调节液压泵的最大流量或

者最小流量的效果。 向内调整限制伺服活塞最大和最小行程及限制最大流量和最小流量 要谈谈反向流控制,就必须要弄明白反向流是如何产生的。在主控阀中有一条中心油道,当主控阀各阀芯处于中位时(及手柄无操作时)或者阀芯微动时(及手柄微操作时)液压泵的液压油通过中心油道到达主控阀底部溢流阀,经过底部溢流阀的增压产生方向流(注当发动机启动后无动作时液压回路是直通

油箱,液压系统无压力)。 所以方向流控制的功能是减少操作控制阀在中位时,泵的流量,使泵流量随司机操作所属流量变化,改善调速性能,避免了无用能耗。 大家注意方向流控制并非交叉控制,一个泵对应一个主控阀块(一般主控阀都为双阀块)。如果单边手柄动作速度很

激光器的种类及性能参数总结

激光器的种类及性能参数总结 半导体激光器——用半导体材料作为工作物质的一类激光器 中文名称: 半导体激光器 英文名称: semiconductor laser 定义1: 用一定的半导体材料作为工作物质来产生激光的器件。 所属学科: 测绘学(一级学科);测绘仪器(二级学科) 定义2: 以半导体材料为工作物质的激光器。 所属学科: 机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科) 定义3: 一种利用半导体材料PN结制造的激光器。 所属学科: 通信科技(一级学科);光纤传输与接入(二级学科) 半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。 (1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。 (2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。 (3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。 (4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15?~40?左右。 (5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6?~ 10?左右。 (6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。 工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。 准分子激光器——以准分子为工作物质的一类气体激光器件。 中文名称: 准分子激光器 英文名称: excimer laser 定义:

恒功率泵工作原理相关讨论

请教:力士乐A10VSO-DFLR(恒压/流量/功率控制)变量泵的控制原理 管理提醒: 本帖被论坛清道夫执行加亮操作(2009-01-08) 图片: 图片:

图片:

图片:

为向各位了解力士乐A10VSO…DFLR…恒压/流量/功率控制泵的控制原理,上传4张图片. 我想了解的问题是: 1.功率阀的原理; 2. 恒压/流量/功率控制三种控制功能的转换过程. 说明: 最上面的一张图为总图(网上下载的).图1和图2是按照力士乐另一份彩图资料绘制的. 图1中的A1和图2为清晰起见,图1中的X口我画在了上面(原资料是在侧面的) [ 此贴被论坛清道夫在2008-05-21 13:53重新编辑] 小中大引用推荐编辑只看复制 我的问题已经提出好几天了.无人回帖.可能是我对问题的叙述不很清楚. 最近几天我琢磨了一下,对于功率阀的调节原理,我先试着分析如下.是我个人的理解,请诸位指正.

功率阀相当于一个压力无级可调的(比例)溢流阀,它可无级地改变着进入流量调节器弹簧腔的压力P 通过泵斜盘改变功率阀调压弹簧的压缩量X来实现的(泵斜盘带动拨杆改变功率阀套的位置,进而改变功率阀压缩量X与泵斜盘倾角β成反比. 在泵进入恒功率控制期间,流量调节器控制阀芯的位置也有3个. 压力P H作用在控制阀芯的右端(见图1),以形成一个对抗反力,与作用在控制阀芯左端的泵出口压力P P相在中位(平衡位置),在此状态下,泵的斜盘倾角不变. 功率阀所决定的压力P H与泵压力P P应该是同比例变化(升降)的.并且P H的变化要比P P的变化滞后一点当泵压升高时,P P先将控制阀芯向右推离中位(平衡被破坏),并进入泵变量缸的无杆腔使泵的斜盘倾角β变角β的变小,功率阀调压弹簧的压缩量X则变大,阀的开启压力P H随之升高,升高了的P H又将控制阀芯推回中循环下去,控制阀芯连续的经历由平衡→不平衡→新的平衡的过程(用一位网友的话讲,就是控制阀芯在“中位控制. 当泵压降低时,则会出现相反的过程. 恒功率控制始于起点的调整压力,终于切断点的限位柱(即死档铁). 不知我分析的对不对,请各位点拨. [ 此贴被闫波在2008-02-11 10:35重新编辑] 顶端Posted: 2008-02-09 11:13 | 1 楼 小中大引用推荐编辑只看复制 图片:

