当前位置:文档之家› 二次函数基础知识梳理

二次函数基础知识梳理

二次函数基础知识梳理

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,

,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,

而b c ,

可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.

⑵ a b c ,

,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式

1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2

=+的性质:

y ax c

上加下减。Array 3. ()2

=-的性质:

y a x h

左加右减。

4.()2

=-+的性质:

y a x h k

三、二次函数图象的平移 1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标

()h k ,;

⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:

⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成

m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成

c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

四、二次函数()2

y a x h k =-+与2y ax bx c =++的比较

从解析式上看,()2

y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者

通过配方可以得到前者,即2

2424b ac b y a x a a -?

?=++ ??

?,其中2424b ac b h k a a -=-=

,. 五、二次函数2y ax bx c =++图象的画法

五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点

画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,

、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).

画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

六、二次函数2y ax bx c =++的性质

1. 当0a >时,抛物线开口向上,对称轴为2b

x a =-,顶点坐标为2424b ac b a a ??-- ???

,. 当2b x a <-

时,y 随x 的增大而减小;当2b

x a

>-时,y 随x 的增大而增大;当2b

x a

=-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b

x a

=-

,顶点坐标为2424b ac b a

a ??-- ???,.当2

b x a <-

时,y 随x 的增大而增大;当2b

x a >-时,y 随x 的增大而减小;当2b

x a

=-时,y 有最大值244ac b a -.

七、二次函数解析式的表示方法

1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);

2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函

数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系

九 二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1. 已知抛物线上三点的坐标,一般选用一般式;

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;

4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

十、二次函数图象的对称 十一、二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):

一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.

图象与x 轴的交点个数:

① 当240b ac ?=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的

12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离

21AB x x =-=

② 当0?=时,图象与x 轴只有一个交点; ③ 当0?<时,图象与x 轴没有交点.

1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;

2'

当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.

2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;

3. 二次函数常用解题方法总结:

⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.

十二、二次函数的应用

1.对于任意实数m ,下列函数一定是二次函数的是 ( )

A .y=(m -1) 2x 2

B .y=(m+1) 2x 2

C .y=(m 2+1)x 2

D .y=(m 2-1)x 2

2.已知二次函数y=(m+1)x 2有最大值,则m 的取值范围是_____.

3.抛物线y=1

2

-5x 2的对称轴为_______,顶点坐标为______.

4.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( ) A .1x =

B .1x =-

C .3x =-

D .3x =

5.已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;

6.抛物线()232

1

--

=x y +5,顶点坐标是 ,当x 时,y 随x 的增大而

减小, 函数有最 值 .

7.已知二次函数y=x 2-2x -3的函数值y<0,则x 的取值范围为______.

8.已知二次函数y =a x 2+bx +c(a ≠0),其中a 、b 、c 满足a -b +c =0和9a +3b +c =0,则该二次函数的对称轴为直线_______.

9.二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18), C .(12)-,

D .(14)-,

10.抛物线y=8x 2+2mx+m-2的顶点在x 轴上,则顶点坐标是( )

A .(4,0)

B . C. D .(0,)

11. 不论x 取何值,二次函数y =-x 2+6x +c 的函数值总为负数,则c 的取值范围为 .

12.已知x 、y 都是正实数,且满足4x 2+4xy +y 2+2x +y -6=0,则x (1-y )的最小值为 .

13.若直线y =m (m 为常数)与函数y =?????x 2(x ≤2)4x (x >2)的图像恒有三个不同的交点,

则常数m 的取值范围是___________。

14.已知函数y =(a -2) x 2+4x -1与x 轴有交点,则a 的取值范围是 ( ) A .a >-2 B .a >-2且a ≠2 C .a ≥-2 D .a ≥-2且a ≠2

15.若二次函数m x x y ++=22的图像与x 轴没有公共点,则m 的取值范围是

______________。

16.已知函数y=x2-2x+k的图象经过点(1

2

,y

1

),(

3

2

,y

2

),则y

1

与y

2

的大小关

系为()

A.y

1>y

2

B.y

1

=y

2

C.y

1

2

D.不能确定

17.抛物线y=-x2+6x-12经过平移得到y=-x2,则平移方法是 ( )

A.向右平移3个单位长度,再向下平移3个单位长度

B.向右平移3个单位长度,再向上平移3个单位长度

C.向左平移3个单位长度,再向下平移3个单位长度

D.向左平移3个单位长度,再向上平移3个单位长度

18.已知二次函数y=ax2+bx+c的图象如图所示,则以下结论:①a+b+c<0;②a

—b+c>1;③abc>0;④4a—2b+c<0;⑤c—a>1,其中正确结论的序号是 ( ) A.①② B.①③④

C.①②③⑤ D.①②③④⑤

19.已知二次函数y=ax2+bx+c的图象与x轴交于点(一2,0)、(x,0),且1

1

<2,

与y轴正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a

③2a+c>0;④2a-6+1>0.其中正确结论的个数是__________.

