当前位置:文档之家› 高中物理-波粒二象性测试题

高中物理-波粒二象性测试题

高中物理-波粒二象性测试题
高中物理-波粒二象性测试题

高中物理-波粒二象性测试题

一、选择题

1、入射光照射到金属表面上发生了光电效应,若入射光的强度减弱,但频率保持不变,那么以下说法正确的是()

A.从光照射到金属表面到发射出光电子之间的时间间隔明显增加

B.逸出的光电子的最大初动能减小

C.单位时间内从金属表面逸出的光电子的数目减少

D.有可能不再产生光电效应

2、爱因斯坦由光电效应的实验规律,猜测光具有粒子性,从而提出光子说。从科学研究的方法来说这属于()

A.等效代替B.控制变量

C.科学假说D.数学归纳

3、如图1所示,画出了四种温度下黑体辐射的强度与波长的关系图象,从图象可以看出,随着温度的升高,则()

A.各种波长的辐射强度都有增加

B.只有波长短的辐射强度增加

C.辐射强度的极大值向波长较短的方向移动

D.辐射电磁波的波长先增大后减小

4、对光的认识,以下说法正确的是()

图1 A.个别光子的行为表现为粒子性,大量光子的行为表现为波动性

B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的C.光表现出波动性时,不具有粒子性;光表现出粒子性时,不具有波动性D.光的波粒二象性应理解为:在某些场合下光的波动性表现明显,在另外一些场合下,光的粒子性表现明显

5、光子打在处于静止状态的电子上,光子将偏离原来的方向而发生散射,康普顿对散射的解释为()

A.虽然改变原来的运动方向,但频率保持不变

B.光子从电子处获得能量,因而频率增大

C.入射光引起物质内电子做受迫振动,而从入射光中吸收能量后再释放,

释放出的散射光频率不变 D .由于电子受碰撞后得到动量,散射后的光子频率低于入射光的频率 6、一束绿光照射某金属发生了光电效应,则下列说法正确的是( )

A .若增加绿光的照射强度,则逸出的光电子数增加

B .若增加绿光的照射强度,则逸出的光电子最大初动能增加

C .若改用紫光照射,则可能不会发生光电效应

D .若改用紫光照射,则逸出的光电子的最大初动能增加

7、用波长为λ1和λ2的单色光1和2分别照射金属1和2的表面。色光1照射

金属1和2的表面时都有光电子射出,色光2照射金属1时有光电子射出,照射金属2时没有光电子射出。设金属1和2的逸出功为W 1和W 2,则有( )

A .λ1>λ2,W 1>W 2

B .λ1>λ2,W 1

C .λ1<λ2,W 1>W 2

D .λ1<λ2,W 1

8、在验证光的波粒二象性的实验中,下列说法正确的是( )

A .使光子一个一个地通过单缝,如果时间足够长,底片上将会显示衍射图样

B .单个光子通过单缝后,底片上也会出现完整的衍射图样

C .光子通过狭缝的运动路线像水波一样起伏

D .单个光子通过单缝后的运动情况具有随机性,大量光子通过单缝后的运动情况也呈现随机性

9、在做光电效应的实验时,某金属被光照射发生了光电效应,实验测得光电子的最大动能E k 与入射光的频率ν的关系如图2所示,由实验图线可求出

( )

A .该金属的极限频率和极限波长

B .普朗克常量

C .该金属的逸出功

D .单位时间逸出的光电子数

10、某激光器能发射波长为λ的激光,发射功率为P ,c 表示光速,h 为普朗克常量。则激光器每秒发射的光子数为( ) A .hc P

λ B .c hP λ C .h cP λ D .λPhc

图2

二、填空题

11、质量为60kg 的运动员,百米赛跑的成绩为10s ,运动员的德布罗意波的波长约为_______m 。

12、如图3所示,一验电器与锌板相连,在A 处用一紫外线灯照射锌板,关灯后,

指针保持一定偏角。

(1) 现用一带负电的金属小球与锌板接触,则验电器指针偏角将______(填“增大”“减小”或“不变”)。

(2) 使验电器指针回到零,再用相同强度的钠灯发出的黄光照射锌板,验电器指针无偏转。那么,若改用强度更大的红外线灯照射锌板,可观察到验电器指针______(填“有”或“无”)偏转。

13、在光电效应实验中,如果实验仪器及线路完好,当光照射到光电管上时,灵敏电流计中没有电流通过,可能的原因是__________________________。

14、在一个可视为逐个释放可见光光子的实验中,光屏每秒钟获得的能量为13105-?J ,则相邻两个光子的平均距离约为___________m (普朗克常量h=6.63×10-34J ·s ,可见光的频率取6×1014Hz ,保留两位有效数字)。

三、计算题

15、分别用波长为λ和43

λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1:2,以h 表示普朗克常量,c 表示真空中的光速,则此金属板的逸出功为多大?

