当前位置:文档之家› 等腰三角形知识点+经典例题

等腰三角形知识点+经典例题

等腰三角形知识点+经典例题
等腰三角形知识点+经典例题

等腰三角形知识点+经典例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一讲等腰三角形

【要点梳理】

要点一、等腰三角形的定义

1.等腰三角形

有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另

一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为

腰,BC为底边,∠A是顶角,∠B、∠C是底角.

2.等腰三角形的作法

已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.

作法:1.作线段BC=a;

2.分别以B,C为圆心,以b为半径画弧,两弧

相交于点A;

3.连接AB,AC.

△ABC为所求作的等腰三角形

3.等腰三角形的对称性

(1)等腰三角形是轴对称图形;

(2)∠B=∠C;

(3)BD=CD,AD为底边上的中线.

(4)∠ADB=∠ADC=90°,AD为底边上的高线.

结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.

4.等边三角形

三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.

要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直

角).∠A=180°-2∠B,∠B=∠C=180

2A

?-∠ .

(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.

要点二、等腰三角形的性质

1.等腰三角形的性质

性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.

推论:等边三角形的三个内角都相等,并且每个内角都等于60°.

性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.

2.等腰三角形中重要线段的性质

等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.

要点诠释:这条性质,还可以推广到一下结论:

(1)等腰三角形底边上的高上任一点到两腰的距离相等。

(2)等腰三角形两底边上的中点到两腰的距离相等.

(3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等.

(4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等.

要点三、等腰三角形的判定定理

1.等腰三角形的判定定理

如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.

要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系.

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.2.等边三角形的判定定理

三个角相等的三角形是等边三角形.

有一个角是60°的等腰三角形是等边三角形.

3. 含有30°角的直角三角形

定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

要点四、反证法

在证明时,先假设命题的结论不成立,然后从这个假设出发,经过逐步推导论证,最后推出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果,从而证明命题的结论一定成立,这种证明命题的方法叫做反证法.

要点诠释:反证法也称归谬法,是一种间接证明的方法,一般适用于直接证明有困难的命题.一般证明步骤如下:

(1)假定命题的结论不成立;

(2)从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果;

(3)由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.

【典型例题】

类型一、等腰三角形中有关角度的计算题

例1、(2016春?太仓市期末)如图,已知△ABC中,AB=BD=DC,

∠ABC=105°,求∠A,∠C度数.

【思路点拨】由于AB=BD=DC,所以△ABD和△BDC都是等腰三角形,可设∠C=∠CDB=x,则

∠BDA=∠A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出∠A,∠C度数.【答案与解析】

解:∵AB=BD,

∴∠BDA=∠A,

∵BD=DC,

∴∠C=∠CBD,

设∠C=∠CBD=x,

则∠BDA=∠A=2x,

∴∠ABD=180°﹣4x,

∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,

解得:x=25°,所以2x=50°,

即∠A=50°,∠C=25°.

【总结升华】本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.

【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,

求∠B的度数.

【答案】

解:∵AC=BC=BD,AD=AE,DE=CE,

∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,

则∠AED=∠ADE=2x,∠A=∠B=180°-4x

在△ABC中,根据三角形内角和得,

x+y+180°-4x+180°-4x=180°①

又∵A、D、B在同一直线上,∴2x+x+y=180°②

由① ,②解得x=36°

∴∠B=180°-4x=180°-144°=36°.

类型二、等腰三角形中的分类讨论

例2、在等腰三角形中,有一个角为40°,求其余各角.

【思路点拨】由一个等腰三角形内角为40°,分别从40°是等腰三角形顶角与40°是底角的角度去分析求解即可求得答案.

【答案与解析】

解:(1)当40°的角为顶角时,由三角形内角和定理可知:

两个底角的度数之和=180°-40°=140°,

又由等腰三角形的性质可知:两底角相等,

故每个底角的度数

1

14070

2

=??=?;

(2)当40°的角为底角时,另一个底角也为40°,

则顶角的度数=180°-40°-40°=100°.

∴其余各角为70°,70°或40°,100°.

【总结升华】此题考查了等腰三角形的性质.此题比较简单,注意掌握分类讨论思想的应用,小心别漏解.

例3、已知等腰三角形的周长为13,一边长为3,求其余各边.

【答案与解析】

解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;

(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长1105

2

=?=.

这样得两组:①3,3,7 ②5,5,3.