20. 二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分

别为x1,x2,其中-2<x1<-1,0<x2<1,(a<0 ,顶点在第二象限)下列结论:

①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.

其中正确的有( )

A.1个

B.2个

C.3个

D.4个

21.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②;③ac﹣b+1=0;

④OA?OB=﹣.其中正确结论的序号是______.

22.已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y

1),(﹣1,y

2

),(1,

0),且y

1<0<y

2

,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x

的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x

,使

得x

=﹣,其中结论错误的是______(只填写序号).

23.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:

①abc<0

②b2﹣4ac>0

③4b+c<0

④若B(﹣,y

1)、C(﹣,y

2

)为函数图象上的两点,则y

1

>y

2

⑤当﹣3≤x≤1时,y≥0,

其中正确的结论是(填写代表正确结论的序号)______.

24.二次函数2y ax bx c =++(0a ≠)的图象如图所示,下列结论:

①0abc <;②20a b +=;③240ac b -<;④30a c +<;⑤2a b am bm +>+(m 为不等于1的任意实数);

⑥若221122ax bx ax bx +=+,且12x x ≠,则122x x +=. 其中正确结论的序号为 .

25.已知二次函数y =ax 2+bx +c (a ≠0)中,函数值y 与自变量x 的部分对应值如下表:

则关于x 的一元二次方程ax 2+bx +c =-2的根是 .

26.已知一次函数y 1=kx+m (k ≠0)和二次函数y 2=ax 2+bx+c (a ≠0)的自变量和对应函数值如表:

当y 2>y 1时,自变量x 的取值范围是( ) A .x <﹣1 B .x >4 C .﹣1<x <4 D .x <﹣1或x >4

27.已知关于x 的函数y=ax 2+x+1(a 为常数). (1)若函数的图象与x 轴恰好有一个交点,求a 的值.

(2)若函数的图象是抛物线,且顶点始终在x 轴上方,求a 的取值范围.

28.已知函数()9232

+--=x y .

(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .

(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.

(4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;

(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?

29.如图,抛物线y=1

2

x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点

在直线y=-2x上.

(1)求a的值;

(2)求A,B的坐标;

(3)以AC,CB为一组邻边作□ABCD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.

30.已知抛物线2

=++与x轴交于A,B两点,与y轴交于点C,O是坐标

y x bx c

原点,点A的坐标是(-l,0),点C的坐标是(0,-3).在第四象限内的抛物线上有一动点D,过D作DE x

⊥轴,垂足为E,交BC于点F.设点D的横坐标为m.

(1)求抛物线的函数表达式;

(2)连接AC,AF,若ACB FAB

∠=∠,求点F的坐标;

(3)在直线DE上作点H,使点H与点D关于点F对称,以H为圆心,HD为

半径作⊙H,当⊙H与其中一条坐标轴相切时,求m的值.

初中数学二次函数专题复习教案

初中数学二次函数专题复习教案 〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向。 〖大纲要求〗 1.理解二次函数的概念; 2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象; 3.会平移二次函数y=a x2 (a≠0)的图象得到二次函数y=a(ax +m)2 +k 的图象,了解特殊与一般相互联系和转化的思想; 4.会用待定系数法求二次函数的解析式; 5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。 内容 (1)二次函数及其图象 如果y=ax 2+bx+c (a,b ,c 是常数,a ≠0),那么,y叫做x 的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax 2 +bx +c(a ≠0)的顶点是)44, 2(2a b ac a b --,对称轴是a b x 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。 抛物线y =a (x+h)2+k(a ≠0)的顶点是(-h ,k ),对称轴是x=-h. 〖考查重点与常见题型〗 1.考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数y =(m-2)x2+m 2-m-2额图像经过原点, 则m 的值是 2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数y =k x+b的图像在第一、二、三象限内,那么函数 y =kx 2+bx -1的图像大致是( ) y 0 -1 x