16、在X 射线管中,由阴极发射的电子被加速后打到阳极,会发射包括X 光在内的各种能量的光子,其中光子能量的最大值等于电子的动能。已知阳极与阴极之间的电势差为U 、普朗克常量为h 、电子电荷量为e ,光速为c ,求可知该X 射线管发出的X 光的最大频率。

17、为引起人眼的视觉,进入人眼的绿光的能量至少为每秒E =10-16 J 。假设在漆黑的夜晚,在距人s =100m 远处点亮一只绿光小灯泡,为使人看到它的光线,小灯泡的功率至少为多大?(人用一只眼看,瞳孔直径为4 mm)

18、红宝石激光器发射的激光是一道一道的闪光,每道闪光称为一个光脉冲。现有一红宝石激光器,发射功率为1.0×1010W,所发射的每个光脉冲持续的时间Δt=1.0×10-11 s,波长为693.4 nm.问每列光脉冲的长度是多少?其中含有的光子数n是多少?

一、选择题

1.C 2.C 3.AC 4.ABD 5.D 6.AD 7.D 8.A 9.ABC 10.A

二、填空题

11.1.1×10-36m

12.(1) 减小 (2) 无

13.入射光波长太大或反向电压太大。入射光频率小于这种金属的极限频率(即入射光波长大于这种金属的极限波长),不能发生光电效应现象,即无光电子逸出。另一种可能是光电管上所加反向电压过大,逸出的光电子减速运动,速度为零后又返回,使电路中没有电流通过。

14.m 2104.2?

三、计算题

15.解析 根据爱因斯坦光电效应方程W h E k -=ν和λνc

=得 W c h E k -=λ ①

W c h E k

-='λ43 ② 且 k E :1='k E :2 ③ 由方程①②③得

λhc

W 32= 16.h eU

解析 由动能定理可知,加速电场对电子所做的功等于电子动能的增量,由题意可知,光子的最大能量等于电子的动能,则有:

eU hv m =,故x 光的最大频率

h eU

v m =。 17.10-6W

解析 由题意知E =2π41s P ?×π(2d

)2 解得P =2216d Es =23216)104(1001016--???W=10-6

18.3.0×10-3 m 3.5×1017个

解析 每列光脉冲长度L = c Δt =3×108×1.0×10-11 m=3.0×10-3 m ,每个光

E 1=h λc

,每列光脉冲含有的光子数n =1E t P ?=3.5×1017个。

波粒二象性知识点教学教材

波粒二象性知识点总结 一:黑体与黑体辐射 1.热辐射 (1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 (2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同。 2.黑体 (1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一些物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物 体就是绝对黑体,简称黑体。 (2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑 体的温度有关。 注意:一般物体的热辐射除与温度有关外,还与材料的种类及 表面状况有关。 二:黑体辐射的实验规律 如图所示,随着温度的升高,一方面,各种波长的辐射强度都 有增加;另—方面,辐射强度的极大值向波长较短的方向移动。 三:能量子 1.能量子:带电微粒辐射或吸收能量时,只能是辐射或吸收某 个最小能量值的整数倍,这个不可再分的最小能量值E叫做能量子。 2.大小:E=hν。 其中ν是电磁波的频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。四:拓展: 1、对热辐射的理解 (1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。 在室温下,大多数物体辐射不可见的红外光;但当物体被加热到5000C左右时,开始发出暗红色的可见光。随着温度的不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越 多,大约在1 5000C时变成明亮的白炽光。这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高。(2).在一定温度下,不同物体所辐射的光谱成分有显著的不同。例如,将钢加热到约800℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光。 (3)热辐射不需要高温,任何温度下物体都会发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强。2、2.什么样的物体可以看做黑体 (1).黑体是一个理想化的物理模型。 (2).如图所示,如果在一个空腔壁上开—个很小的孔,那么射人 小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔 射出。这个空腔近似看成一个绝对黑体。 注意:黑体看上去不一定是黑色的,有些可看做黑体的物体由于 自身有较强的辐射,看起来还会很明亮。如炼钢炉口上的小孔。 3、普朗克能量量子化假说 (1).如图所示,假设与实验结果“令人满意地相符”, 图中小圆点表示实验值,曲线是根据普朗克公式作出的。 (2).能量子假说的意义 普朗克的能量子假说,使人类对微观世界的本质有了全 新的认识,对现代物理学的发展产生了革命性的影响。普朗 克常量h是自然界最基本的常量之一,它体现了微观世界的

对光的波粒二象性的理解与认识(毕业论文)

2013届本科毕业论文 对波粒二象性的理解与认识 学院:物理与电子工程学院 专业班级:物理 08-8班 学生姓名:努尔麦麦提·阿不都克热木指导老师:巴哈迪尔老师 答辩日期:2013年5月11日 新疆师范大学教务处

对波粒二象性的理解与认识 摘要:波粒二象性是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。现代观察认为微观粒子,无论是光子,电子以及其它所有基本粒子,在极微小的空间内作高速运动时有时显示出波动性(这时粒子性不显著),有时显示出粒子性(这时波动性不显著).这种在不同条件下分别表现为波动和粒子的性质,或者说既具有波动性又具有粒子性,就称为波粒二象性(简称象性)。 波粒二象性理论的提出在物理学的发展史上具有重要意义,本文从人们对光本性的认识出发,到把波粒二象性推广到一切物质,比较系统地阐述了波粒二象性理论的产生和发展过程。在这个过程中探索物理学与哲学的联系,并对其中所体现的哲学观点做了尝试性总结 关键词:波粒二象性,波动性,粒子性,电子衍射,德布罗意波