由三角形三边关系可知:两边之和大于第三边,3+3<7,故不能构成三角形,应舍去.

∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.

【总结升华】唯独等腰三角形的边有专用名词“腰”“底”,别的三角形没有,此题没有说明边长为3的边是腰还是底,所以做此题应分类讨论.同时结合三角形内角和定理、三角形两边之和大于第三边、两边之差小于第三边,来验证讨论哪些情况符合,哪些情况不符合,从而决定取舍,最后得到正确答案.

【变式】已知等腰三角形的底边BC=8cm,且|AC-BC|=2cm,那么腰AC的长为( ).

A.10cm或6cm B.10cm C.6cm D.8cm或6cm

【答案】A;

解:∵ |AC-BC|=2cm,∴ AC-BC=±2.

又BC=8.

∴ AC=10或6.

∴ AB=10(cm)或(6cm).

类型三、等腰三角形的性质及其运用

例4、如图,在△ABC中,边AB>AC.

求证:∠ACB>∠ABC

【思路点拨】在AB上截取AE=AC,连接CE,根据等腰三角形的性质推出∠AEC=∠ACE,根据三角形的外角性质求出∠AEC>∠ABC即可.

【答案与解析】

证明:证明:在AB上截取AE=AC,连接CE,

∵AE=AC,

∴∠AEC=∠ACE,

∵∠AEC>∠B,

∴∠ACB>∠ABC.

【总结升华】本题主要考查了等腰三角形的性质、三角形的外角性质,能推出∠AEC=∠ACE和∠AEC >∠ABC是解此题的关键.

【变式】已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长

BC至点E,使CE=CD.

求证:DB=DE.

【答案与解析】

证明:如图,在△ABC中,

∵AB=AC,∠A=60°,

∴△ABC是等边三角形,

∴∠ABC=∠2=60°,

∵BD是中线,

∴BD是∠ABC的平分线,

∴∠1=30°,

∵CE=CD,

∴∠E=∠3,

∴∠E=∠2=30°,

∴∠E=∠1,

∴DB=DE.

类型四、等腰三角形的判定

例5、如图1,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作DE∥BC,交AB于点D,交AC于点E.

(1)试找出图中的等腰三角形,并说明理由;

(2)若BD=4、CE=3,求DE的长;

(3)若 AB=12、AC=9,求△ADE的周长;

(4)若将原题中平行线DE的方向改变,如图2,

OD∥AB,OE∥AC,BC=16,你能得出什么结论呢

【思路点拨】(1)运用两三角形两底角相等得出等腰三角形;

(2)由等腰三角形两腰相等求解;

(3)由△ADE的周长=AD+DO+OE+AE=AB+AC求解;

(4)由OD∥AB,OE∥AC,BO平分∠ABC,CO平分∠ACB,得出△BDO和△ECO是等腰三角形,利用等腰三角形两腰相等得出△ODE的周长等于BC的长度.

【答案与解析】

解:(1)△DBO和△EOC是等腰三角形.

∵BO平分∠ABC,

∴∠DBO=∠CBO,

∵DE∥BC,

∴∠CBO=∠DOB,

∴∠DBO=∠DOB,

∴DB=DO,

∴△DBO是等腰三角形,

同理△EOC是等腰三角形;

(2)∵BD=4、CE=3,

∴由(1)得出DO=4,EO=3,

∴DE=DO+OE=4+3=7;

(3)△ADE的周长=AD+DO+OE+AE;

∵DO=DB,OE=EC,

∴△ADE的周长=AB+AC,

∵AB=12、AC=9,

∴△ADE的周长=AB+AC=12+9=21;

(4)∵OD∥AB,OE∥AC,BO平分∠ABC,CO平分∠ACB,

∴△BDO和△ECO是等腰三角形,

等腰三角形经典练习题(有难度)

等腰三角形练习题 一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45° 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36° 3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160° 4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数 A B C D F E F E A D B C X x x 2x 2x A B C D E x x 3x 2x 3x 2x 2x A x

设∠A 为x ∠A= 7 180 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x ∠EDC=∠AED -∠C=15° 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=2 1,DE+BC=1, A B C D E x x 180°-2x 30° x -15° x -15° A

求∠ABC 的度数 延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90° 在Rt △DBF 中, BD=21,DF=1 所以∠F =∠1=30° 7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED 由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1 二、证明题: 8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于 点D 、E 求证:DE=BD+AE 证明△PBD 和△PEA C B A D E P A B C D E

