当前位置:文档之家› 现代检测理论与技术课程设计

现代检测理论与技术课程设计

现代检测理论与技术课程设计
现代检测理论与技术课程设计

重庆大学研究生课程报告书

基于Zigbee无线网络的瓦斯浓度检测系统

课程名称:现代检测理论与技术

姓名:

学号

学院:

专业:控制工程

一、研究背景和目的

1.1研究背景和目的

近年来,煤矿事故频频发生,煤矿工人的安全问题时时牵拉着人们的神经。煤碳是国家经济发展的重要能源,所以安全生产、加强煤矿的安全建设已经越来越紧急和迫切。煤矿事故的元凶主要是瓦斯,因瓦斯事故每年都给国家和人民带来巨大损失。煤矿瓦斯治理是煤矿安全生产治理的核心,如何有效控制瓦斯事故是解决煤矿安全问题的关键。据不完全统计,在 1981 至 2001 年期间,全国煤矿事故总计死亡约 12.6 万人,其中重特大瓦斯事故死亡人数占 72.3%,平均每年死亡 1579 人。2005 年,煤矿瓦斯事故发生 405 起,死亡 2157 人;2006 年瓦斯事故发生 327 起,死亡 1319 人。仅 2005 年 12月 7 日河北省唐山市恒源实业有限公司的瓦斯煤尘爆炸事故就造成了 108 人死亡,29人受伤的严重后果,直接经济损失 4870.67 万元。在这些残酷的数字面前,人们清醒得认识到,若要保障人民的生命安全和国家的经济正常发展,必须加强煤矿的安全生产,加强瓦斯含量的检测力度,努力做到防患于未然,才能将损失降低到最小。

由于煤矿自然环境复杂,矿井开采条件多变,而且存在着火灾、水灾等自然灾害,加上煤矿作业空间十分狭小,照明条件差等因素,目前常用的煤矿安监系统仍使用有线方式,即采用光缆、电力线缆或信号线缆等,有线方式存在以下缺陷:

(1)布线繁琐,安装维护成本大。监测系统所需的大量光缆、电缆价格不菲,此外在复杂的地下环境布设线路同样需要消耗大量的人力物力。

(2)覆盖范围有限。由于地形环境复杂多变,矿井中存在着大量难以布线的区域,有线监控系统很难遍布矿井的各个地区,无法实现对整个矿井的全方位监测,为安全生产留下隐患。

(3)线路依赖性强。有线网络的自我修复能力较差,局部线路遭到破坏很可能造成整个监控系统的瘫痪。特别是发生爆炸事件时,线缆往往会受到致命的破坏,不能为搜救工作及事态检测提供信息。现阶段,随着各地矿井开采深度的增加,已有的安检系统难以扩展网络、灵活性不高已成为制约安全检测的瓶颈。这使得网络数据的可靠性、有效性和实时性得不到保证,难以确保重要数据及时传输。因此,利用无线网络构建网络简单、扩展性强的特点解决煤矿安检系统对实时性、可扩展性和低成本的需求已经非常迫切。

1.2 瓦斯含量检测技术及Zigbee发展现状

目前,瓦斯检测采用的是瓦斯巡回检查,即派专职人员以巡检的形式,定期采集指定地点的瓦斯信息。但是该方式存在以下缺点:

(1) 人工获取数据、手工记录,无法做到实时检测。

(2) 瓦检员人身安全难以保证。

(3) 历史数据查询麻烦、不能根据历史记录直接进行分析。

所以设计更合理、更高效的瓦斯采集方案摆在了人们的面前。

Zigbee 无线网络是无线网络的一个成员,主要用于无线传感器网络的建立。无线传感器网络是由分布在给定区域内的众多无线传感器节点构成的网络。每一个传感器节点都有一种或多种传感器用来获取信息,并具有一定的计算能力。各节点之间通过网络协议实现信息的交流、汇集和处理,从而实现对局部区域内目标的探测和定位。随着通信技术、嵌入式技术和传感器技术的飞速发展,具有感知能力、计算能力和通信能力的微型传感器开始在世界范围内出现。

国际上比较有代表性和影响力的无线传感器网络实用项目有:遥控战场瓦斯监测系统、智能尘埃项目、野生动植物行为习性监控网络等。目前,英特尔公司与加州大学伯克利分校正领导者“微尘”技术的研究工作,已经成功研制了瓶盖大小的全能传感器,可以执行计算、检测与通信功能。在日本,日立公司已开发出了全球最小的无线传感器网络终端,该终端可以连接各种传感器包括温度、亮度、红外线以及加速度等。可以应用于安全管理和智能家庭。我国的无线传感器网络及其应用研究几乎与发达国家同步。2001 年由中国科学院牵头,由上海微系统所、微电子所、半导体所、电子所、软件所、中国科技大学等十余家科研院所和高校建立了传感器网络系统研发平台,在无线智能传感器网络通信技术、微型传感器、传感器节点等方面取得了很大进展。Zigbee无线传感器网络已经在各领域展开了广泛的应用。

二、瓦斯浓度检测技术

2.1 瓦斯传感器技术

目前,矿井中常用的瓦斯传感器可分为热导式和热效式两大类。

热导式瓦斯传感器利用瓦斯与空气导热系数的不同而测量瓦斯浓度。这种传感器在工作时需通入恒定的电流,将其加热到一定的温度(180℃左右)才能工作,功耗较大,且其中的半导体热敏式电阻传感器受水蒸汽的影响较大,元件的一致性和互换性也较差。热导式瓦斯检测仪在测定低浓度的瓦斯时,输出信号很小误差较大。因此,这类传感器制成的瓦斯检测仪适用于测量高浓度的瓦斯(5%~100%)。目前这种传感器在矿井中应用较少。

热效式瓦斯传感器(又称热催化式瓦斯传感器),其工作原理是利用可燃气体在催化剂的作用下进行无焰燃烧产生热量,使元件电阻因温度升高而发生变化,通过测量电阻端电压来测知瓦斯的浓度。这种传感器的优点是精度较高,输出信号较大(1%CH 时,输出电压可达 15~20mV),且不受其它燃气和灰尘存在的影响。它的缺点是元件表面温度高(300~450℃);寿命短(多数国家均保证 1 年);功耗大(其加热功率>1W。热催化元件功耗为 0.3~0.75W),易受硫、铅、磷、氯等的化合物干扰而使催化剂中毒,降低其灵敏度,甚至误报。

综合上述因素,本课题中传感器器件选用DYNAMENT公司生产的MJC4传感器,其结构图如图2.1所示。

图2.1 元件外形结构

2.2 Zigbee无线网络技术

ZigBee是基于IEEE802.15.4标准的低功耗局域网协议。根据国际标准规定,ZigBee技术是一种短距离、低功耗的无线通信技术。这一名称(又称紫蜂协议)来源于蜜蜂的八字舞,由于蜜蜂是靠飞翔和“嗡嗡”地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。其特点是近距离、低复杂度、自组织、低功耗、低数据速率。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。ZigBee是一种低速短距离传输的无线网络协议。ZigBee协议从下到上分别为物理层(PHY)、媒体访问控制层(MAC)、传输层(TL)、网络层(NWK)、应用层(APL)等。其中物理层和媒体访问

控制层遵循IEEE 802.15.4标准的规定。

它有如下特点:

(1) 低功耗:由于Zigbee的传输速率低,发射功率仅为1mW,而且采用了休眠模式,功耗低,因此Zigbee设备非常省电。

(2) 成本低:Zigbe模块的初始成本在 6 美元左右,估计很快就能降到1.5~2.5 美元,并且Zigbe协议是免专利费的。

(3) 延时短:通信时延和从休眠状态激活的时延都非常短,典型的搜索设备时延30ms,休眠激活的时延是15ms,活动设备信道接入的时延为15ms。

(4) 可靠:采取了碰撞避免策略,同时为需要固定带宽的通信业务预留了专用时隙,避开了发送数据的竞争和冲突。

(5) 安全:Zigbee提供了基于循环冗余校验(CRC)的数据包完整性检查功能,支持鉴权和认证。

基于以上特点,Zigbee 网络成为无线传感器网络的首选,它非常适宜于在工矿环境下构建传感器网络。

2.3 瓦斯检测系统设计方案

本课题研究的是Zigbee 无线传感器网络在瓦斯采集系统中的应用。因此,研究的重点在网络系统的建立上。另外传感器如何采集数据并将之放于网络,也是本课题的一个重点。下面介绍本系统的总体设计方案。本系统主要包括Zigbee 无线网络传输部分和瓦斯信息采集和处理部分,将二者分开的目的是增加网络的应用范围,只需要建立一次网络就可以连接多种应用。其中,Zigbe无线网络部分的主要功能是完成矿井下信号的无线传输,它包括Zigbee射频模块和底板模块两个部件。将二者分开是因为射频部分需要考虑板材的选取和天线的设计,将它们分开可以降低成本、避免干扰。Zigbee底板主要提供功能外设,包括模块电源设计、程序下载Debug 口的设计、液晶显示电路设计、按键和各种接口设计等。