史上最全初三数学二次函数知识点归纳总结

史上最全初三数学二次函数知识点归纳总结 二次函数知识点归纳及相关典型题 第一部分基础知识 1.定义:一般地,如果y ax2bx c(a,b,c是常数,a0),那么y叫做x的二次函数. 2.二次函数y ax2的性质 (1)抛物线y ax2的顶点是坐标原点,对称轴是y轴. (2)函数y ax2的图像与a的符号关系. ①当a0时抛物线开口向上顶点为其最低点; ②当a0时抛物线开口向下顶点为其最高点. (3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y ax2(a0). 3.二次函数y ax2bx c的图像是对称轴平行于(包括重合)y轴的抛物线. b 2a4ac b4a 224.二次函数y ax bx c用配方法可化成:y a x h k的形式,其中h22,k. 25.二次函数由特殊到一般,可分为以下几种形式:①y ax2;②y ax2k;③y a x h; ④y a x h k; ⑤y ax2bx c. 6.抛物线的三要素:开口方向、对称轴、顶点. ①a的符号决定抛物线的开口方向:当a0时,开口向上;当a0时,开口向下; a相等,抛物线的开口大小、形状相同. ②平行于y轴(或重合)的直线记作x h.特别地,y轴记作直线x0. 7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:y ax2b4ac b bx c a x2a4a22b4ac b(),对称轴是直线x,∴顶点是. 2a2a4a 2b2 (2)配方法:运用配方的方法,将抛物线的解析式化为y a x h k的形式,得到顶点为(h,k),对称轴是直线 x h. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 - 1 - 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线y ax2bx c中,a,b,c的作用 (1)a决定开口方向及开口大小,这与y ax2中的a完全一样. (2)b和a共同决定抛物线对称轴的位置.由于抛物线y ax2bx c的对称轴是直线 x b2a

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

二次函数知识点总结59889

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 3. ()2 y a x h =-的性质: 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移

1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成c m x b m x a y ++++=)()(2 (或 c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x , (若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

二次函数知识讲解基础(供参考)

《二次函数》全章复习与巩固—知识讲解(基础) 【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解. 【知识网络】 【要点梳理】 要点一、二次函数的定义 一般地,如果是常数,,那么叫做的二次函数. 要点诠释: 如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小. 要点二、二次函数的图象与性质 1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 函数解析式开口方向对称轴顶点坐标 当时(轴) (0,0)

开口向上 当时 开口向下 (轴) (0,) (,0) (,) () 2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线. 3.抛物线20 () y ax bx c a =++≠中,,, a b c的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则. 4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.) (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:). 要点诠释:

初中数学二次函数知识点汇总

1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

二次函数基础知识及练习

二次函数 【学习目标】: 知识点、考点: 1.二次函数的定义; 2.二次函数的图像和性质; 3.确定二次函数的解析式。 【学习内容】: 知识网络详解: 一、二次函数 1、二次函数的定义 一般地,形如_________(a,b,c是常数,a≠0)的函数叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为0,二次函数的定义域是全体实数。 2、二次函数的结构特征 (1)等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. (2)a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项。 3、二次函数的三种常见形式 ①一般式:y=ax2+bx+c(a,b,c是常数,a≠0),对称轴______,顶点坐标______.该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是(0,c); ②顶点式:(a,h,k是常数,a≠0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k); ③交点式:(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(,0),(,0),对称轴为______. 4、二次函数y=ax2+bx+c(a≠0)的图像及性质

二次函数y=ax2+bx+c(a≠0)的图像有以下特征: (1)二次项系数a决定抛物线的开口方向和大小 ①当a>0时,开口向______,顶点坐标______,对称轴为______,当x>______时, y随x的增大而______;x<______时,y随x的增大而______;x=______时,y有 最小值为______。 ②当a<0时,开口向______,顶点坐标______,对称轴为______,当x>______时, y随x的增大而______;x<______时,y随x的增大而______;x=______时,y有 最大值为______。 ③∣a∣决定开口大小,∣a∣越大开口就越小。 (2)一次项系数b和二次项系数a共同决定对称轴的位置: 左同右异:当a,b同号时,对称轴在y轴左侧,当a,b异号时,对称轴在y轴右侧。 (3)常数项c决定抛物线与y轴的交点,抛物线与y轴交于(0,c), ①c>0,与y轴交于正半轴 ②c=0,过原点 ③c<0,与y轴交于负半轴 (4)抛物线与x轴的交点个数: △=>0时,抛物线与x轴有______个交点 △==0时,抛物线与x轴有______个交点 △=<0时,抛物线与x轴有______个交点 5、二次函数的平移 具体步骤:先把二次函数y=ax2+bx+c化成的形式,确定其顶点(h,k),然后做出二次函数的图像,将抛物线平移,使其顶点平移到(h,k). 平移规律:左加右减,上加下减.