目录 1.引言 (4) 2.光的波粒二象性 (5) 2.1光的波动性. (5) 2.2光的粒子性. (6) 2.3光的波粒二象性. (8) 3电子衍射实验 (10) 3.1.电子衍射实验 (10) 3.2实验数据与处理. (14) 4.波粒二象性的意义和后期成果 (15) 5.结论 (16) 参考文献 (17) 致谢 (18)

引言 1801年,杨氏进行了著名的杨氏双缝干涉实验。实验所使用的白屏上明暗相间的黑白条纹证明了光的干涉现象,从而证明了光是一种波。 1882年德国物理学家施维尔德根据新的光波学说,对光通过光栅后的衍射现象进行了成功的解释。 1887年,德国科学家赫兹发现光电效应,光的粒子性再一次被证明! 二十世纪初,普朗克和爱因斯坦提出了光的量子学说 1905年,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖 在新的事实与理论面前,光的波动说与微粒说之争以“光具有波粒二象性”而落下了帷幕。即:光既是一种波又是一种粒子!光的波动说与微粒说之争从十七世纪初笛卡儿提出的两点假说开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主辩手。 二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。

(人教版)高中物理必修二(全册)精品分层同步练习汇总

(人教版)高中物理必修二(全册)精品同步练习汇总 分层训练·进阶冲关 A组基础练(建议用时20分钟) 1.(2018·泉州高一检测)关于运动的合成和分解,下列说法中正确的是 (C) A.合运动的速度大小等于分运动的速度大小之和 B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动 C.合运动和分运动具有等时性 D.若合运动是曲线运动,则其分运动中至少有一个是曲线运动

2.(2018·汕头高一检测)质点在水平面内从P运动到Q,如果用v、a、F分别表示质点运动过程中的速度、加速度和受到的合外力,下列选项正确的是(D) 3.一只小船渡河,运动轨迹如图所示。水流速度各处相同且恒定不变,方向平行于河岸;小船相对于静水分别做匀加速、匀减速、匀速直线运动,船相对于静水的初速度大小均相同、方向垂直于河岸,且船在渡河过程中船头方向始终不变。由此可以确定 (D) A.船沿AD轨迹运动时,船相对于静水做匀加速直线运动 B.船沿三条不同路径渡河的时间相同 C.船沿AB轨迹渡河所用的时间最短 D.船沿AC轨迹到达对岸前瞬间的速度最大 4.如图所示,某人用绳通过定滑轮拉小船,设人匀速拉绳的速度为v0,绳某时刻与水平方向夹角为α,则小船的运动性质及此时刻小船的水平速度v x为(A)

A.小船做变速运动,v x= B.小船做变速运动,v x=v0cos α C.小船做匀速直线运动,v x= D.小船做匀速直线运动,v x=v0cosα B组提升练(建议用时20分钟) 5.(2018·汕头高一检测)质量为1 kg的物体在水平面内做曲线运动,已知该物体在互相垂直方向上两分运动的速度-时间图象分别如图所示,则下列说法正确的是(D) A.2 s末质点速度大小为7 m/s B.质点所受的合外力大小为3 N C.质点的初速度大小为5 m/s D.质点初速度的方向与合外力方向垂直 6.(多选)在杂技表演中,猴子沿竖直杆向上做初速度为零、加速度为a的匀加速运动,同时人顶着直杆以速度v0水平匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图所示。关于猴子的运动情况,下列说法中正确的是( B、D )

【高中物理】《波粒二象性》测试题

《波粒二象性》测试题 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100,考试时间60分钟. 第Ⅰ卷(选择题共40分) 一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分.) 1.在下列各组的两个现象中都表现出光具有波动性的是() A.光的折射现象、色散现象 B.光的反射现象、干涉现象 C.光的衍射现象、偏振现象 D.光的直线传播现象、光电效应现象 解析:因为色散现象说明的是白光是由各种单色光组成的复色光,故A错;由于反射现象并非波动所独有的性质,故B错;直线传播并非波动所独有,且光电效应说明光具有粒子性,故D错;只有衍射现象和偏振现象为波动所独有的性质,所以C正确. 答案:C 2.下列说法中正确的是() A.光的干涉和衍射现象说明光具有波动性 B.光的频率越大,波长越长 C.光的波长越大,光子的能量越大 D.光在真空中的传播速度为3.0×108 m/s 解析:干涉和衍射现象是波的特性,说明光具有波动性,A对;光的频率越大,波长越短,光子能量越大,故B、C错;光真空中的速度为3.0×108 m/s,故D对. 答案:A、D 3.现代科技中常利用中子衍射技术研究晶体的结构,因为热中子的德布罗意波长与晶体中原子间距相近.已知中子质量m=1.67×10-27 kg,可以估算德布罗意波长λ=1.82×10-10 m 的热中子动能的数量级为() A.10-17 J B.10-19 J C.10-21 J D.10-24 J