两大部分通过串口进行数据的通信,其连接关系如下图:

图2.2 模块连接关系

瓦斯采集及信息处理模块主要完成瓦斯信息的采集和处理。电路主要包括瓦斯传感器的配置,CPU主芯片MSP430F169的配置,液晶显示模块电路的设计,按键部分电路设计及各种接口电路的设计等。

三、系统硬件电路设计

3.1 系统总体设计

瓦斯浓度检测仪电路按照I类电气设备(煤矿用电气设备)本质安全电路的要求进行设计,以MSP430F157为核心,外扩电源监视看门狗电路,传感器探头驱动电路,检测信号滤波放大电路,4~20mA电流环电路,RS485接口电路,

报警输出接口及电源部分等,电路原理框图如图3.1所示。

图3.1 系统总体原理图

系统的硬件功能模块主要分为协调器、路由器、终端节点和瓦斯采集节点,其中协调器、路由器、终端节点因为主芯片相同可以用同一套硬件系统来实现,只要下载相应的软件即可完成相关功能。

3.2 Zigbee网络模块电路设计

Zigbee网络模块因为要包含协调器、路由器和终端节点三种网络设备的功能。因此需要完备的电路配置,本设计采用底板和射频板分离的方案,在底板上设计了各种功能。

(1) 电源部分:如下图3.4所示,电源部分采用电池供电和电源供电两种供电方式,用户可以自行选择。电池供电采用2节1.5V干电池,由于系统主板要求电源电压 3.3V,输入电压不能小于 2.8V,若电池电量降低供电电压会低于2.8V,为了最大限度使用电池,需要使用BOOST 电源芯片SP6641将3V的电池电压转换成3.3V,然后使用线性电源芯SP6201过滤开关电源产生的纹波电压。电源供电方式,由于其输入电压为5V,同样需要转换为系统所需的3.3V,这里采用线性电源芯片AM1117 来完成电压的转换。

图3.1 电源模块

(2)串口部分:如下图 3.5 所示,用芯片 MAX3232 来完成串口的配置,同时加上发送和接收两个端口的 LED 灯指示,方便调试。系统选用 P0.2 和 P0.3 两个串口作为系统的输入输出串口。

图3.2 串口模块

(3)液晶显示部分:如下图3.7所示,本系统采用东显LCD12864-I型号的液晶模块,因为此模块是并行数据口,而CC2430引脚资源有限只能使用串行数据,所以使用74HC595芯片将CC2430的串行数据变换为并行数据再连接液晶模块。

图3.3 液晶显示部分

四、系统软件程序设计

4.1 系统软件数据流程

本系统主要通过串口透传方法将A/D 采样的数据经终端节点送到网关协调器,其传输介质是电磁波,整个数据流程经过了多个模块,如下图 4.1 所示。

图 4.1 系统软件数据流程

网络模块都具有无线接受和发送的能力,应用程序只需为协议栈注册应用端口、为操作系统添加任务、为协议栈准备好数据就可以通过协议栈发送数据,接收方通过消息处理函数接收来自发送方的数据。终端节点需要完成加入网络的工作,加入网络后就可以从串口接收A/D 采样数据并通过协议栈将数据无线发送。路由器的工作比终端节点点多了一个数据转发功能,这可以由协议栈完成,用户应用程序不作处理。

4.2 串口透传应用程序设计

大多数单片机和系统都支持串口数据传输。因此,使用串口连接瓦斯含量信息检测模块或其他外设模块非常方便。另外,如果网关支持串口,可以方便的将Zigbee协议转换为其他协议,利用已有的网络资源,避免重复投资。本课题根据协议栈提供的串口应用实例做了适合本系统的改动,设计了串口透传的应用层程序。使用该技术可以将所有具有串口功能的外设模块接入Zigbee网络,从而代替了有线连接。在透传系统中,所有的网络模块都具有串口的收发功能,只要上位机串口有数据输出,模块就把串口的数据以无线方式编码发送。当接收模块接收到发射模块发送的无线数据后,就会把解码后的数据按发送端的格式从串口输出,这样网络两端的上位机和下位机都通过串口收发数据而不用理会无线传输部分,这就是无线透传的工作。无线透传是一种使用UART串口的Zigbee网络应用,与其它应用的实现方法一样,UART串口透传应用需要将程序以任务的规范,加入操作系统,有网络操作系统调度执行

在做Zigbee项目设计时,所有的应用,都以任务的方式加载到操作系统,由操作系统来调度。用户只需要编写自己的任务,以适当的方式将任务加入OSAL的任务表中就可以了。OSAL主要负责任务管理、消息管理、电源管理、定时器管理和存储器管理等。Zigbee中的操作系统对任务的管理是基于任务轮询

方式的,在系统的任何位置只要我们实现了osalInitTasks就可以将我们系统中的所有任务放在操作系统中执行。

void osalInitTasks( void )

{

uint8 taskID = 0;

tasksEvents = (uint16 *)osal_mem_alloc( sizeof( uint16 ) * tasksCnt);

osal_memset( tasksEvents, 0, (sizeof( uint16 ) * tasksCnt));

macTaskInit( taskID++ );

nwk_init( taskID++ );

Hal_Init( taskID++ );

#if defined( MT_TASK )

MT_TaskInit( taskID++ );

#endif

APS_Init( taskID++ );

ZDApp_Init( taskID++ );

SerialApp_Init( taskID );

}

分别完成协议栈各层的初始化任务。各层之间的信息交换通过消息命令的方式来完成,在应用层接受到各类消息后由相应的处理函数来处理。用户任务初始化函数SerialApp_Init( taskID )加载到最后表示优先级最低。

4.3 网关应用程序设计

Zigbee网络是局域网,外界要使用Zigbee网络的数据必须通过网关把Zigbee网络协议转换为外界网络的的协议。现今,最广泛使用的网络是TCP/IP 网络。所以本项目设计了Zigbee转TCP/IP 网关将协调器接收到的数据,通过串口交给到网关。网关将这些数据转化以太网格式,发送到远端的监控室。网关设计需要使用TCP/IP协议栈,TCP/IP协议是一个四层的分层体系结构。高层为传输控制协议(TCP,Transmission Control Protocol),它负责聚集信息或把文件拆分成更小的包。这些包通过网络传送到接收端的TCP层,接收端的TCP层把包还原为原始文件。低层是网际互联协议(IP,Internet Protocol),它处理每个包的地址部分,使这些包正确的到达目的地。TCP/IP使用客户端/服务器模式进行通信,TCP/IP通信是点对点的面向连接的协议,也即通信在网络中的一台主机与另一台主机之间进行,主机之间的数据传输可靠性由协议栈在保证。与TCP/IP协议相对的协议还有用户数据包协议(UDP),它不是面向连接的,因此网络数据是否

到达对端要有用户程序考虑。还有一些协议是网络主机用来交换路由信息的,包括Internet控制信息协议(ICMP),内部网关协议(IGP),外部网关协议(EGP),边界网关协议(BGP)等等。

图 4.2 网关数据流图

本课题的网关采用串口转接以太网的方式实现,将串口输入的数据转化为TCP/IP协议数据通过以太网输出,从以太网输入的数据包先解码取出有效载荷后由串口输出。开发协议栈使用LWIP1.3.2,操作系统使用UCOS II 2.86,CPU 使用ARM S3C6410,网关使用ARM11 开发板设计。

