当前位置:文档之家› 什么是比例积分控制

什么是比例积分控制

什么是比例积分控制
什么是比例积分控制

什么是比例积分控制

我接触楼宇自控,常常碰到比例积分阀及其PID比例积分控制。比例是指什么,积分是指什么,如何进行比例积分真弄不明白。请BA、空调大鳄出手指教。

PID是比例,积分,微分的缩写.

比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的

不稳定。

积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分

调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律

结合,组成PI调节器或PID调节器。

微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

还是要弄明白这三个参数的意义,到时候设置PID参数就好设置了.另外,可以去网上查查PID控制.

PID控制的原理和特点

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数

时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-stat e Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

5、PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如

下:(1)首先预选择一个足够短的采样周期让系统工作﹔(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期﹔(3)在一定的控制度下通过公式计算得到PID 控制器的参数。

PID整定调节Post By:2005-12-14 15:19:21

我们经常在调试中碰到对PID参数的整定,以下是本人的一些经验,供参考:

PID计算公式:Mn=MPn+MIn+MDn =Kc*(SPn-PVn)+Kc*Ts/Ti*(SPn-PVn)+MX+Kc*Td/Ts*(P Vn-1-PVn)=Kc*(SPn-PVn)+MX+Kc*Td/Ts*(PVn-1-PVn)……去除积分项后比例项:MPn=Kc*(S Pn-PVn) 积分项:MIn=Kc*Ts/Ti*(SPn-PVn)+Mx 微分项:MDn=Kc*Td/Ts*(PVn-PVn-1) PID参数的含义: 比例系数P:增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。积分时间Ti:增大积分时间Ti有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。微分时间T d:增大微分时间Td有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。

PID参数整定:1.在凑试时,可参考以上参数对系统控制过程的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤;2.首先整定比例部分。将比例参数由小变大,并观察相应的系统响应,直至得到反应快、超调小的响应曲线;3.如果系统没有静差或静差已经小到允许范围内,并且对响应曲线已经满意,则只需要比例调节器即可;4.如果在比例调节的基础上系统的静差不能满足设计要求,则必须加入积分环节。在整定时先将积分时间设定到一个比较大的值,然后将已经调节好的比例系数略为缩小(一般缩小为原值的0.8),然后减小积分时间,使得系统在保持良好动态性能的情况下,静差得到消除。在此过程中,可根据系统的响应曲线的好坏反复改变比例系数和积分时间,以期得到满意的控制过程和整定参数;

5.如果在上述调整过程中对系统的动态过程反复调整还不能得到满意的结果,则可以加入微分环节。首先把微分时间D设置为0,在上述基础上逐渐增加微分时间,同时相应的改变比例系数和积分时间,逐步凑试,直至得到满意的调节效果。

PID 调节比例积分微分作用的特点和规律总结

(一) 在自动控制系统中,P、I、D调节是比例调节,积分调节和微分调节作用。调节控制质量的好坏取决于控制规律的合理选取和参数的整定。在控制系统中总是希望被控参数稳定在工艺要求的范围内。但在实际中被控参数总是与设定值有一定的差别。调节规律的选取原则为:调节规律有效,能迅速克服干扰。 比例、积分、微分之间的联系与相匹配使用效果 比例调节简单,控制及时,参数整定方便,控制结果有余差。因此,比例控制规律适应于对象容量大负荷变化不大纯滞后小,允许有余差存在的系统,一般可用于液位、次要压力的控制。 比例积分控制作用为比例及时加上积分可以消除偏差。积分会使控制速度变慢,系统稳定性变差。比例积分适应于对象滞后大,负荷变化较大,但变化速度缓慢并要求控制结果没有余差。广泛使用于流量,压力,液位和那些没有大的时间滞后的具体对象。 比例微分控制作用:响应快、偏差小,能增加系统稳定性,有超前控制作用,可以克服对象的惯性,控制结果有余差。适应于对象滞后大,负荷变化不大,被控对象变化不频繁,结果允许有余差的系统。 在自动调节系统中,E=SP-PV。其中,E为偏差,SP为给定值,PV为测量值。当SP 大于PV时为正偏差,反之为负偏差。 比例调节作用的动作与偏差的大小成正比;当比例度为100时,比例作用的输出与偏差按各自量程范围的1:1动作。当比例度为10时,按lO:l动作。即比例度越小。比例作用越强。比例作用太强会引起振荡。太弱会造成比例欠调,造成系统收敛过程的波动周期太多,衰减比太小。其作用是稳定被调参数。 积分调节作用的动作与偏差对时间的积分成正比。即偏差存在积分作用就会有输出。它起着消除余差的作用。积分作用太强也会引起振荡,太弱会使系统存在余差。 微分调节作用的动作与偏差的变化速度成正比。其效果是阻止被调参数的一切变化,有超前调节的作用。对滞后大的对象有很好的效果。但不能克服纯滞后。适用于温度调节。使用微分调节可使系统收敛周期的时间缩短。微分时间太长也会引起振荡。 参数设定的方法一般是,先比例次积分后微分的顺序进行。看曲线调参数,从调节品质的曲线逐步找到最佳参数. 在随动系统中,采用数字PI控制可以达到控制精度高、无超调、响应快、曲线拟合精度高等优点,并简化了控制电路。传统的位置式PI算法一般是可以达到基本控制要求,但必须有一个前提:控制周期要足够小。如果控制周期过长,曲线拟合差,要达到15%的曲线拟合误差有点困难,甚至可能会造成系统失控,并造成对机械设备的损伤。因此,针对本文所提到的控制系统,不能简单的采用位置式PI算法,而应该对其进行改进,以适应该控制系统的要求。 比例系数K是和每次采样的偏差值有直接关系,因此提高Kp能使系统响应较快;同时积分系数Ⅸ尾和前面所有的采样偏差值有关,由于采样周期长,每次采样的