二次函数题型分类复习总结(打印版)

二次函数考点分类复习 知识点一:二次函数的定义 考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式。 备注:当b=c=0时,二次函数y=ax2是最简单的二次函数. 1、下列函数中,是二次函数的是 . ①y=x 2 -4x+1; ②y=2x 2 ; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2+2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 课后练习: (1)下列函数中,二次函数的是( ) A .y=ax 2+bx+c B 。2 )1()2)(2(---+=x x x y C 。x x y 1 2+= D 。y=x(x —1) (2)如果函数1)3(2 32 ++-=+-mx x m y m m 是二次函数,那么m 的值为 知识点二:二次函数的对称轴、顶点、最值 1、二次函数 c bx ax y ++=2,当0>a 时?抛物线开口向上?顶点为其最低点;当0

二次函数各知识点考点典型例题及练习

二次函数各知识点、考点、典型例题及对应练习(超全) 【典型例题】 题型 1 二次函数的概念 例1(基础).二次函数2 365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展, 武汉市中考题,12) 下列命题中正确的是 ○ 1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○ 2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。 ○ 3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。 ○ 4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。 ○ 5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC =6,则抛物线解析式为 y=x 2-5x+4。 ○ 6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。 ○ 7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。 ○ 8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。 ○ 9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。 ○ 10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。 ○ 11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。 点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。复习时,抓住系数a 、b 、c 对图形的影响的基本特点,提升学生的数形结合能力,抓住抛物线的四点一轴与方程的关系,训练学生对函数、方程的数学思想的运用。 题型2 二次函数的性质 例3 若二次函数2 4y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0)知,此抛物线的对称轴为直线x=1,此时121,2x x =-=时,对应的y 1 与y 2的大小关系是( ) A .y 1 y 2 D.不确定 点拨:本题可用两种解法 解法1:利用二次函数的对称性以及抛物线上函数值y 随x 的变化规律确定:a>0时,抛物线上越远离对称轴的点对应的函数值越大;a<0时,抛物线上越靠近对称轴的点对应的函数值越大

二次函数知识点总结及相关典型题目(教师用)

二 次 函 数 一、定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 例:已知关于x 的函数是常数c b a c bx ax y ,,(2 ++=)当a,b,c 满足什么条件时 (1)是一次函数 (2)是正比例函数 (3)是二次函数 二、二次函数c b a c bx ax y ,,(2 ++=是常数,)0≠a 的性质 (1)①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,在对称轴左边,y 随x 的增大而减小;在在对称轴右边,y 随x 的增大而增大; ②当00 B . b <0 C . c <0 D . a +b +c >0 练习:1、(2011山东威海,7,3分)二次函数2 23y x x =--的图象如图所示.当y <0时,自变量x 的 取值范围是( A ). A .-1<x <3 B .x <-1 C . x >3 D .x <-1或x >3 2、(2010湖北孝感,12,3分)如图,二次函数y=ax2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为1,12?? ??? ,下列结论:①ac <0;②a+b=0;③4ac -b 2 =4a ;④a+b+c <0.其中正确的个数是( C )A. 1 B. 2 C. 3 D. 4 y x O 山东威海题图 轴下方 轴的交点在,抛物线与轴上方,轴的交点在,抛物线与x y c x y c 00<>

初中二次函数知识点汇总(史上最全)

二次函数知识点 一、基本概念: 1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数. 2. 二次函数 的结构特征: ⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2. ⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项. 二、基本形式

1. 二次函数基本形式: 的性质: a 的绝对值越大,抛物线的开口越小。 的符号开口方向顶点坐标对称轴性质 向上轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时,

有最大值 . 2. 的性质:(上加下减) 的符号开口方向顶点坐标对称轴性质 向上轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下轴 时, 随 的增大而减小; 时, 随

的增大而增大; 时, 有最大值 . 3. 的性质:(左加右减) 的符号开口方向顶点坐标对称轴性质 向上X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下X=h 时, 随 的增大而减小;

时, 随 的增大而增大; 时, 有最大值 . 4. 的性质: 的符号开口方向顶点坐标对称轴性质 向上X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下X=h 时,

随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 三、二次函数图象的平移 1. 平移步骤: 方法1:⑴ 将抛物线解析式转化成顶点式 ,确定其顶点坐标 ; ⑵ 保持抛物线 的形状不变,将其顶点平移到 处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“

一次函数、反比例函数、二次函数知识点归纳总结

二次函数知识点详解(最新原创助记口诀) 知识点一、平面直角坐标系 1,平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。