五、系统调试及实验结果

5.1 系统调试

本方案测试是在实验室环境下搭建一个测试环境,主要测试采集前端的瓦斯

浓度测定功能、Zigbee 型网络的搭建功能以及瓦斯信息的无线发送功能。首先,采集前端瓦斯浓度检测本模块测试选择实验室用1%和5%的甲烷标准气样进行瓦斯浓度测定功能测定。将采集模块放在封闭的气室内,并持续向内通不同浓度的标准甲烷气样,最终测试的浓度信息会经过主控制芯片MSP430F169的处理直接通过串口传递给上位机,上位机通过串口调试助手显示接收的信息。需要注意的是,在进行试验之前,必须先将瓦斯传感器电阻调零,将电桥输出电压调为0。封闭气室最好也通气5分钟后再进行试验,保证气样将空气排尽。测试时,先向采集前端通1%的甲烷标准气样,过大约1分钟左右采集前端就能够检测到环境中的瓦斯浓度为1%,并通过串口将该浓度值显示在PC机上。然后,再向采集前端通5%的甲烷标准气样,过大约1~2分钟采集前端就能够检测到环境中的瓦斯浓度为5%。在进行瓦斯浓度测定功能测试时,要时刻注意标准气样钢瓶上流量计的读数,保证气体流量在200ML/s,否则向采集前端通气时,钢瓶流出的甲烷气样的浓度会和标准值之间有误差。

然后搭建Zigbee 星型网络:每个终端节点受网络特性的影响,最大检测距离不应超过100米,这里选择70米。星型网络的搭建最少需要1个协调器一个终端节点,这里选择1个协调器,1个路由器,1个终端节点。网络的连接状态可通过Zigbee Packet Sniffer2006 来检测到。

最后瓦斯信息的无线发送功能:瓦斯浓度信息的采集发送端采用本文设计的瓦斯采集终端节点,发送网络采用前面测试的星型网络,接收到的数据通过Zigbee网络转换到网关,网关将Zigbee网络的数据转换为TCP/IP 协议数据送往上位机,上位机上使用网络调试助手监控网关的数据。测试时,间隔不同的距离进行无线数据收发的测试。

本课题使用IAR EW MCS-51 软件设计了Zigbee无线网络应用程序,通过Debug工具可以将编译好的程序下载到CC2430芯片中。在下载程序的时候,需要为不同的设备选择不同的工程。本课题的实验使用了协调器和终端节点两个工程,通过简单配置后将程序下载到设备中。其操作界面如下:

图5.1 IAR操作界面

5.2 实验结果

当系统的各个模块都调试成功后,就可以连接起来运行整个系统通过PC机监控系统运行。系统分为两个部分网关部分和采集部分,网关部分由网关电路板和协调器设备组成,采集部分由MSP430A/D采样模块和终端节点组成。

以下是实验室搭建的测试环境下的各个功能测试结果:

(1)采集前端瓦斯浓度检测,下表5.1为瓦斯浓度检测结果

表5.1 瓦斯浓度检测结果

(2)Zigbee星型网络的搭建,网络搭建成功后的Zigbee Packet Sniffer2006 工作界面如下图所示:

图5.2 Zigbee网络星型搭建

(3)瓦斯信息的无线发送功能

本课题采用网关将Zigbee网络的数据转换为TCP/IP协议数据送往上位机。因此,在上位机上使用网络调试助手监控网关的数据,即可查看Zigbee网络中终端节点送往协调器节点的数据。这种方式可以最大限度模拟真实环境下的系统构成。下表5.2为瓦斯信息无线发送的测试结果。

表5.2 无线发送测试结果

使用网关将Zigbee网络与以太网连接可以最大限度的利用已有网络资源,减少网络建设的重复投资。星型网络成功搭建后,完成瓦斯信息的顺利传输。

六、总结与展望

本论文对课题研究工作做了系统的总结,介绍了Zigbee 无线传感器网络在瓦斯采集方面的应用,详细介绍了系统的软硬件设计包括Zigbee 网络模块的设计和瓦斯采集模块的设计。对Zigbee 协议栈的工作流程和使用方法做了详细说

明,对其中各环节的工作原理进行了深入的分析。设计了利用Zigbee 网络进行串口透传应用解决了瓦斯瓦斯含量信息检测模块与无线网络连接的问题,并介绍了Zigbee 网络与地面监控室以太网连接的方法,说明了网关的作用以及设计方法。

本论文主要工作和研究成果是:

(1) 介绍了Zigbee无线网络在瓦斯采集系统中的应用方案。探索了使用无线网络解决现有安检系统布线难、维护难、有效性差等问题的方法。

(2) 研究了Zigbee无线网络技术。在分析协议栈的基础上,介绍了Zigbee网络建立、节点加入以及数据无线收发的方法。

(3) 设计了瓦斯瓦斯含量信息检测模块、Zigbee射频模块以及Zigbee底板,介绍瓦斯传感器信号放大电路设计、Zigbee天线设计以及核心芯片CC2430、MSP430F169配置电路设计的方法。

本系统能够完成瓦斯含量信息的快速、准确采集以及瓦斯含量信息的无线传输。系统工作电压 3.3V,工作电流110mA,反应速度10 秒以内,采集频率 1 次/10 分钟。

虽然在实验室测试环境下已经达到了预期的目标,但是在实际工程应用中,还有很多部分需要改进。例如硬件小型化的研究。本课题结果的实物比较大,如果能够完成系统的小型化那么该技术将会更有优势。在小型化方面比较好的技术是LTCC 工艺,该技术可以实现系统的高可靠性能和稳定性同时做到小型化封装。另外,Zigbee网络在井下环境的实际工作系统中需进一步研究和完善。井下环境复杂,一些在实验阶段工作正常的实验,可能在井下长期工作时会出现各种其他问题,尤其是安检设备的可靠性要求必须严格,最大限度的保证设备的安全、稳定、可靠性能还需要付出极大努力。

参考文献

[1] 陈黎.我国煤炭安全生产的法律思考:[学位论文].北京:中国地质大学.2006

[2] 李文仲,段朝玉.Zigbee2006 无线网络与无线定位实战.北京航空航天大学出版

社.2008

[3] 高守玮,吴灿阳.Zigbee 技术实践教程背景航空航天大学出版社.2009

[4] 周智勇.智能传感器无线网络提高采矿作业的安全性.电子产品世界.2008(6):23~29

[5] 王锐华,于金.浅析Zigbee 技术.电子技术.2004(6):13~17

[6] 蒋挺,赵成林.紫蜂技术及其应用.北京邮电大学出版社2006.

[7] 金纯,蒋小宇,罗祖秋.Zigbee 与蓝牙的分析与比较[扎信息技术与标准化.2004(1) :

7~20

[8] 刘明磊,李家齐,饶伟.浅谈Zigbee在军事物流中的应用Zigbee与RFID在物流管理系统

的应用.2007(23):33~39

[9] 周怡颞,凌志浩,吴勤勤.Zigbee无线通信技术及其应用探讨.自动化仪表.2005,(26):

5~9

[10] 赵景宏,李英凡,许纯信.Zigbee技术简介.电力通信系统.2006(27):54~56

[11] 孙弋.短距离无线通信及组网技术.西安:西安电子科技大学出版社,2008

[12] 孙利民,李建中,陈渝,朱红松.无线传感器网络.第一版.北京:清华大学出版社,2005

[13] X. Chen: Wireless Ultrasonic Data Transmission Based on CC2430 Chip, Proceedings of

2011International Conference on Test and Measurement, IEEE Press (2011).

[14] Heinzelman W. R, Chandra Kasan A. P, Krishnan H. Energy efficient communication

protocol for wireless sensor networks. Proceedings of the Hawaii international Conference on System Sciences.IEEE, 2010, V ol(2):10.

[15] E. Deborah. Wireless Sensor Networks Tutorial Part IV: Sensor Network Protocols[C].

Atalanta, Georgia, USA: Westin Peachtree Plaza, 2012, 23-28.