半导体激光器驱动电路设计_图文(精)

第9卷第21期 2009年11月1671 1819(200921 6532 04 科学技术与工程 Science T echno logy and Eng i neering V o l 9 N o 21 N ov .2009 2009 Sci T ech Engng 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN 242; 文献标志码 A

2009年7月14日收到 作者简介:何成林(1982 ,男,湖北利川人,助理工程师,硕士,研究方向:激光引信技术,E m ai:l chengli nhe @163.co m 。 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲

半导体激光器(15501310)高低温循环寿命研究

半导体激光器(1550/1310)高低温循环寿命研究 苏美开 (济南福来斯光电技术室,flsoe@https://www.doczj.com/doc/d315769049.html, ) 摘要:研究了通信用的1310nm 半导体激光二极管(LD)组件的使用寿命。通过实验,模拟不同环境条件下,对其进行了高低温循环寿命的实验研究,建立了循环寿命的数学模型。结果表明:循环寿命与循环的温差、循环的速度成指数关系,通过测试器件在高温差、高循环速度条件下的循环寿命,外推器件正常工作条件下的循环寿命。从而得到器件可靠性数据,为工艺设计人员提出量化数据。 关键词:半导体激光器组件,高低温循环寿命,寿命数学模型 Research on High-low Temperature Cycle Lifetime of 1310nm LDs Modules Abstract : A mathematical model of the cycle lifetime of Laser Diode (LD) has been established. Studied on high-low temperature cycle lifetime of 1310 nm LD modules by experiment under different simulation environmental conditions. The result shows that cycle lifetime has index relation to the temperature difference of cycle and cycle speed. By testing the cycle lifetime of LDs under the high temperature difference and high cycle rate conditions, the cycle lifetime of LDs under the ordinary working conditions can be estimated. Key words : Semiconductor Laser Module, High-low Temperature Cycle Lifetime, Mathematical Model of Lifetime 1. 引言 1310nm 是光纤通信常用的工作波长,单模光纤在该处的能量损耗只有0.40d B 。因此1310nm LD 组件成为光通信的核心器件。然而光纤链路必须经受苛刻的环境条件,根据国际通信行业BELLCORE 标准[1],用在非控环境(UNC )的器件需要做高温加速寿命测试和-40℃~85℃的高低温循环寿命测试,对于高温加速寿命试验的方法和经验模型已有许多文献描述[2-5],并得到了器件的高温筛选方法和寿命模型。对高低温循环的详实实验方法及经验模型却未见报导。由于材料热膨胀系数的不同,高低温循环主要作用对接合点、粘接料、界面和透镜固定等的考验。为了预测1310nm LD 组件的工作可靠性,考察其高低温循环寿命,通过实验研究了40只器件随循环次数输出功率的变化情况,据此给出了高低温循环筛选试验的最佳循环次数。得到了高低温循环的寿命模型。利用该模型可以计算出不同热应力下、不同循环次数和不同循环速度对器件的影响。 2. 实验测试 2.1样品准备 如图1,选用同一批次、刚刚生产的、未经高低温筛选的、封装形式为TO5.6的1310nm LD 组件40只,器件采用内密封金属封装,且有聚焦球透镜。如图1所示。 LD 有源区向上被易熔焊料Au/Sn 焊在硅热沉上,热沉用软焊料Pb/Sn 焊在被镀金的圆形铜座上,球透镜被固定在LD 的前镜面(约100um )。测试前在室温25℃下测量其恒功率输出(P =5mW )时阈值电流I th 、工作电流I op 、外量子效率η。 图1. 1310nm LDTO5.6组件外观

变频调速三相异步电动机恒转矩及恒功率特性的控制(精)