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=5cm ,BD=3cm , 则点D 到AB 的距离为( ) 2.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为边并且在AB 的同一侧作等边△ACD 和等边△BCE ,连接AE 交CD 于M ,连接BD 交CE 于N .给出以下三个结论: ①AE=BD ②CN=CM ③MN ∥AB 其中正确结论的个数是( ) 二.填空题(共1小题) 3.如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于_________ . 三.解答题(共15小题) 4.在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且 ∠EDF+∠EAF=180°,求证DE=DF . 5.在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E .请说明DE=BD+EC . 6.已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AB ,DF ⊥ AC , 垂足分别为 E ,F ,且DE=DF .请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC 是等边三角形,BD 是AC 边上的高,延长BC 至E ,使CE=CD .连接DE . (1)∠E 等于多少度? (2)△DBE 是什么三角形?为什么? 8.如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,∠A=30°.求证:AB=4BD . 9.如图,△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 的延长线上,且BD=CE ,DE 与BC 相交于点F .求证:DF=EF . A . 5cm B . 3cm C . 2cm D . 不能确定 A . 0 B . 1 C . 2 D . 3

高一数学集合知识点归纳及典型例题

高一数学集合知识点归纳及典型例题 Revised on November 25, 2020

集合 一、知识点: 1、元素: (1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ?; (2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:R Q Z N N N ;;;;;*+ 2、集合的关系: 子集 相等 3、全集 交集 并集 补集 4、集合的性质: (1);,,A B B A A A A A ?=?=?=?φφ (2) ;,A B B A A A ?=?=?φ (3) );()(B A B A ??? (4);B B A A B A B A =??=??? (5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ?=??=? 二、典型例题 例1. 已知集合 }33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。 例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。 例3. 已知集合 },01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。 \ 例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b , c 的值。 例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A , (1)若Φ=B A , 求m 的范围; (2)若A B A = , 求m 的范围。 例6. 已知A ={0,1}, B ={x|x ?A},用列举法表示集合B ,并指出集合A 与B 的关系。 三、练习题 1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈ B. M a ? C. a = M D. a > M

等腰三角形计算和证明题集锦(全)

一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 3. 如图,△ABC 中,AB=AC ,D 在BC 上, DE ⊥AB 于E ,DF ⊥BC 交AC 于点F , 若∠EDF=70°,求∠AFD 的度数 4. 如图,△ABC 中, AB=AC,BC=BD=ED=EA 求∠A 的度数 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点, 作DE ⊥BC 于E ,若BE=AC,BD=1/2,DE+BC=1, 求∠ABC 的度数 7. 如图,△ABC 中, AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 二、证明题 8、如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P , 过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 9、如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系。 10、如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC A B C D F E

11、11. 如图,△ABC中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD 12、12. 如图,△ABC中,AB=AC,D为△ABC外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD 13、13.已知:如图,AB=AC=BE,CD为△ABC中AB 边上的中线 求证:CD=1/2 CE 14、如图,△ABC中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED 15、如图,△ABC中,AB=AC,BE=CF,EF交BC于点G 求证:EG=FG 16、如图,△ABC中,∠ABC=2∠C,AD是BC边上的高,B到点E,使BE=BD 求证:AF=FC 17、如图,△ABC中,AB=AC,AD和BE两条高, 交于点H,且AE=BE 求证:AH=2BD 18、如图,△ABC中,AB=AC, ∠BAC=90°,BD=AB,∠ABD=30°求证:AD=DC 19、如图,等边△ABC中,分别延长BA至点E, 延长BC至点D,使AE=BD 求证:EC=ED 20、如图,四边形ABCD中,∠BAD+∠BCD=180°AD、BC的延长线交于点F,DC、AB的延长线交于点E,∠E、∠F的平分线交于点H 求证:EH⊥FH