解析:由p =h λ及E k =p 22m 得,E k =h 2 2mλ2= 6.6262×10-682×1.67×10-27×1.822×10-20 J ≈4×10-21 J,C 正确. 答案:C 4.下列关于光电效应的说法中,正确的是( ) A .金属的逸出功与入射光的频率成正比 B .光电流的大小与入射光的强度无关 C .用不可见光照射金属一定比用可见光照射同种金属产生的光电子的最大初动能大 D .对于任何一种金属都存在一个“最大波长”,入射光的波长大于此波长时,就不能产生光电效应 解析:逸出功与入射光无关,反映的是金属材料对电子的束缚能力;A 错误;光强越大,单位时间内入射的光子数越多,逸出的电子数也越多,光电流越大,B 错误;红外线的频率比可见光小,紫外线的频率比可见光大,由E k =hν-W 0知,C 错误;由产生光电效应的条件知,D 正确. 答案:D 5.下列有关光的说法中正确的是( ) A .光电效应表明在一定条件下,光子可以转化为电子 B .大量光子易表现出波动性,少量光子易表现出粒子性 C .光有时是波,有时是粒子 D .康普顿效应表明光子和电子、质子等实物粒子一样也具有能量和动量 解析:光电效应中,光子把能量转移给电子,而不是转化为电子,A 错误;由光的性质可知,B 正确;波动性和粒子性是光的两个固有属性,只是在不同情况下一种属性起主要作用,C 错误;康普顿效应表明光具有能量和动量,能量ε=hν,动量p =h λ ,D 正确. 答案:B 、D 6.一激光器发光功率为P ,发出的激光在折射率为n 的介质中波长为λ,若在真空中速度为c ,普朗克常量为h ,则下列叙述正确的是( ) A .该激光在真空中的波长为nλ B .该激光的频率为c λ C .该激光器在t s 内辐射的能量子数为Ptnλ hc

(完整版)光的波粒二象性教案

光的波粒二象性 教案示例 一、教学目标 1.知识目标 (1)了解微粒说的基本观点及对光学现象的解释和所遇到的问题. (2)了解波动说的基本观点及对光学现象的解释和所遇到的问题. (3)了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性. (4)了解光是一种概率波. 2.能力目标 培养学生对问题的分析和解决能力,初步建立光与实物粒子的波粒二象性以及用概率描述粒子运动的观念. 3.情感目标 理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 二、重点、难点分析 1、这一章的内容,贯穿一条主线——人类对光的本性的认识的发展过程.结合各节内容,适当穿插物理学史材料是必要的.这种做法不但可使课堂教学主动活泼,内容丰富,还可以对学生进行唯物辩证思想教育.本节就课本内容,十分简单,学生学起来十分枯燥.课本所提到的内容,都是结论性的,加入一些史料不仅可能而且必要. 2、本节中学生初步接触量子化、二象性、概率波等概念,由于没有直接的生活经验,所以在教学中要重点让学生体会这些概念. 三、主要教学过程 光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究. 到了17世纪,人类对光的本性的认识逐渐形成了两种学说.

(一)光的微粒说 一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的. 在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论. 说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行. 一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了. (二)光的波动说 关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.

(完整版)波粒二象性试题汇总

用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在,如图所示是不同数量的光子照射到感光胶片上得到的照片。这些照片说明() A.光只有粒子性没有波动性 B.光只有波动性没有粒子性 C.少量光子的运动显示波动性,大量光子的运动显示粒子性D.少量光子的运动显示粒子性,大量光子的运动显示波动性

2.实物粒子也具有波动性,只是因其波长太小,不易观察到,但并不能否定其具有波粒二象性。关于物质的波粒二象性,下列说法中正确的是() A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性 B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道 C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的 D.实物的运动有特定的轨道,所以实物不具有波粒二象性

3.电子属于实物粒子,1927年戴维逊和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一。如图所示是该实验装置的简化图,下列说法正确的是 () A.亮条纹是电子到达概率大的地方 B.该实验说明物质波理论是正确的 C.该实验再次说明光子具有波动性 D.该实验说明实物粒子具有波动性

(2016·宁波期末)一个德布罗意波波长为λ1的中子和另一个德布罗意波波长为λ2的氘核同向正碰后结合成一个氚核,该氚核的德布罗意波波长为 A. λ1λ2 λ1+λ2B. λ1λ2 λ1-λ2 C .λ1+λ2 2D. λ1-λ2 2

1.(多选)为了验证光的波粒二象性,在双缝干涉实验中将光屏换成照相底片,并设法减弱光的强度,下列说法正确的是 A.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间足够长,底片上将出现双缝干涉图样 B.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间很短,底片上将出现不太清晰的双缝干涉图样C.大量光子的运动显示光的波动性 D.光只有波动性没有粒子性

人教版高中物理选修3-5第17章《光的波粒二象性》知识点总结

第十七章:波粒二象性 一、黑体辐射规律 1、黑体:只吸收外来电磁波而不反射的理想物体 2、黑体辐射的特点 黑体的辐射强度按波长分布只与温度有关,与物体的材料和表面形 状无关(一般物体的辐射强度按波长分布除与温度有关外,还与物 体的材料、表面形状有关); 3、黑体辐射规律: ① 随着温度的升高,任意波长的辐射强度都加强 ② 随着温度的升高,辐射强度的极大值向着波长减小的方向进行; 4、普朗克的量子说: 透过黑体辐射规律,普朗克认为:电磁皮的辐射和吸收,是不连续的,而是一份一份地进行的,每份叫一个能量子,能量为γεh =。爱因斯坦受其启发,提出了光子说:光的传播和吸收也是一份一份地进行的,每一份叫一个光子,其能量为νεh = 二、光电效应:说明了光具有粒子性,同时说明了光子具有能量 1、光电效应现象 紫外光照射锌板,锌板的电子获得足够的光子能量,挣脱金 属正离子引力,脱离锌板成为光电子;锌板因失去电子而带上 正电,于是与锌板相连的验电器也带上正电,金属箔张开。 2、实验原理电路图