检测技术课程设计

检测技术课程设计 一、课程设计的目的 综合应用已修课程所学知识,完成被测信号的提取、转换、处理的一次综合性设计实践。它的作用如下: 获得工程师基本训练,培养学生综合运用所学理论和技术知识,解决工程实际问题的能力。 (1)提高学生查阅科技文献资料能力。 (2)开发学生的主观能动性与创造性。 (3)加深学生对课程内容的理解,拓展所学知识面。 (4)使学生初步建立正确的设计思想。掌握系统的设计方法和设计步骤。 二、课程设计时间 检测技术课程设计为1周。 三、课程设计的任务 以任务书的形式给出。 任务书的主要内容有: (1)给予的对象; (2)设计题目; (3)设计要求; (4)撰写的设计报告要求; (5)时间安排。 设计报告内容包括:目录,设计题目,前言,设计方案与设计工艺流程,各部分设计原理,设计计算及说明,器件、仪器设备的选择,设计图纸,参考文献,附录。设计图用专用计算机软件绘制,打印。 四、课程设计报告的一般格式 课程设计报告包括封面、目录、绪论、主体部分、结尾部分。 1、绪论 主要说明设计的目的、设计的任务和要求等。 2、主体部分 (1)总体设计方案的设计

(2)软硬件电路的设计 (3)设计结果(实验数据等) (4)参考文献 2、结束语 阐述本次设计的收获与体会,课题进一步完善的建议与意见。致谢等。如有附录可放在结尾处。

设计题目一电机自动监控系统设计 一、电机控制系统描述 电机作为一种拖动动力设备,在机床加工、运输、电力等领域有着广泛的应用。为了保证电机系统的正常运行,需要通过检测控制装置对它进行监控。重点监控的参数是电机 A、B、C三相线圈的温度、电机轴的径向振动振幅、电机轴的转速。 二、控制要求 上图为电机供电主电路。三相电经过空气开关KQ、交流接触器Z、热继电器PT,加到电机上,当接触器常开触点接通时,电机得电,运转。可以通过控制接触器线圈的方式控制接触器主常开触点的通断。正常接触器线圈得电,接触器主常开触点接通,异常接触器线圈断电,接触器主常开触点断开。 常规电机控制电路如图。 START STOP

检测技术及仪表课程设计报告

第一章绪论 1.1 课程设计目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。 通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 1.2课题介绍 本课设题目以多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需参数的检测。设计检测方案,包括检测方法,仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 1.3 实验背景知识 换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。 1.4 实验原理 1.4.1 检测方法 按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。 热学法中又可分为热阻表示法和温差表示法两种; 非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射技术、时间推移电影法、显微照相法、电解法和化学法。 这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。这里选择热学法中的污垢热阻法。

1.4.2 热阻法原理简介 表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量mf,污垢层平均厚度δf和污垢热阻Rf。这三者之间的关系由式表示: (1-1) 图1-1 清洁和有污垢时的温度分布及热阻 通常测量污垢热阻的原理如下: 设传热过程是在热流密度q为常数情况下进行的,图1a为换热面两侧处于清洁状态下的温度分布,其总的传热热阻为: (1-2) 图1b为两侧有污垢时的温度分布,其总传热热阻为: (1-3)忽略换热面上污垢的积聚对壁面与流体的对流传热系数影响,则可认为 (1-4)于是两式相减得: (1-5)该式表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。 实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有: (1-6) f f f f f f m Rδ λ λ ρ 1 = = c w c c R R R U 2 1 /1+ + = f f w f f f R R R R R U 2 2 1 1 /1+ + + + = f c f c R R R R 2 2 1 1 ,= = c f f f U U R R 1 1 2 1 - = + q T T R R R R U b f s f f w c f /) ( /1 ,1 2 1 - = + + + =

电子设计大赛综合测评题课程设计解析

郑州轻工业学院 电子技术课程设计> @ 题目: 2015年电赛测评试题 姓名:王苗龙 专业班级:电信13-01 学号: 0134 ~ 院(系):电子信息工程学院 指导教师:曹卫锋谢泽会

完成时间: 2015年10月 29日 郑州轻工业学院 课程设计任务书 题目 2015年电子设计大赛综合测评试题 ~ 专业电信工程13-1 学号 0134 姓名王苗龙 主要内容、基本要求、主要参考资料等: 主要内容 1.阅读相关科技文献。 2.学习电子制图软件的使用。 3.学会整理和总结设计文档报告。 4.学习如何查找器件手册及相关参数。 技术要求 ~ 1、使用555时基电路产生频率20kHz-50kHz连续可调,输出电压幅度为1V的方波Ⅰ; 2、使用数字电路74LS74,产生频率5kHz-10kHz连续可调,输出电压幅度为1V的方波Ⅱ; 3、使用数字电路74LS74,产生频率5kHz-10kHz连续可调,输出电压幅度峰峰值为3V的三角波; 4、产生输出频率为20kHz-30kHz连续可调,输出电压幅度峰峰值为3V的正弦波Ⅰ; 5、产生输出频率为250kHz,输出电压幅度峰峰值为8V的正弦波Ⅱ;方波、三角波和正弦波的波形应无明显失真(使用示波器测量时)。频率误差不大于5%;通带内输出电压幅度峰峰值误差不大于5%。 主要参考资料 1.何小艇,电子系统设计,浙江大学出版社,2010年8月 . 2.姚福安,电子电路设计与实践,山东科学技术出版社,2001年10月 3.王澄非,电路与数字逻辑设计实践,东南大学出版社,1999年10月 4.李银华,电子线路设计指导,北京航空航天大学出版社,2005年6月 5.康华光,电子技术基础,高教出版社,2006年1月 完成期限: 2015年10月30日 指导教师签章:

测控系统原理课程设计汇本

摘要 本系统以AT89C52为核心器件,设计一种函数信号发生器,AT89C52是一个低电压高性能CMOS 8位单片机,片含8k bytes的课反复擦写的Flash只读存储器和256 bytes的随机存取数据存储器(RAM)。本系统大致可分为四个模块,单片机控制模块(AT89C52),波形输出模块(DAC0832、UA741),显示模块(数码管、电阻),按键模块。可以输出三角波、正向锯齿波、负向锯齿波和方波,波形清晰,系统采用按键输入,利用数码管显示电路输出数字显示的方案,其中:0为方波、1为正向锯齿波、2为负向锯齿波、3 为三角波。 目录

第一章设计容及要求 (2) 第二章需求分析与设计思路 (2) 第三章总体方案设计 (3) 3.1硬件设计 (3) 3.1.1 硬件设计系统总体框图 (3) 3.1.2单片机控制系统电路 (3) 3.1.3波形输出模块电路 (3) 3.1.4显示模块 (3) 3.1.5按键模块 (3) 3.2软件设计 (4) 第四章详细设计 (4) 4.1硬件电路原理图 (4) 4.2元件清单并说明元件选择及参数选择的依据 (5) 4.3仿真运行结果 (6) 4.4 单片机片资源分配图 (7) 4.5 软件流程图 (8) 4.6程序清单及注释 (8) 第五章使用说明 (9) 5.1性能和功能介绍 (9) 5.2各操作开关、按钮、指示灯、显示器等的作用介绍 (9) 5.3使用操作步骤 (9) 5.4故障处理 (9) 第六章设计体会 (9) 第七章参考文献 (10) 附录 (10) 第一章设计的容及要求

运用所学单片机、模拟和数字电路、以及测控系统原理与设计等方面的知识,设计出一台以AT89C52为核心的函数发生器,能分别产生三角波、正向锯齿波、负向锯齿波和方波,完成输出信号的产生、显示及键盘接口电路等部分的软、硬件设计,要求采用DAC0832 实现D/A转换,利用按键(自行定义)进行输出波形选择,同时将当前输出波形代号显示在LED上:0为方波、1为正向锯齿波、2为负向锯齿波、3 为三角波。 要求: 1、设计接口电路,将这些外设构成一个简单的单片机应用系统。 2、函数发生器要求如下: 1)1位数码显示 2)输出信号:0~5V。 3)按键切换输出波形。 第二章需求分析与设计思路 本次设计要求设计一台以AT89C52为核心函数信号发生器,由单片机完成人机界面、系统控制、信号的采集分析以及信号的处理和转换,系统采用按键输入,利用数码管显示电路输出数字显示的方案。故将设计分解为四个模块,单片机控制模块(AT89C52),数模转换放大(DAC0832、UA741),显示模块(数码管、电阻),按键模块。波形的产生是通过AT89C52 执行某一波形发生程序,向D/A转换器的输入端按一定的规律发生数据,从而在D/A转换电路的输出端得到相应的电压波形。在AT89C52的P1口接4个按扭,通过软件编程来选择各种波形、幅值电压和频率,另有P1.4口管脚接七段数码管芯片,以驱动数码管显示电压幅值和频率,每种波形对应一个按钮。其中单片机控制电路主要是形成扫描码,键值识别、键处理、参数设置;形成显示段码;产生定时中断;形成波形的数字编码,并输出到D/A接口电路和显示驱动电路。显示电路则驱动1位七段数码管显示,扫描按钮。波形转换电路将波形样值的编码转换成模拟值,完成单极性的波形输出。单片机向0832发送数字编码,产生不同的输出。先利用采样定理对各波形进行抽样,然后把各采样值进行编码,的到的数字量存入各个波形表,执行程序时通过查表方法依次取出,经过D/A转换后输出就可以得到波形。利用按键进行输出波形选择,同时将当前输出波形代号显示在LED上:0为方波、1为正向锯齿波、2为负向锯齿波、3 为三角波。 第三章总体方案设计