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

与等腰三角形有关的证明题

与等腰三角形有关的证明题 例1.如图,等腰△ABC中,AB=AC,D是AB边上一点,E是AC延长线上一点,且BD =CE,DE交BC于F。 求证:DF=EF 分析:要证DF=EF,只需设法证明DF与EF所在的三角形全等, 但由于DF所在的△DFB比EF所在的△EFC显然大,故应考虑添加辅 助线。 作DG∥AC,交BC于G,则∠DGB=∠ACB 从而∠DGF=∠ECF(等角的补角相等)由AB=AC,得∠B=∠ACB 从而∠DGB=∠B,DG=BD=CE 在△DFG与△EFC中,∠DGF=∠ECF,∠DFG=∠EFC(对顶角相等) 故∠GDF=∠FEC 又DG=CE,所以△DFG≌△EFC 所以DF=EF 例2.如图,等腰△ABC中,AB=AC,D是BC上任一点,DE⊥AB于E, DF⊥AC于F。 求证:为定值。 分析:所谓定值是指不论点D在底边BC的何处,DE+DF的大小总是等 于已知的或隐含的某条线段的长,也就是说定值是一个常量。那么本题的定 值究竟是多少呢我们可以考虑点D所在的特殊位置,当点D与点B重合时, DE的长度为0,DF等于AC边上的高,可见,(DE+DF)的定值是腰上的高,因此,作△ABC的高BG,然后只需证明DE+DF=BG即可。 要证,可在BG上截取GH=DF,然后只需证BH=DE。连接DH,则只需证明△BDE≌△DBH。易知四边形DFGH是矩形,从而DH∥AC,∠BDH=∠C,∠BHD=∠DHG=90°=∠BED。又AB=AC,∠EBD=∠ABC=∠C,所以∠BDH=∠EBD。所以∠EDB =∠DBH。又BD为公共边,所以△BDE≌△DBH。 如果注意到高,联想到三角形面积,则 可采用如下简单的证法: 连接AD 则由,得: 又AB=AC 边上的高=定值

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

【离散数学】知识点典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。 【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。 【Abel群/交换群】·适合交换律。可能不只有两个元素适合x2=1 【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。 【子群】按照G中的乘法运算·,子集H仍是一个群。单位子群{1}和G称为平凡子群。 【循环群】G可以由它的某元素a生成,即G=(a)。a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。若G的元数是一个质数,则G必是循环群。 n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。共有?(n)个。【三次对称群】{I(12)(13)(23)(123)(132)} 【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。H有限,则H的任意右陪集aH的元数皆等于H的元数。任意两个右陪集aH和bH或者相等或者不相交。 求右陪集:H本身是一个;任取a?H而求aH又得到一个;任取b?H∪aH而求bH又一个。G=H∪aH∪bH∪… 【正规子群】G中任意g,gH=Hg。(H=gHg-1对任意g∈G都成立) Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。 1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。 2设G为有限群,元数为n,对任意a∈G,有an=1。 3若H在G中的指数是2,则H必然是G的正规子群。证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。故Ha=aH。 4G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。 5 H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合,则HN是G的子群。 【同态映射】K是乘法系统,G到K的一个映射σ(ab)=σ(a)σ(b)。 设(G,*),(K,+)是两个群,令σ:x→e,?x∈G,其中e是K的单位元。则σ是G到K 内的映射,且对a,b∈G,有σ(a*b)=e=σ(a)+ σ(b)。即,σ是G到K的同态映射,G~σ(G)。σ(G)={e}是K的一个子群。这个同态映射是任意两个群之间都有的。 【同构映射】K是乘法系统,σ是G到σ(G)上的1-1映射。称G与σ(G)同构,G?G′。同构的群或代数系统,抽象地来看可以说毫无差别。G和G′同态,则可以说G′是G的一个缩影。 【同态核】σ是G到G′上的同态映射,核N为G中所有变成G′中1′的元素g的集合,即N=σ-1(1′)={g∈G∣σ(g)=1′}。 N是G的一个正规子群。对于Gˊ的任意元素aˊ,σ-1(aˊ)={x|x∈G ,σ(x)= aˊ}是N在G 中的一个陪集。Gˊ的元素和N在G中的陪集一一对应。 设N是G的正规子群。若A,B是N的陪集,则AB也是N的陪集。 【环】R非空,有加、乘两种运算 a+b=b+a2)a+(b+c)=(a+b)+c, 3)R中有一个元素0,适合a+0=a, 4)对于R中任意a,有-a,适合a+(-a)=0, 5)a(bc)=(ab)c,