2002年第3期(总第112期)2002年9月30日出版 (EXPLOSION-PROOFELECTRICMACHINE) 防爆电机 变频调速三相异步电动机恒转矩及恒功率特性的控制 孙振宇 佳木斯电机股份有限公司,黑龙江佳木斯(154002) 摘要阐述变频调速三相异步电动机在低频(f<50Hz)时的恒转矩特性及高频(f>50Hz)时的恒功率特性的控制。 关键词变频调速恒转矩特性恒功率特性控制ControlCharacteristicsofConstantTorqueandConstantOutputinVariable FrequencyAdju stable SpeedThree PhaseInductionMotors SunZhenyu Abstract Thispapergivesadescriptionofcontrollingtheconstanttorquecharacteristicsatlo wfrequency(lessthan50Hz)andtheconstantoutputcharacteristicsathighfrequency(over50H z)invariable frequencyadjustable speedthree phaseinductionmotors. Keywords Variable frequencyadjustable speed,Constanttorquecharacteristic,Con st antoutputcharacteristic,Control. E1=444f1N1mKw1 在忽略定子阻抗压降的情况下,有 U1E1=444f1N1mKw1f1m (1) 1引言 随着我国工业自动化程度的提高,对电动机的调速性能的要求大大提高,而变频调速电机具有效率高、调速范围广、精度高、调速平滑等优点,是异步电动机较理想的调速方法。本文对交流三相异步电动机变频调速中的恒转矩及恒功率特性的控制进行了简明的阐述。 假设Te max和Te分别代表电源频率为额定频率f1e电动机的最大转矩和额定转矩,而Tf max和Tf e分别代表在某一小于额定频率f1e下电动机的最大转矩和额定转矩,若要保证电动机过载能力不变,则有: Tf maxTe max ==m Tf eTe 而Tmax= 3PU1 22f1R1+ 2

医学中常用的激光器

医学中常用的激光器 自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。由于激光的物理特性决定了其具有明显的生物学效应,。各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。 一.气体激光器 气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。 (2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。分 子激光器以二氧化碳(CO 2)激光器为代表,其他还有氢分子(H 2 ),氮分子(N 2 )和一氧化碳(CO)分子等激光 器。分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。氦镉激光器(激活介质为Cd+)等。离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。 气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。 1、氦氖激光器 氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。它的光束质量很好(发散角小,单色性好,单色亮度大)。激光器结构简单,成本低,但输出功率较小。氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。 氦氖激光器有三种结构形式:内腔式、外腔式和半内腔式。它们均由放电管、谐振腔、激励电源等三部分组成。以内腔式为例,放电毛细管是产生气体放电和激光的区域,它的内径很小,约在1到几毫米。电极A为阳极,由钨杆或钼(或镍)筒制成。阴极K为金属圆筒,由铝、钼、钽等制成,它们均有足够的电子发射能力和抗溅射能力。组成谐振腔的两块反射镜紧贴于放电管两端,并镀以多层介质膜。其中一个为全反射镜,另一个则为部分反射镜,整个谐振腔在出厂前已调整完毕,因此使用简单、方便。放电管的管径比放电毛细管粗几十倍,用以保持氦氖气压比及加固谐振腔。为了避免放电管变形而引起激光输出下降,内腔管的长度不宜过大,一般不超过一米。外腔式激光器可以更换不同的反射镜,使输出功率最大,光束发散角最小。也可在反射镜和放电管之间插入光学元件,以研究激光器的输出特性,调制它的频率或幅度,并可制成单频大功率激光器。 2、二氧化碳激光器 二氧化碳激光器的能量转换效率达20~25%(氦氖激光器的能量转换效率仅为千分之几)。它的输出波长为10.6微米,属于远红外区,连续输出功率可达万瓦级,常用电激励,结构比较简单紧凑,使用 方便,是目前最常用的激光器之一,在医学上,CO 2激光器作为手术刀使用日益引起人们的重视。CO 2 激 光器也用于皮肤科、外科、神经外科、整形外科、妇科和五官科的手术,在癌症的治疗上也有一定成效。 最常见的封离型内腔式二氧化碳激光器的管壳是由硬质玻璃或石英材料制成的。常见为三层玻璃套管结构,其最内层是放电管,中间层是水冷套,外层是储气管。在内外层之间有气体循环通路,这是为了保证混合气体的均匀分布而设计的。其光学谐振腔通常用平凹球面腔。球面镜可用石英或其他光学玻璃做基片,然后,在表面上镀层金属膜。平面镜是输出窗片,要求它对10.6μm的激光有很好的透过率,且表面不易损伤,机械性能好等。一般中小功率的激光器常常采用锗单晶做输出片,大功率的用砷化镓

相关主题
文本预览
相关文档 最新文档