(2014春版)《现代检测技术》实验指导书

《现代检测技术》实验指导书 李学聪冯燕编 广东工业大学自动化学院 二0一四年二月

实验一 热电偶测温及校验 一、 实验目的 1.了解热电偶的结构及测温工作原理; 2.掌握热电偶校验的基本方法; 3.学习如何定期检验热电偶误差,判断是否及格。 二、 实验内容和要求 观察热电偶,了解温控电加热器工作原理; 通过对K 型热电偶的测温和校验,了解热电偶的结构及测温工作原理;掌握热电偶的校验的基本方法;学习如何定期检验热电偶误差,判断是否合格。 三、 实验主要仪器设备和材料 1. CSY2001B 型传感器系统综合实验台(下称主机) 1台 2. 温度传感器实验模块 1块 3. 热电偶 镍铬 ― 镍硅热电偶(K,作被校热电偶) 1支 镍铬 ― 锰白铜热电偶(E,作控温及标准热电偶) 1支 4. 2 1 3位数字万用表 1只 四、 实验方法、步骤及结果测试 1.观察热电偶,了解温控电加热器工作原理。 ①拿起热电偶并握紧黑柄,然后旋开热电偶的金属保护套,缓慢抽出,观察热电偶的外形。观察完后,将其旋紧并注意不可以让热电偶和金属保护套接触。 ②温控器:作为热源的温度指示、控制、定温之用。温度调节方式为时间比 例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。 2.仪器连线(如图1所示) ① 首先将综合实验台的电源开关置“关”, 然后将电源插头(实验桌前面)和加热炉电源插座插入综合实验台面板上的“220V 加热电源出”处; ② 将热电偶工作端插进温度传感器实验模块上的加热炉炉膛内, E 和K 分度热电偶的冷端按极性(注意区分“+”和“—”)分别接在“温控”和“测试”端。 3.开启电源 将综合实验台和加热炉的电源开关打“开”。 4.设定温度和测量数据将功能开关置“设定”,调节旋钮设定温度为50℃, 然后将开关拨至“测量”位置;当炉温达到设定值时, 等待3―5分钟炉温恒定后,分别测量“温控”和“测试”的电压(开关保持在“温控”状态),交互测量四次,把输出的热电势记录于表2中。 5. 继续将炉温提高到70℃、90℃、110℃、130℃和150℃,将热电偶输出的热电势记录于表2。

智能家居控制系统-课程设计报告

智能家居控制系统-课程设计报告

XXXXXXXXXXXXXX 嵌入式系统原理及应用实践 —智能家居控制系统(无操作系统) 学生姓名XXX 学号XXXXXXXXXX 所在学院XXXXXXXXXXX 专业名称XXXXXXXXXXX 班级XXXXXXXXXXXXXXXXX 指导教师XXXXXXXXXXXX 成绩 XXXXXXXXXXXXX 二○XX年XX月

综合实训任务书

目录 前言 (1) 1 硬件设计 (1) 1.1 ADC转换 (3) 1.2 SSI控制数码管显示 (4) 1.3 按键和LED模块 (6) 1.4 PWM驱动蜂鸣器 (7) 2 软件设计 (8) 2.1 ADC模块 (8) 2.1.1 ADC模块原理描述 (8) 2.1.2 ADC模块程序设计流程图 (9) 2.2 SSI 模块 (9) 2.2.1 SSI模块原理描述 (10) 2.2.2 SSI模块程序设计流程图 (11) 2.3 定时器模块 (11) 2.3.1 定时器模块原理描述 (11) 2.3.2 定时器模块流程图 (12) 2.4 DS18B20模块 (12) 2.4.1 DS18B20模块原理描述 (13) 2.4.2 DS18B20模块程序设计流程图 (13) 2.5 按键模块 (14) 2.5.1 按键模块原理描述 (14) 2.5.2 按键模块程序设计流程图 (14) 2.6 PWM模块 (15)

2.6.1 PWM模块原理描述 (15) 2.6.2 PWM模块程序设计流程图 (16) 2.6 主函数模块 (16) 2.6.1 主函数模块原理描述 (16) 2.6.2........................... 主函数模块程序设计流程图16 3.验证结果.. (17) 操作步骤和结果描述 (17) 总结 (18)

现代检测技术作业

现代检测技术 学院: 专业: 姓名: 学号: 指导教师: 2014年12月30日

一现代检测技术的技术特点和系统的构成 1、现代检测技术特点 (1)测量过程软件控制 智能检测系统可以是新建自稳零放大,自动极性判断,自动量程切换,自动报警,过载保护,非线性补偿,多功能测试和自动巡回检测。由于有了计算机,上述过程可采用软件控制。测量过程的软件控制可以简化系统的硬件结构,缩小体积,降低功耗,提高检测系统的可靠性和自动化程度。 (2)智能化数据处理 智能化数据处理是智能检测系统最突出的特点。计算机可以方便、快捷地实现各种算法。因此,智能检测系统可用软件对测量结果进行及时、在线处理,提高测量精度。另一方面,智能检测系统可以对测量结果再加工,获得并提高更多更可靠的高质量信息。 智能检测系统中的计算机可以方便地用软件实现线性化处理、算术平均值处理、数据融合计算、快速的傅里叶变换(FFT)、相关分析等各种信息处理功能。(3)高度的灵活性 智能检测系统已以软件工作为核心,生产、修改、复制都比较容易,功能和性能指标更加方便。而传统的硬件检测系统,生产工艺复杂,参数分散性较大,每次更改都涉及到元器件和仪器结构的改变。 (4)实现多参数检测与信息融合 智能检测系统设备多个测量通道,可以有计算对多路测量通进行检测。在进行多参数检测的基础上,依据各路信息的相关特性,可以实现智能检测系统的多传感器信息融合,从而提高检测系统的准确性、可靠性和容错性。 (5)测量速度快 高速测量时智能检测系统追求的目标之一。所谓高速检测,是指从检测开始,经过信号放大、整流滤波、非线性补偿、A/D转换、数据处理和结果输出的全过程所需要的时间。目前,高速A/D转换的采样速度在2000MHz以上,32位PC机的时钟频率也在500MHz以上。随着电子技术的迅猛发展,高速显示、高速打印、高速绘图设备也日臻完善。这些都为智能检测系统的快速检测提供了条件。(6)智能化功能强 以计算机为信息处理核心的智能检测系统具有较强的智能功能,可以满足各类用户的需要。典型的智能功能有: 1)测量选择功能 智能检测系统能够实现量程转换、信号通道和采样方式的自动选择,使系统具有对被测量对象的最优化跟踪检测能力。 2)故障诊断功能 智能检测系统结构复杂,功能较多,系统本身的故障诊断尤为重要,系统可以根据检测通道的特性和计算机本身的自诊断能力,检查个单元故障,显示故障部位,故障原因和应采取的故障排除方法。 3)其他智能功能 智能检测系统还可以具备人机对话、自校准、打印、绘图、通信、专家知识查询和控制输出等智能功能。 2、系统的构成