3、规律: ① 存在饱和电流 饱和电流:在光电管两端加正向电压时,单位时间到达阳极A 的光 电子数增多,光电流越大;但当逸出的光电子全部到达阳极后,再 增加正向电压,光电流就达到最大饱和值,称为饱和电流。 ② 存在遏止电压 在光电管两端加反向电压时,单位时间内到达阳极A 的光电子数减少,光电流减小;当反射电压达到某一值U C 时,光电流减小为零,U C 就叫“遏止电压”。 ③ 存在截止频率 a 、 截止频率的定义:任何一种金属都有一个极限频率ν0,入射光的频率低于 “极限频率”ν0时,无论入射光多强,都不能发生光电效应,这个极限频率称为 截止频率。 b 、“逸出功”定义:电子从金属表面脱离金属所需克服金属正离子的引力所做的最小功。 要发生光电效应,入射光的能量(h ν)要大于 “逸出功(W )” 即: 00W hv = ④ 光电效应的“瞬时性”——因光电效应发生的时间,即为一个光子与一个电子能量交换 的时间,所以不管光强度如何,发生光电效应的时间极短,不超过10-9 s 。 4、爱因斯坦的光电效应方程: 光电子的最大初动能等于入射光光子的能量减逸出功 即:W h E K -=ν 可见“光电子的最大初动能”与入射光的强度无关,只与入射光频率有关,图象如下图

人教版高一物理必修2全册教案

课题 5.2运动的合成和分解课型新授课课时 1 教学目标 (一)知识教学点 1.知道合运动、分运动、知道合运动和分运动是同时发生的,并且互不影响,能在具体的问题中分析和判断. 2.理解运动的合成、运动的分解的具体意义.理解运动的合成和分解遵循平行四边形定则. 3.会用图示方法和教学方法求解位移,速度合成、分解的问题. (二)能力训练点 培养观察和推理的能力、分析和综合的能力. (三)教育渗透点 辩证地看待问题 (四)美育渗透点 学生在学习过程运用概念进行推理、判断,能体会到物理学科中所渗透出的逻辑美. 教学重点难点1.重点 明确一个复杂的运动可以等效为两个简单的运动的合成或等效分解为两个简单的运动,理解运动合成、分解的意义和方法. 2.难点 认识分运动和分运动相互独立、互不相干;分运动和合运动的同时性.理解两个直线运动的合运动可以是直线运动,也可以是曲线运动. 教学准备教材实验装置 课件:运动的合成和分解多媒体设备 教学过程 (一)明确目标 (略) (二)整体感知 本节的地位比较特殊.为知识的学习,涉及到许多基本概念和基本规律;作为方法的介绍,体会把较复杂的运动看作是几个简单运动的合成;作为能力的培养,提高观察和推理能力,分析和综合的能力. (三)重点、难点的学习与目标完成过程 1.什么是分运动、合运动? 演示实验(具体操作见课本) 学生观察蜡块的运动:由A到B沿玻璃管竖直向上匀速直线运动;由A到D随玻璃管向右匀速直线运动;蜡块实际的运动是上述两个运动的合成.即由A到C的匀速直线运动,如图5-2所示.

②定量分析,在 x 方向有x = 2 1a 2 t ,在y 方向有y =y v t ,约去时间t 得 k y a v x y y 2 22= 故2y =kx .此为抛物线型方程,表明合运动是曲线运动.(定量分析可结合学生情况留给学生课后思考) (2)一个曲线运动可以分解为两个方向上的直线运动 既然两个直线运动的合运动可以是曲线运动,反过来,一个曲线运动可以用两个方向上的直线运动来等效替代.也就是说,分别研究这两个方向上的受力情况和运动情况,弄清楚分运动是直线运动的规律,就可以知道作为合运动的曲线运动的规律. 作 业 布 置 练习二 (1)(2)(3)(4) 课堂总结 1.在进行运动的合成和分解时,一定要明确合运动是物体实际的运动.分运动是假想的,这与力的合成和分解是有区别的,如图5-3所示.通过一定滑轮拉一物体,使物体在水平面上运动,如果是讨论运动的合成和分解,物体实际运动即合运动的速度方向是水平的,沿绳方向的速度是分运动的速度;如果是讨论力的合成和分解,沿绳方向的拉力是物体实际受到的力,沿水平方向的力是拉力的分力. 图5-3 2.合成和分解的精髓是“等效”的思想.学习时要深刻体会,可以结合课本“思考和讨论”进一步说明.