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

高一数学集合知识点归纳与典型例题

集合 一、知识点: 1、元素: a 是集合A的元素,记作a A ;若b不是集合A的 ( 1)集合中的对象称为元素,若 元素,记作 b A ; ( 2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:N; N*; N ;Z; Q;R 2、集合的关系: 子集 相等 3、全集 交集 并集 补集 4、集合的性质: (1)A A A,A,ABBA; (2)A A, A B B A; (3)( A B)(A B); (4)A B A B A ABB; (5) C S(A B) (C S A) (C S B),C S( A B) (C S A) (C S B); 二、典型例题 例1.已知集合 A { a 2, (a 1)2 ,a 23a 3} ,若1 A ,求a。 例 2. 已知集合M =x R | ax 2 2x10 中只含有一个元素,求a的值。

例3.已知集合 A { x | x2x 6 0}, B { x | ax 1 0}, 且B A ,求 a 的值。\ 例 4. 已知方程x2bx c 0 有两个不相等的实根x , x 2.设 C= {x , x 2},A={1,3, 11 5,7,9}, B={1 ,4,7,10} ,若A C,C B C ,试求 b, c 的值。 例 5.设集合A { x | 2 x 5}, B { x | m 1 x 2m 1} , (1)若A B,求 m 的范围;(2)若A B A ,求m的范围。

例 6. 已知 A ={0 ,1} , B = {x|x A} ,用列举法表示集合 B ,并指出集合 A 与 B 的关系。 三、练习题 1. 设集合 M = { x | x 17}, a 4 2,则( ) A. a M B. a M C. a = M D. a > M 2. 有 下 列 命 题 : ① { } 是 空 集 ② 若 a N, b N , 则 a b 2③ 集合 100 N , x Z} 为无限集,其中正确命 { x | x 2 2x 1 0} 有两个元素 ④ 集合 B { x | x 题的个数是( ) A. 0 B. 1 C. 2 D. 3 3. 下列集合中,表示同一集合的是( ) A. M ={ (3, 2)} , N ={ (2, 3)} B. M ={3 ,2} , N ={( 2,3)} C. M ={ ( x , y ) |x + y = 1} , N = {y|x + y = 1} D.M ={1 ,2} , N ={2,1} 4. 设集合 M { 2,3, a 2 1}, N { a 2 a 4,2a 1},若M N { 2} , 则 a 的取值集 合是( ) { 3,2, 1 } B. { -3} C. { 3, 1 } D. { - 3,2} A. 2 2 5. 设集合A = {x| 1 < x < 2} , B = {x| x < a} , 且 A B , 则实数 a 的范围是 ( ) A. a 2 B. a 2 C. a 1 D. a 1 {( x, y) | y 1} 6. x 设 x ,y ∈ R ,A = {( x ,y )|y = x} , B = , 则集合 A ,B 的关系是( ) A.A B B.B A C. A =B D.A B 7. 已知 M = {x|y = x 2- 1} , N = {y|y =x 2 -1} , 那么 M ∩ N =( ) A. Φ B. M C. N D. R 8. 已知 A = {-2,- 1,0,1} , B = {x|x = |y|,y ∈ A} ,则集合 B = _________________ 9. 若 A { x | x 2 3x 2 0}, B { x | x 2 ax a 1 0}, 且B A ,则 a 的值为 _____ 10. 若 {1,2, 3} A {1 , 2,3, 4, 5} , 则 A = ____________ 11. 已知 M = {2 , a , b} , N = {2a , 2,b 2 } ,且 M =N 表示相同的集合,求 a , b 的值 12. 已知集合 A { x | x 2 4x p 0}, B { x | x 2 x 2 0}且A B, 求实数 p 的范 围。 13. 已知 A { x | x 2 ax a 2 19 0}, B { x | x 2 5x 6 0} ,且 A , B 满足下列三 个条件:① A B ② A B B ③ Φ A B ,求实数 a 的值。