课程设计报告-车牌识别系统的设计

车牌识别系统的设计 一、摘要: 随这图形图像技术的发展,现在的车牌识别技术准确率越来越高,识别速度越来越快。无论何种形式的车牌识别系统,它们都是由触发、图像采集、图像识别模块、辅助光源和通信模块组成的。车牌识别系统涉及光学、电器、电子控制、数字图像处理、计算视觉、人工智能等多项技术。触发模块负责在车辆到达合适位置时,给出触发信号,控制抓拍。辅助光源提供辅助照明,保证系统在不同的光照条件下都能拍摄到高质量的图像。图像预处理程序对抓拍的图像进行处理,去除噪声,并进行参数调整。然后通过车牌定位、字符识别,最后将识别结果输出。 二、设计目的和意义: 设计目的: 1、让学生巩固理论课上所学的知识,理论联系实践。 2、锻炼学生的动手能力,激发学生的研究潜能,提高学生的协作精神。 设计意义: 车牌定位系统的目的在于正确获取整个图像中车牌的区域,并识别出车牌号。通过设计实现车牌识别系统,能够提高学生分析问题和解决问题的能力,还能培养一定的科研能力。 三、设计原理: 牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。 四、详细设计步骤:

2017年电子技术课程设计题

信息学院 2017年电子技术课程设计题 1 音频小信号功率放大电路设计(A) 设计并制作音频小信号功率放大电路。具体要求如下: (1)放大倍数A V≥1000;(20分) (2)通频带100Hz~10KHz;(20分) (3)放大电路的输入电阻R I≥1MΩ; (5分) (4)在负载电阻为8Ω的情况下,输出功率≥2W;(30分) (5)功率放大电路效率大于50%;(5分) (6)输出信号无明显失真。(20分) 说明:设计方案和器件根据题目要求自行选择,但要求在通用器件范围内。不能选用集成音频功放。 测试条件:技术指标在输入正弦波信号峰值Vp=10mV的条件进行测试(输入电阻通过设计方案预以保证),设计报告中应有含有详细的测试数据说明设计结果。 评分标准: (1)提供1000倍的电压增益,得满分;电压增益小于800倍,扣5分;电压增益小于500倍,不得分; (2)上限频率大于10kHz,得10分;上限频率5~10kHz,得5分;上限频率<5kHz,不得分;下限频率满足要求,得10分;下限频率100~500Hz,扣5分,下限频率>500Hz,不得分;(3)输出功率≥2W,得满分;1W≤输出功率≤2W,得20分;500mW≤输出功率≤1W, 得10分; 输出功率≤500mw,不得分。 (4) 设计效率大于50%,得满分,小于50%不得分。 (5) 输出信号无明显失真, 得满分,否则不得分。 参考元器件: NE5532/TL082, LM324/TL084,,S8050/S8550,2N3904/2N3906,1N4148/1N4001~7,TIP41/42中功率三极管或2N3055/MJ2955大功率三极管等。 主要测试设备:直流电源,信号源,示波器和8Ω功率电阻。 2 数控直流电源的设计(B) 设计一线性输出电压可调的直流电源。电源有电压增(UP)和电压减(DOWN)两个键,按UP键时电压步进增加,按DOWN键时电压步进减小。具体要求如下:(1)输出电压5~12V,步进为1V;(40分) (2)输出电压误差最大±0.1V;(40分) (3)输出电流不小于1A;(5分) 测试条件:分别测试输出为5V、6V、7V、。。。、12V的输出电压。输出电流通过设计预以保证。 评分标准:[注:满分为95分] (1)输出电压5~12V,步进1V,得满分,否则不得分; (2) 输出电压误差≤±0.1V,得满分;±0.1V≤输出电压误差≤±0.2V,扣10分;±0.2V≤输出电压误差≤±0.3V,扣20分;输出电压误差≥±0.5V,不得分。 发挥部分:用LED或数码管显示电压设定值; 参考元器件:74LS193,74HC138,三极管S8050/S8550/CD406/CD4051/AD7501/AD7503,LM317,CD4511等。 3 数控直流稳压电源设计(A)

测控系统综合课程设计教学大纲

《测控系统综合课程设计》教学大纲 课程编码: 060251008 学时/学分:2周/4学分 一、大纲使用说明 本大纲根据测控技术与仪器专业2017版教学计划制定 (一)适用专业:测控技术与仪器专业 (二)课程设计性质:必修课 (三)主要先修课程和后续课程: 1、先修课程:matlab、计算机过程控制技术、网络化测控系统、微机原理及应用、过程控制系统与仪表。 2、后续课程:毕业设计 (四)适用教学计划版本:2017版教学计划 二、课程设计目的及基本要求 1.进一步培养学生网络化设计的思想,加深对网络化测控系统要素和控制结构的理解。 2.针对网络化测控系统的重点和难点内容进行训练,培养学生独立完成有一定工作量的程序设计任务和系统设计任务。 3.培养学生掌握组态王等编程语言的编程技巧及上机调试程序的方法。 4.培养学生掌握控制系统中的PID算法。 5、培养学生团队合作意识和较强的人际交往能力。 课程设计一人一题,4人为一组的方式进行,分工与任务要求明确,设计题目结合现有的实验设备,着重锻炼学生的应用能力和动手能力,通过系统装置联机调试,最后完成课程设计报告。 三、课程设计内容及安排 1、课程设计内容 本次课程设计利用组态和VB软件进行温度控制系统软件设计,可采用调压控制或占空比控制两种方式,结合P、PI、PD、PID控制算法,共为学生提供多个题目选择,4名同学为1组结合现有的实验设备,自拟课设题目(需经老师核准),根据自己设计题目要求,分析系统的特点和系统特性,在实验室依据设计方案进行系统硬件电路连接,通过不同的软件编程及控制方式,可实现无线平台、监控计算机和实验对象的联机运行及控制,达到预期对温度的控制目的。每组大题目可参考如下。 题目1:基于VB的调压PI温度控制系统 设计内容:基于无线通信实验平台、电加热炉等硬件,电炉被控对象的加热采用调压控制模式,利用VB编程语言及控制算法实现此系统的方案、界面、数据采集和温度控制等的设计。 题目2:基于VB的占空比PD温度控制系统设计 设计内容:基于无线通信实验平台、电加热炉等硬件,电炉被控对象的加热采用占空比控制模式,利用VB编程语言及控制算法实现此系统的方案、界面、数据采集和温度控制等的设计。 题目3:基于组态王的调压PID温度控制系统设计 设计内容:基于无线通信实验平台、电加热炉等硬件,电炉被控对象的加热采用调压控制模式,利用组态王编程语言及控制算法实现此系统的方案、界面、数据采集和温度控制等的设计。 同组4个子题目可参看如下: (1)控制系统仿真 针对平台电热炉的被控对象,根据同组同学采用飞升曲线法建立的对象模型(一阶惯性加滞

现代检测技术教案

绪论 ?教学要求 1.掌握检测等基本概念。 2.了解工业检测技术涉及的内容。 3.掌握自动检测系统的组成。 4.明确本课程的任务。 5.了解检测技术的发展趋势。 ?教学手段多媒体课件,实物演示 ?教学课时1学时 ?教学内容 一.检测(Detection)的定义(联系具体、日常生活的例子,如举“操冲秤象”的例子过程来说明检测的定义) 检测是利用各种物理、化学效应,选择合适的方法与装置,将生产、科研、生活等各方面的有关信息通过检查与测量的方法赋予定性或定量结果的过程。能够自动地完成整个检测处理过程的技术称为自动检测与转换技术。 二.检测技术在国民经济中的地位和作用 举例说明:检测技术是现代化领域中很有发展前途的技术,它在国民经济中起着极 其重要的作用。 三.工业检测技术的内容(了解) 四.自动检测系统的组成(掌握) 1. 系统框图(0-1) 2. 传感器(Transducer)及定义 3. 显示器 4. 数据处理装置 5. 执行机构 6. 自动检测系统举例(0-2) 五.检测技术的发展趋势(举例介绍)