光电效应、波粒二象性测试题及解析

光电效应、波粒二象性测试题及解析 1.用很弱的光做单缝衍射实验,改变曝光时间,在胶片上出现的图像如图所示,该实验表明( ) A .光的本质是波 B .光的本质是粒子 C .光的能量在胶片上分布不均匀 D .光到达胶片上不同位置的概率相同 解析:选C 用很弱的光做单缝衍射实验,改变曝光时间,在胶片出现的图样说明光具有波粒二象性,故A 、B 错误;该实验说明光到达胶片上的不同位置的概率是不一样的,也就说明了光的能量在胶片上分布不均匀,故C 正确,D 错误。 2.(2020·滨州模拟)已知钙和钾的截止频率分别为7.73×1014 Hz 和5.44×1014 Hz ,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( ) A .波长 B .频率 C .能量 D .动量 解析:选A 由爱因斯坦光电效应方程12m v 2m =hν-W 0,又由W 0=hν0,可得光电子的最大初动能12m v 2 m =hν-hν0,由于钙的截止频率大于钾的截止频率,所以钙逸出的光电子的最大初动能较小,因此它具有较小的能量、频率和动量,B 、C 、D 错误;又由c =λf 可知光电子频率较小时,波长较大,A 正确。 3.[多选]如图所示,电路中所有元件完好,但光照射到光电管上,灵敏电流计中没有电流通过,其原因可能是( ) A .入射光太弱 B .入射光波长太长 C .光照时间短 D .电源正、负极接反 解析:选BD 若入射光波长太长,入射光的频率低于截止频率时,不能发生 光电效应,故选项B 正确;电路中电源反接,对光电管加了反向电压,若使该电压超过了遏止电压,也没有光电流产生,故选项D 正确。 4.(2019·北京高考)光电管是一种利用光照射产生电流的装置,当入射光照在管中金属板上时,可能形成光电流。表中给出了6次实验的结果。 组 次 入射光子的能量/eV 相对光强 光电流大小/mA 逸出光电 子的最大动能/eV

2021新人教版高中物理必修2全册复习教学案

高中物理必修2(新人教版)全册复习教学案 内容简介:包括第五章曲线运动、第六章万有引力与航天和第七章机械能守恒定律,具体可以分为,知识网络、高考常考点的分析和指导和常考模型规律示例总结,是高一高三复习比较好的资料。 一、 第五章 曲线运动 (一)、知识网络 (二)重点内容讲解 1、物体的运动轨迹不是直线的运动称为曲线运动,曲线运动的条件可从两个角度来理解:(1)从运动学角度来理解;物体的加速度方向不在同一条直线上;(2)从动力学角度来理解:物体所受合力的方向与物体的速度方向不在一条直线上。曲线运动的速度方向沿曲线的切线方向,曲线运动是一种变速运动。 曲线运动是一种复杂的运动,为了简化解题过程引入了运动的合成与分解。一个复杂的运动可根据运动的实际效果按正交分解或按平行四边形定则进行分解。合运动与分运动是等效替代关系,它们具有独立性和等时性的特点。运动的合成是运动分解的逆运算,同样遵循曲线运动

平等四边形定则。 2、平抛运动 平抛运动具有水平初速度且只受重力作用,是匀变速曲线运动。研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。其运动规律为:(1)水平方向:a x =0,v x =v 0,x= v 0t 。 (2)竖直方向:a y =g ,v y =gt ,y= gt 2 /2。 (3)合运动:a=g ,2 2y x t v v v += ,22y x s +=。v t 与v 0方向夹角为θ,tan θ= gt/ v 0, s 与x 方向夹角为α,tan α= gt/ 2v 0。 平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即g h t 2= ,与v 0无关。水平射程s= v 0 g h 2。 3、匀速圆周运动、描述匀速圆周运动的几个物理量、匀速圆周运动的实例分析。 正确理解并掌握匀速圆周运动、线速度、角速度、周期和频率、向心加速度、向心力的概念及物理意义,并掌握相关公式。 圆周运动与其他知识相结合时,关键找出向心力,再利用向心力公式F=mv 2/r=mr ω2 列式求解。向心力可以由某一个力来提供,也可以由某个力的分力提供,还可以由合外力来提供,在匀速圆周运动中,合外力即为向心力,始终指向圆心,其大小不变,作用是改变线速度的方向,不改变线速度的大小,在非匀速圆周运动中,物体所受的合外力一般不指向圆心,各力沿半径方向的分量的合力指向圆心,此合力提供向心力,大小和方向均发生变化;与半径垂直的各分力的合力改变速度大小,在中学阶段不做研究。 对匀速圆周运动的实例分析应结合受力分析,找准圆心的位置,结合牛顿第二定律和向心力公式列方程求解,要注意绳类的约束条件为v 临=gR ,杆类的约束条件为v 临=0。 (三)常考模型规律示例总结 1.渡河问题分析 小船过河的问题,可以 小船渡河运动分解为他同时参与的两个运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(水冲船的运动,等于水流的运动),船的实际运动为合运动. 例1:设河宽为d,船在静水中的速度为v 1,河水流速为v 2 ①船头正对河岸行驶,渡河时间最短,t 短= 1 v d ②当 v 1> v 2时,且合速度垂直于河岸,航程最短x 1=d 当 v 1< v 2时,合速度不可能垂直河岸,确定方法如下: 如图所示,以 v 2矢量末端为圆心;以 v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则 合速度沿此切线航程最短, 由图知: sin θ=2 1v v