二次函数基础知识练习

1、抛物线y=(x+2)2﹣3的顶点坐标 ;对称轴方程 ,开口向 最值:当x= 时, y 有最 值是 ; 单调性:当x 时,y 随x 的增大而 , 当x 时,y 随x 的增大而 1.1 抛物线y= — 4(x ﹣)2+的顶点坐标 ;对称轴方程 ,开口向 最值:当x= 时, y 有最 值是 ; 单调性:当x 时,y 随x 的增大而 , 当x 时,y 随x 的增大而 1.2抛物线 y= 4(x -3)2+7的顶点坐标 ;对称轴方程 ,开口向 最值:当x= 时, y 有最 值是 ; 单调性:当x 时,y 随x 的增大而 , 当x 时,y 随x 的增大而 1.3抛物线 y=-5(x+2)2-6的顶点坐标 ;对称轴方程 ,开口向 最值:当x= 时, y 有最 值是 ; 单调性:当x 时,y 随x 的增大而 , 当x 时,y 随x 的增大而 2、 抛物线y = 23 12 x 的顶点坐标 ;对称轴方程 ,开口向 最值:当x= 时, y 有最 值是 ; 单调性:当x 时,y 随x 的增大而 , 当x 时,y 随x 的增大而 2.1 抛物线y=﹣6x 2—5的顶点坐标 ;对称轴方程 ,开口向 最值:当x= 时, y 有最 值是 ; 单调性:当x 时,y 随x 的增大而 , 当x 时,y 随x 的增大而 3、 抛物线 y= —7(x -2)2 的顶点坐标 ;对称轴方程 ,开口向 最值:当x= 时, y 有最 值是 ; 单调性:当x 时,y 随x 的增大而 , 当x 时,y 随x 的增大而 3.1抛物线y=2(x+3)2的顶点坐标 ;对称轴方程 ,开口向

最值:当x= 时,y有最值是; 单调性:当x 时,y随x的增大而,当x 时,y随x的增大而 总结:当顶点在y轴上时,; 当顶点在x轴上时,;此时抛物线与x轴只有一个交点4、通过配方将一般式化为顶点式: y=x2﹣3x+2 y=x2+x 1x2-4x+3 y=﹣x2+2x﹣2 y= 2 y= —3x2-2x+1 y= —2x2+x 1

人教版初中数学二次函数知识点复习

人教版初中数学二次函数知识点复习 一、选择题 1.定义[a ,b ,c]为函数y=ax 2+bx+c 的特征数,下面给出特征数为[2m ,1-m ,-1-m]的函数的一些结论,其中不正确的是( ) A .当m=-3时,函数图象的顶点坐标是( 13,83 ) B .当m>0时,函数图象截x 轴所得的线段长度大于32 C .当m≠0时,函数图象经过同一个点 D .当m<0时,函数在x>1 4 时,y 随x 的增大而减小 【答案】D 【解析】 分析:A 、把m=-3代入[2m ,1-m ,-1-m],求得[a ,b ,c],求得解析式,利用顶点坐标公式解答即可; B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题; C 、首先求得对称轴,利用二次函数的性质解答即可; D 、根据特征数的特点,直接得出x 的值,进一步验证即可解答. 详解: 因为函数y=ax 2+bx+c 的特征数为[2m ,1﹣m ,﹣1﹣m]; A 、当m=﹣3时,y=﹣6x 2+4x+2=﹣6(x ﹣13)2+83,顶点坐标是(13,8 3 );此结论正 确; B 、当m >0时,令y=0,有2mx 2+(1﹣m )x+(﹣1﹣m )=0,解得:x 1=1,x 2=﹣ 1 2 ﹣12m , |x 2﹣x 1|= 32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32 ,此结论正确; C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确. D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x= 1 4m m -,在对称轴的右边y 随x 的增大而减小.因为当m <0时,1111 4444m m m -=->,即对称轴在x=14右边,因此函数在x=14 右边先递增到对称轴位置,

二次函数(最全的中考二次函数知识点总结)

二次函数知 识点总结及相关典型题目 第一部分 二次函数基础知识 二次函数的概念:一般地,形如2 y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数各种形式之间的变换 二次函数c bx ax y ++=2 用配方法可化成:()k h x a y +-=2 的形式,其中 a b ac k a b h 4422 -=- =,. 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2 ; ③()2 h x a y -=;④()k h x a y +-=2 ;⑤c bx ax y ++=2 . 二次函数解析式的表示方法 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数2 ax y =的性质 二次函数2y ax c =+的性质 二次函数()2 y a x h =-的性质: 二次 函数()2 y a x h k =-+的性质 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大增大而减小;0 x <时,y 随x 的增大而增大;0x =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符 号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.

相关主题
文本预览
相关文档 最新文档