当前,检测技术的发展主要表现在以下几个方面: 1.不断提高检测系统的测量精度、量程范围、延长使用寿命、提高可靠性 2.应用新技术和新的物理效应,扩大检测领域 3.发展集成化、功能化的传感器 4.采用计算机技术,使检测技术智能化 5.发展网络化传感器及检测系统 六.本课程的任务和学习方法 本课程的任务是:在阐明测量基本原理的基础上,逐一分析各种传感器是如何将非电量转换为电量的,并介绍相应的测量转换电路、信号处理电路及各种传感器在工业中的应用。 本课程的学习方法是:要理论联系实际,要举一反三(演示光电开关,提问和讨论可以哪有几种用途,启发!),富于联想,善于借鉴,关心和观察周围的各种机械、电气等设备,重视实验和实训,这样才能学得活、学得好,才有利于提高今后解决实际问题的能力。 留一个问题给学生回去思考:举出课堂上演示过的光电开关共有哪几种用途,第二次上课时,回答得越多越好。

检测技术及仪表课程设计报告

检测技术及仪表课程设计报告 1、1 课程设计目的针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 1、2课题介绍本课设题目以多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需参数的检测。设计检测方案,包括检测方法,仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 1、3 实验背景知识换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界分关注而又至今未能解决的难题之一。 1、4 实验原理 1、4、1 检测方法按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。热学法中又可分为热阻表示法和温差表示法两种;非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射技术、时间推移电影法、显微照相法、电解法

和化学法。这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。这里选择热学法中的污垢热阻法。 1、4、2 热阻法原理简介表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量mf,污垢层平均厚度δf和污垢热阻Rf。这三者之间的关系由式表示: (1-1)图1-1 清洁和有污垢时的温度分布及热阻通常测量污垢热阻的原理如下:设传热过程是在热流密度q为常数情况下进行的,图1a为换热面两侧处于清洁状态下的温度分布,其总的传热热阻为: (1-2)图1b为两侧有污垢时的温度分布,其总传热热阻为: (1-3)忽略换热面上污垢的积聚对壁面与流体的对流传热系数影响,则可认为(1-4)于是两式相减得: (1-5)该式表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有:(1-6)(1-7)若在结垢过程中,q、Tb均得持不变,且同样假定(1-8)则两式相减有: (1-9)这样,换热面有垢一侧的污垢热阻可以通过测量清洁状态和污染状态下的壁温和热流而被间接测量出来。

电子技术课程设计题目

电子技术课程设计 一、课程设计目的: 1.电子技术课程设计是机电专业学生一个重要实践环节,主要让学生通过自己设计并制作一个实用电子产品,巩固加深并运用在“模拟电子技术”课程中所学的理论知识; 2.经过查资料、选方案、设计电路、撰写设计报告、答辩等,加强在电子技术方面解决实际问题的能力,基本掌握常用模拟电子线路的一般设计方法、设计步骤和设计工具,提高模拟电子线路的设计、制作、调试和测试能力; 3.课程设计是为理论联系实际,培养学生动手能力,提高和培养创新能力,通过熟悉并学会选用电子元器件,为后续课程的学习、毕业设计、毕业后从事生产和科研工作打下基础。 二、课程设计收获: 1.学习电路的基本设计方法;加深对课堂知识的理解和应用。 2.完成指定的设计任务,理论联系实际,实现书本知识到工程实践的过渡; 3.学会设计报告的撰写方法。 三、课程设计教学方式: 以学生独立设计为主,教师指导为辅。 四、课程设计一般方法 1. 淡化分立电路设计,强调集成电路的应用 一个实用的电子系统通常是由多个单元电路组成的,在进行电子系统设计时,既要考虑总体电路的设计,同时还要考虑各个单元电路的选择、设计以及它们之间的相互连接。由于各种通用、专用的模拟、数字集成电路的出现,所以实现一个电子系统时,根据电子系统框图,多数情况下只有少量的电子电路的参数计算,更多的是系统框图中各部分电子电路要正确采用集成电路芯片来实现。

2. 电子系统内容步骤: 总体方案框图---单元电路设计与参数计算---电子元件选择---单元电路之间连接---电路搭接调试---电路修改---绘制总体电路---撰写设计报告(课程设计说明书) (1)总体方案框图: 反映设计电路要求,按一定信息流向,由单元电路组成的合理框图。 比如一个函数发生器电路的框图: (2)单元电路设计与参数计算---电子元件选择: ●基本模拟单元电路有:稳压电源电路,信号放大电路,信号产生电路,信号处理电 路(电压比较器,积分电路,微分电路,滤波电路等),集成功放电路等。 ●基本数字单元电路有:脉冲波形产生与整形电路(包括振荡器,单稳态触发器,施 密特触发器),编码器,译码器,数据选择器,数据比较器,计数器,寄存器,存储器等。

检测技术课程设计资料

课程设计报告 物位检测学院 学科专业 姓名学号 指导教师 起止周次 提交日期

关键词:物位测量仪,原理,应用 简介:物位测量仪表按所使用的物理原理可分为直读式物位仪表、差压式物位仪表(包括压力式)、浮力式物位仪表、电测式(电阻式,电容式与电感式)物位仪表、超声式物位仪表、核辐射式物位仪表等。直读式物位仪表。从测量机构上可直接读出液位,玻璃管(或玻璃板)液位计就是利用连通器原理,用旁通玻璃管(或玻璃板)读数。根据测量要求,有透光式和反射式等型式。 浮力式物位仪表,利用液面上的浮子或沉浸在液体中浮筒(也称沉筒)受到浮力作用而工作。这类仪表分为两种:一种是在测量过程中浮力维持不变,如浮球液位计、浮标液位计,工作时浮标随液面高低变化,通过杠杆或钢丝绳等机构将浮标位移传递出去,再经电位器、数码盘等转换为模拟或数字信号;另一种是在测量过程中浮力发生变化,如浮筒式液位计,液位改变时浮筒在液体内浸没的程度不同,所受的浮力也不同,将浮力的变化量转换成差动变压器铁芯的位移,就可输出相应的电信号,供指示、记录、报警和调节之用,也可远距离传送。 在工业生产过程中测量液位、固体颗粒和粉粒位,以及液-液、液-固相界面位置的仪表。一般测量液体液面位置的称为液位计,测量固体、粉料位置的称为料位计,测量液-液、液固相界面位置的称为相界面计。在工业生产过程中广泛应用物位测量仪表,测量锅炉水位的液位计就是一例。发电厂大容量锅炉水位是十分重要的工艺参数,水位过高、过低都会引起严重安全事故,因此要求准确地测量和控制锅炉水位。水塔的水位、油罐的油液位、煤仓的煤块堆积高度、化工生产的反应塔溶液液位等,都需要采用物位测量仪表测量。

电力电子技术课程设计要求及题目

一、课程设计说明书应包括以下内容: 1、中文摘要; 2、绪论(内容介绍; 3、工作原理(理论分析; 4、整体方案设计,画出系统结构图(系统框图; 5、具体实施,包括:主电路的设计、参数计算、元器件选择、控制电路设计、 驱动电路设计等; 6、仿真模型的搭建,给出不同条件下的结果并进行分析; 7、设计说明书10~15页,要求手写,仿真或实验结果图可打印然后粘到说明书中; 8、A3图纸一张(硬件电路图,Protel、CAD等软件。 9、仿真软件为Matlab/Simulink; 10、做仿真的要给出所有仿真模型,并说明搭建过程及原理,给出仿真结果,进行分析并得出结论。 二、上交材料 1、设计说明书,1张A3图纸; 2、截止日期:2017-07-14(周五,具体时间与相应老师联系; 3、负责老师:电气14-3,李一丹老师,153******** 电气14-4,王玉萍老师,136******** 电气14-10,郑爽老师,188********

电气14-11,李雯老师,159******** 电气14-12,吕雄飞老师,139******** 注意:3~4人一组,每组不得超过4人。不许雷同。 1.升压斩波电路的设计(除常规要求外,应实现仿真设计指标:直流输入电压24V; 输出电压54V; 输出电流5A; 工作频率100KHz; 最大输出纹波电压0.2V。 2.降压斩波电路的设计(除常规要求外,应实现仿真设计指标:直流输入电压36V; 输出电压12V; 输出电流3A; 工作频率100KHz; 最大输出纹波电压0.05V。 3.DC/AC变换器的设计(除常规要求外,应实现仿真设计指标:输入电压:12V直流电压; 输出交流220V; 单相;