波粒二象性阶段测试题

波粒二象性阶段测试题 (时间:60分钟 满分:100分) 一、选择题(本题共8小题,每小题6分,共48分。1~6小题只有一个选项符合题目要求,7~9小题有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分) 1.爱因斯坦由光电效应的实验规律,猜测光具有粒子性,从而提出光子说,从科学研究的方法来说,这属于( ) A .等效替代 B .控制变量 C .科学假说 D .数学归纳 2.关于德布罗意波,下列说法正确的是( ) A .所有物体不论其是否运动,都有对应的德布罗意波 B .任何一个运动着的物体都有一种波和它对应,这就是德布罗意波 C .电磁波也是德布罗意波 D .只有运动着的微观粒子才有德布罗意波,对于宏观物体,不论其是否运动,都没有相对应的德布罗意波 3.关于热辐射,下列说法中正确的是( ) A .一般物体的热辐射强度只与物体的温度有关 B .黑体只吸收电磁波,不反射电磁波,所以黑体一定是黑的 C .一定温度下,黑体辐射强度随波长的分布有一个极大值 D .温度升高时,黑体辐射强度的极大值向波长增大的方向移动 4.经150 V 电压加速的电子束,沿同一方向射出来,穿过铝箔射到其后的屏上,则( ) A .所有电子的运动轨迹均相同 B .所有电子到达屏上的位置坐标均相同 C .电子到达屏上的位置坐标可用牛顿运动定律确定 D .电子到达屏上的位置受波动规律支配,无法用确定的坐标来描述它的位置 5.光子有能量,也有动量,动量p =h λ ,它也遵守有关动量的规律。如图所示,真空中,有“∞”形装置可绕通过横杆中点的竖直轴OO ′在水平面内灵活地转动,其中左边是圆形黑纸片(吸收光子),右边是和左边大小、质量相同的圆形白纸片(反射光子)。当用平行白光垂直照射这两个圆面时,关于装置开始时的转动情况(俯视),下列说法中正确的是( B )

第十七章 波粒二象性 复习教案

第十七章 波粒二象性 复习教案 17.1 能量量子化 知识与技能 (1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 (2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 (3)了解能量子的概念。 教学重点:能量子的概念 教学难点:黑体辐射的实验规律 教学过程: 1、黑体与黑体辐射 (1)热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。 (2)黑体 概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。 2、黑体辐射的实验规律 黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。 提出1:怎样解释黑体辐射的实验规律呢? 在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。(瑞利--金斯线,) 3、能量子: 1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε,2ε,3ε,... n ε,n 为正整数,称为量子数。对于频率为ν的谐振子最小能量为: 0 1 2 3 4 6 (μ e 实验结果

高考物理新近代物理知识点之波粒二象性基础测试题及答案(4)

高考物理新近代物理知识点之波粒二象性基础测试题及答案(4) 一、选择题 1.研究光电效应的电路如图所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A 吸收,在电路中形成光电流,下列光电流I 与A 、K 之间的电压U AK 的关系图象中,正确的是( ) A . B . C . D . 2.下列说法正确的是( ) A .只要光照射的时间足够长,任何金属都能发生光电效应 B .一群氢原子从4n =能级跃迁到基态时,能发出6种频率的光子 C .比结合能越大,原子核越不稳定 D .核反应 238234 492 902U Th He →+为重核裂变 3.如图所示是氢原子的能级图,a 、b 、c 为原子跃迁所发出的三种频率的光。用这三种频率的光分别照射同种金属,都发生了光电效应,则关于这种金属发生光电效应时光电子的最大初动能Ek 随入射光频率v 变化的图象,以及这三种频率的光产生的光电子最大初动能的大小关系,下列四个图象中描绘正确的是

A.B. C.D. 4.下列说法正确的是() A.原子核发生衰变时要遵守电荷守恒和质量守恒的规律 B.射线、射线、射线都是高速运动的带电粒子流 C.氢原子从激发态向基态跃迁只能辐射特定频率的光子 D.发生光电效应时光电子的动能只与入射光的强度有关 5.利用金属晶格(大小约10-10m)作为障碍物观察电子的衍射图样,方法是让电子通过电场加速,然后让电子束照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m、电量为e、初速度为零,加速电压为U,普朗克常量为h,则下列说法中不正确的是 ( ) A.该实验说明电子具有波动性 λ= B.实验中电子束的德布罗意波长为 2meU C.加速电压U越大,电子的衍射现象越不明显 D.若用相同动能的质子代替电子,衍射现象将更加明显 6.关于光电效应,下列说法正确的是 A.光电子的最大初动能与入射光的频率成正比 B.光的频率一定时,入射光越强,饱和电流越大 C.光的频率一定时,入射光越强,遏止电压越大 D.光子能量与光的速度成正比 7.某同学采用如图所示的实验装置研究光电效应现象。当用某单色光照射光电管的阴极K 时,会发生光电效应现象。闭合开关S,在阳极A和阴极K之间加上反向电压,通过调节滑动变阻器的滑片逐渐增大电压,直至电流计中电流恰为零,此时电压表的电压值U称为遏止电压。现分别用频率为ν1和ν2的单色光照射阴极,测量到遏止电压分别为U1和U2,设电子质量为m、电荷量为e,则下列说法中正确的是