八年级下册第一章等腰三角形的证明测试题

第一章三角形的证明检测卷 一、选择题(每小题3分,共30分) 1.下列命题: ①等腰三角形的角平分线、中线和高重合; ②等腰三角形两腰上的高相等; ③等腰三角形的最短边是底边; ④等边三角形的高、中线、角平分线都相等; ⑤等腰三角形都是锐角三角形. 其中正确的有() A.1个 B.2个 C.3个 D.4个 2.如图,在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于点D,则BD的长为() A.15 7 B. 12 5 C. 20 7 D. 21 5 3. 如图,在△ABC 中,,点D在AC 边上,且,则∠A的度数为() A. 30° B. 36° C. 45° D. 70° 4.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为() A.8或10 B.8 C.10 D.6或12 5.如图,已知,,,下列结论: ①;②;③;④△≌△. 其中正确的有() A.1个 B.2个 C.3个 D.4个 6. 在△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边cm,则最长边AB的长是() A.5 cm B.6 cm C.5cm D.8 cm 7.如图,已知,,下列条件能使△≌△的是() A. B. C. D.三个答案都是8.(2015·陕西中考)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有() A.2个 B.3个 C.4个 D.5个 9.已知一个直角三角形的周长是26,斜边上的中线长为2,则这个三角形的面积为() A.5 B.2 C. 4 5 D.1 10.如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E ,如果cm ,那么△的周长是() A.6 cm B.7 cm C.8 cm D.9 cm 二、填空题(每小题3分,共24分) 11.如图所示,在等腰△ABC中,AB=AC, ∠BAC=50°, ∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF折叠后与点O重合,则∠OEC的度数是 . 12.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是___ ___三角形. 13.(2015?四川乐山中考)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=________°. 14.如图,在△ABC 中,,AM 平分∠,cm,则点M到AB的距离是_________. 15.如图,在等边△ABC中,F是AB的中点,FE⊥AC于E,若△ABC的边长为10,则 _________,_________. 16.(2015?江苏连云港中考)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线, 则△ABD与△ACD的面积之比是. 17. 如图,已知 的垂直平分线交 于点 ,则 . 18.一副三角板叠在一起如图所示放置,最小锐角的顶点D恰好放在等腰直角三角板的斜 边AB上,BC与DE交于点M,如果∠ADF=100°,那么∠BMD为度.

集合典型例题

1。集合得含义及其表示 (一)集合元素得互异性 1、已知,则集合中元素x所应满足得条件为 变式:已知集合,若,则实数得值为_______ 2。中三个元素可以构成一个三角形得三边长,那么此三角形可能就是 ①直角三角形②锐角三角形③钝角三角形④等腰三角形 (二)集合得表示方法 1. 用列举法表示下列集合 (1) __________________________ 变式:已知a,b,c为非零实数,则得值组成得集合为___ (2) ____ 变式1: 变式2: (3)集合用列举法表示集合B (4)已知集合M=,则集合M中得元素为 变式:已知集合M=,则集合M中得元素为 2。用描述法表示下列集合 (1)直角坐标系中坐标轴上得点_______________________________ 变式:直角坐标平面中一、三象限角平分线上得点______________ (2)能被3整除得整数_______________________、 3.已知集合,, (1)用列举法写出集合;(2)研究集合之间得包含或属于关系 4。命题(1) ;(2);(3);(4)表述正确得就是、 5、使用与与数集符号来替代下列自然语言:

(1)“255就是正整数” (2)“2得平方根不就是有理数” (3)“3、1416就是正有理数” (4)“-1就是整数” (5)“不就是实数” 6、用列举法表示下列集合: (1)不超过30得素数(2)五边形得对角线 (3)左右对称得大写英文字母(4)60得正约数 7。用描述法表示:若平面上所有得点组成集合, (1)平面上以为圆心,5为半径得圆上所有点得集合为_________ (2)说明下列集合得几何意义:; 8。当满足什么条件时,集合就是有限集?无限集?空集? 9、元素0、空集、、三者得区别? 10. 请用描述法写出一些集合,使它满足: (i)集合为单元素集,即中只含有一个元素; (ii)集合只含有两个元素; (iii)集合为空集 11.试用集合概念分析命题:先有鸡还就是先有鸡蛋? 解释:表述问题时把有关集合得元素说清楚,大有好处。先有鸡还就是先有鸡蛋?让我们运用集合概念来分析它。设地球上古往今来得鸡组成一个集合,孵出了最早得鸡得蛋算不算鸡蛋呢?这就是关键问题。设所有得鸡蛋组成集合,要确定得元素,就得立个标准,说定什么就是鸡蛋,一种定义方法就是:鸡生得蛋才叫鸡蛋;另一种定义方法就是:孵出了鸡得蛋与鸡生得蛋都叫鸡蛋。如果选择前一种定义,问题得答案只能就是先有鸡;选择后一种定义,答案当然就是先有鸡蛋。至于如何选择,不就是数学得任务,那就是生物学家得事。 (三)空集得性质 1.若?{x|x2≤a,a∈R},则实数a得取值范围就是________ 2、已知a就是实数,若集合{x| ax=1}就是任何集合得子集,则a得值就是_______.0?

相关主题
文本预览
相关文档 最新文档