现代检测技术大作业

2015年—2016年度第1学期 课程名称:现代检测技术 专业:控制工程 研究生姓名:陈俊亚 学号:2016232011 任课教师姓名:冯晓明

第一部分:现代检测技术的内容 一、概述 随着现代科学技术的不断发展、社会的日益进步,现代化生产的规模越来越大,管理的形式和方式趋于多样性,管理也更加科学,人们对产品的产量和质量的要求也越来越高,这就导致常规的检测参数、检测手段、检测仪表难以满足现代生产和生活的需求。从一般的单参数测量到相关多参数的综合自动检测,从一般的参数量值测量到参数的状态估计,从确定性测量到模糊的判断等,已成为当前检测领域中的发展趋势,正受到越来越广泛的关注,从而形成了各种新的检测技术和新的检测方法,这些技术和方法统称为现代检测技术。 二、传感器的基本原理及检测技术的特点 利用某种转换功能,将物理的、化学的、生物的等外界信号变成可直接测量的信号的器件称为传感器。由于电信号易于放大、反馈、滤波、微分、存储和远距离传输,加上计算机只能处理电信号,所以,从狭义上说,传感器又可以定义为可唯一而重视性好的将外界信号转换成电信号的元器件;从广义上讲,传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。所以它由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为:①物理类,基于力、热、光、电、磁和声等物理效应。②化学类,基于化学反应的原理。③生物类,基于酶、抗体、和激素等分子识别功能。通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。检测技术的特点可以归纳为: (1)从待测参数的性质看,现代检测技术主要用于非常见的参数的测量,对于这些参数的测量目前还没有合适的传感器对应,难以实现常规意义的“一一对应”的测量;另一种情况是待测参数虽已有传感器,但测量误差比较大,受各种因素的影响比较大,不能满足测量要求。 (2)从应用的领域看,现代检测技术主要用于复杂设备、复杂过程的影响性

最新昆明理工大学检测技术(光纤传感器)课程设计

精品文档 课程设计报告 光纤传感器原理、结构线路及其应用 学院: 信息工程与自动化 班级: 姓名: 学号: 指导老师: 陈焰 2014年12月25日

目录 摘要 (1) 1. 光纤传感器概述 (1) 1.1光纤传感器研究背景 (1) 1.2研究的目的及意义 (2) 2. 原理 (3) 2.1光导纤维导光的基本原理 (3) 2.1.1 斯乃尔定理(Snell's Law) (3) 2.1.2 光纤结构 (4) 2.1.3 光纤导光原理及数值孔径NA (5) 2.2光纤传感器结构原理 (6) 2.3光纤传感器的分类 (7) 2.3.1 根据光纤在传感器中的作用 (8) 2.3.2 根据光受被测对象的调制形式 (9) 3. 光纤传感器的应用 (10) 3.1温度的检测 (10) 3.1.1 遮光式光纤温度计 (10) 3.1.2 透射型半导体光纤温度传感器 (11) 3.2压力的检测 (12) 3.2.1 采用弹性元件的光纤压力传感器 (12) 3.2.2 光弹性式光纤压力传感器 (14) 3.3液位的检测 (16) 3.3.1 球面光纤液位传感器 (16) 3.3.2 斜端面光纤液位传感器 (17) 3.3.3 单光纤液位传感器 (18) 3.4流量、流速的检测 (19) 3.4.1 光纤涡街流量计 (19) 3.4.2 光纤多普勒流速计 (20) 总结 (21) 参考文献: (22)

摘要 光纤传感器(FOS Fiber Optical Sensor)是20世纪70年代中期发展起来的一种基于光导纤维的新型传感器。它是光纤和光通信技术迅速发展的产物,它与以电为基础的传感器有本质区别。光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质。因此,它同时具有光纤及光学测量的特点。近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的耳目作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 关键词:光纤传感器测量结构原理应用 1. 光纤传感器概述 1.1 光纤传感器研究背景 近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 光纤光栅是利用光纤材料的光敏性,外界入射光子和纤芯内锗离子相互作用引起的折射率永久性变化,在纤芯内形成空间相位光栅,其作用的实质是在纤芯内形成,利用空间相位光栅的布拉格散射的波长特性,一个窄带的,投射或反射,滤光器或反射镜。 1978年加拿大通信研究中心的K O Hill及其合作者首次从接错光纤中观察到了光子诱导光栅。Hill的早期光纤是采用488nm可见光波长的氛离子激光器,通过增加或延长注入光纤芯中的光辐照时间而在纤芯中形成了光栅。后来Meltz 等人利用高强度紫外光源所形成的干涉条纹对光纤进行侧面横向曝光在该光纤芯中产生折射率调制或相位光栅。1989年第一支布拉格诺振波长位于通信波段的光纤光栅研制成功。 光纤传感就是将被测量的变化转化为光纤中传输光参数(如光强、波长、相位以及偏振态)的变化,通过测量光纤的输出光来确定被测量的大小。光纤传感技术在国际上是七十年代后期迅速发展起来的新技术。而光纤传感器就是随光纤通

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级: 14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1 Matlab仿真图 (17) 3.2仿真结果 (18) 3.3 仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生PWM控制信号。

智能家居控制系统课程设计报告

XXXXXXXXXXXXXX 嵌入式系统原理及应用实践 —智能家居控制系统(无操作系统)学生姓名XXX 学号XXXXXXXXXX 所在学院XXXXXXXXXXX 专业名称XXXXXXXXXXX 班级XXXXXXXXXXXXXXXXX XXXXXXXXXXXX 指导教师 成绩 XXXXXXXXXXXXX 二○XX年XX月

综合实训任务书 目录 前言 (1)

1 硬件设计 (1) ADC转换 (3) SSI控制数码管显示 (3) 按键和LED模块 (5) PWM驱动蜂鸣器 (6) 2 软件设计 (7) ADC模块 (7) ADC模块原理描述 (7) ADC模块程序设计流程图 (8) SSI 模块 (8) SSI模块原理描述 (9) SSI模块程序设计流程图 (10) 定时器模块 (10) 定时器模块原理描述 (10) 定时器模块流程图 (11) DS18B20模块 (11) DS18B20模块原理描述 (11) DS18B20模块程序设计流程图 (12) 按键模块 (13) 按键模块原理描述 (13) 按键模块程序设计流程图 (13) PWM模块 (13) PWM模块原理描述 (14) PWM模块程序设计流程图 (14) 主函数模块 (14) 主函数模块原理描述 (14) 主函数模块程序设计流程图 (15) 3.验证结果 (15) 操作步骤和结果描述 (15) 总结 (16)

智能家居控制系统设计 前言 当前,随着科学技术的发展,计算机、嵌入式系统和网络通信技术逐步深入到各个领域,使得住宅和家用电器设备网络化和智能化,智能家居已经开始出现在人们的生活中。智能家居控制系统(smarthome control systems,简称SCS)。它以住宅为平台,家居电器及家电设备为主要控制对象,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施进行高效集成,构建高效的住宅设施与家庭日程事务的控制管理系统,提升家居智能、安全、便利、舒适,并实现环保节能的综合智能家居网络控制系统平台。智能家居控制系统是智能家居核心,是智能家居控制功能实现的基础。 通过家居智能化技术,实现家庭中各种与信息技术相关的通讯设备、家用电器和家庭安防装置网络化,通过嵌入式家庭网关连接到一个家庭智能化系统上进行集中或异地的监控和家庭事务管理,并保持这些家庭设施与住宅环境的和谐与协调。家居智能化所提供的是一个家居智能化系统的高度安全性、生活舒适性和通讯快捷性的信息化与自动化居住空间,从而满足21世纪新秀社会中人们追求的便利和快节奏的工作方式,以及与外部世界保持安全开放的舒适生活环境。本文以智能家居广阔的市场需求为基础,选取智能家居控制系统为研究对象。 1 硬件设计 本系统是典型的嵌入式技术应用于测控系统,以嵌入式为开发平台,系统以32位单片机LM3S8962为主控制器对各传感器数据进行采集,经过分析后去控制各执行设备。 硬件电路部分为:微控制器最小系统电路、数据采集电路(光敏电路、温度传感器、霍尔传感器)、输出控制电路(继电器、蜂鸣器、发光二极管)和八位LED数码管显示组成。LM3S8962布局如图1-1所示,LM3S8962核心板外围电路如图1-2所示。 图 LM3S8962布局图

相关主题
文本预览
相关文档 最新文档