(完整版)波粒二象性知识点和练习

波粒二象性知识点和练习 一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率................,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关..................,只随着入射光频率的增大..而增大.. 。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的............ ,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的 光电流随着反向电压的增加而减小,当反向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零, 所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。 三、光电效应方程 1、逸出功W 0: 电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。 2、光电效应方程:如果入射光子的能量hv 大于逸出功W 0,那么有些光电子在脱离金属表面后还有剩余的动能——根据能量守恒定律,入射光子的能量hv 等于出射光子的最大初动能与逸出功之和,即 02 max 21W mv hv += 其中2max 2 1mv 是指出射光子的最大初动能。 3、 光电效应的解释:

光的波粒二象性

光的波粒二象性 作为被列入世界上十大经典物理实验之一的双缝实验,让很多物理学家和科学家们伤透脑筋。双缝实验是一种光学实验,大家一起往下看吧。 在量子力学里,双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。 这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。双缝实验还被列入了世界十大经典物理实验之中,但是有人却认为双缝实验十分的难以理解。如果电子是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。如果电子是以波的形式运动,由于波之间存在干涉,穿过双缝落到黑板上是一道道痕迹。一开始实验表明电子以波的形式运动。即使一个个电子发射,黑板上还是一道道痕迹。于是科学家想知道为什么一个个电子发射也会有波的现象,于是将高速摄像机对准双缝以便观察。重点来了:当想进一步观察时,粒子却是是互不干涉地运动,穿过双缝落到黑板上是两道痕迹!!!双缝实验,著名光学实验,在1807年,托马斯·杨总结出版了他的《自然哲学讲义》,里面综合整理了他在光学方面的工作,并在里面第一次描述了双缝实验:把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。 试验本身没什么问题,证明了光有波粒二象性,但是科学家们想观察清楚如何会这样,于是他们在微观层面上来观察,架设高速摄像机,观察光子是如何一个一个通过缝隙形成波干涉的,这时候神奇的事情出现了,光子波的特性消失了!又变成人类最容易理解的粒子,只出现了两条条纹。这才引出了超级可怕和诡异的电子双缝干涉实验和后来石破天惊的的“延迟选择实验”,给整个人类带来了前所未有的思想冲击。单光子双缝干涉实验现在有一种仪器,每次只发射出一个光子,这时如果遮板上仍然有两个缝隙A和B(遮板与上述传统实验一样)。依照传统理论,该光子每次有且仅有以下三种情况中的一种:被遮板挡住、通过A缝、通过B缝。 因为要观察投射面的光斑分布,所以不必考虑第一种情况。也就是说,只要光子通过了遮板,要么从A缝通过,要么从B缝通过。按照这种传统理论推导,在投射面会形

高中物理-波粒二象性测试题

高中物理-波粒二象性测试题 一、选择题 1、入射光照射到金属表面上发生了光电效应,若入射光的强度减弱,但频率保持不变,那么以下说法正确的是() A.从光照射到金属表面到发射出光电子之间的时间间隔明显增加 B.逸出的光电子的最大初动能减小 C.单位时间内从金属表面逸出的光电子的数目减少 D.有可能不再产生光电效应 2、爱因斯坦由光电效应的实验规律,猜测光具有粒子性,从而提出光子说。从科学研究的方法来说这属于() A.等效代替B.控制变量 C.科学假说D.数学归纳 3、如图1所示,画出了四种温度下黑体辐射的强度与波长的关系图象,从图象可以看出,随着温度的升高,则() A.各种波长的辐射强度都有增加 B.只有波长短的辐射强度增加 C.辐射强度的极大值向波长较短的方向移动 D.辐射电磁波的波长先增大后减小 4、对光的认识,以下说法正确的是() 图1 A.个别光子的行为表现为粒子性,大量光子的行为表现为波动性 B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C.光表现出波动性时,不具有粒子性;光表现出粒子性时,不具有波动性D.光的波粒二象性应理解为:在某些场合下光的波动性表现明显,在另外一些场合下,光的粒子性表现明显 5、光子打在处于静止状态的电子上,光子将偏离原来的方向而发生散射,康普顿对散射的解释为() A.虽然改变原来的运动方向,但频率保持不变 B.光子从电子处获得能量,因而频率增大 C.入射光引起物质内电子做受迫振动,而从入射光中吸收能量后再释放,释

放出的散射光频率不变 D .由于电子受碰撞后得到动量,散射后的光子频率低于入射光的频率 6、一束绿光照射某金属发生了光电效应,则下列说法正确的是( ) A .若增加绿光的照射强度,则逸出的光电子数增加 B .若增加绿光的照射强度,则逸出的光电子最大初动能增加 C .若改用紫光照射,则可能不会发生光电效应 D .若改用紫光照射,则逸出的光电子的最大初动能增加 7、用波长为λ1和λ2的单色光1和2分别照射金属1和2的表面。色光1照射 金属1和2的表面时都有光电子射出,色光2照射金属1时有光电子射出,照射金属2时没有光电子射出。设金属1和2的逸出功为W 1和W 2,则有( ) A .λ1>λ2,W 1>W 2 B .λ1>λ2,W 1W 2 D .λ1<λ2,W 1

相关主题
文本预览
相关文档 最新文档