PID比例积分微分

尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。 比例(P)控制 单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。 对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。 单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。 比例积分(PI)控制 比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。 积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。 积分时间的大小表征了积分控制作用的强弱。积分时间越小,控制作用越强;反之,控制作用越弱。 积分控制虽然能消除余差,但它存在着控制不及时的缺点。因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。因此,比例积分控制可以实现较为理想的过程控制。 比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。但是积分作用的引入,会使系统稳定性变差。对于有较大惯性滞后的控制系统,要尽量避免使用。 比例微分(PD)控制

比例,积分,比例积分控制

看场合应用,PID是由比例、微分、积分三个部分组成的,在实际应用中经常只使用其中的一项或者两项,如P、PI、PD、PID等。就可以达到控制要求...PLC编程指令里都会有PID 这个功能指令...至于P,I,D 数值的确定要在现场的多次调试确定... 比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t); u(t) = e(t)*P SP——设定值 e(t)——误差值 y(t)——反馈值 u(t)——输出值 P——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。 也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制. 比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) + Ki∑e(t) +u0 u(t)——输出 Kp——比例放大系数

积分、微分、比例运算电路

模拟电路课程设计报告 题目:积分、微分、比例运算电路 一、设计任务与要求 ①设计一个可以同时实现积分、微分和比例功能的运算电路。 ②用开关控制也可单独实现积分、微分或比例功能 ③用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V),为运算电路提供偏置电源。此电路设计要求同时实现比例、积分、微分运算等功能。即在一个电路中利用开关或其它方法实现这三个功能。

方案一: 用三个Ua741分别实现积分、微分和比例功能,在另外加一个Ua741构成比例求和运算电路,由于要单独实现这三个功能,因此在积分、微分和比例运算电路中再加入三个开关控制三个电路的导通与截止,从而达到实验要求。 缺点:开关线路太多,易产生接触电阻,增大误差。此运算电路结构复杂,所需元器件多,制作难度大,成本较高。并且由于用同一个信号源且所用频率不一样,因此难以调节。 流程图如下: 图1 方案二: 用一个Ua741和四个开关一起实现积分、微分和比例功能,并且能够单独实现积分、微分或比例功能。 优点:电路简单,所需成本较低。 电路图如下: 积分运算电路 微分运算电路 比例运算电路 比例求和运算电路

图2 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 其流程图为: 图3 直流电源电路图如下: 电源变 压器 整流电路 滤波电路 稳压电路

V1220 Vrms 50 Hz 0?? U11_AMP T1 7.32 1D21N4007 D3 1N4007D4 1N4007 C13.3mF C23.3mF C3220nF C4220nF C5470nF C6470nF C7220uF C8220uF U2LM7812CT LINE VREG COMMON VOLTAGE U3LM7912CT LINE VREG COMMON VOLTAGE D51N4007D61N4007 LED2 LED1 R11k|?R21k|?23 4 5 D1 1N400715 16 6 7 14 17 图4 原理分析: (1)电源变压器: 由于要产生±12V 的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V 的变压器。 (2)整流电路: 其电路图如下: 图5 ①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,

PID-比例积分微分控制方法:原理浅释及相关资料搜集

PID-比例积分微分控制方法:原理浅释及相关资料搜集 2010-05-13 21:39:22| 分类:软件技术编程开| 标签:|字号大中小订阅 PID原理和调节(转贴) 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。 一个控制系统包括控制器﹑传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。 不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。 目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PI D控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(cont roller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统 闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 3、阶跃响应 阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常

PID控制——比例控制、积分控制、微分控制

PID控制——比例控制、积分控制、微分控制 比例控制 TITLE:比例控制(P) (Proportional control action) 比例控制(P)是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。根据设备有所不同,比例带一般为2~10%(温度控制)。但是,仅仅是P控制的话,会产生下面将提到的off set (稳态误差),所以一般加上积分控制(I),以消除稳态误差。 比例带与比例控制(P)输出的关系如图所示。用MVp运算式的设定举例: 图1

图2:比例带与输出的关系。 稳态误差(Off set) 比例控制中,经过一定时间后误差稳定在一定值时,此时的误差叫做稳态误差(off set)。仅用比例控制的时候,根据负载的变动及设备的固有特性不同,会出现不同的稳态误差。负载特性与控制特性曲线的交点和设定值不一致是产生稳态误差的原因。比例带小时不会产生。为消除稳态误差,我们设定手动复位值--manual reset值(MR),以消除控制误差。 图3:比例控制产生的off set。 手动复位(Manual reset)

式1:MR: manual reset值。 如前所述,仅用比例控制不能消除稳态误差。为此,将 MR(manual reset值)设为可变,则可自由整定(即调整)调节器的输出。只要手动操作输出相当于off set的量,就能与目标值一致。这就叫做手动复位(manual reset),通常比例调节器上 配有此功能。在实际的自动控制中,每次发生off set时以手动进行reset的话,这样并不实用。在后面将叙述的积分控制功能,能自动消除稳态误差。 图4 积分控制 积分控制(I) (Integral control action) 所谓积分控制(I),就是在出现稳态误差时自动的改变输出量,使其与手动复位动作的输出量相同,达到消除稳态误差的目的。当系统存在误差时,进行积分控制,根据积分时间的大小调节

PID(比例微分积分)

PID(比例微分积分)调节口诀 PID(比例微分积分)调节口诀(转贴) 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1, 2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 3.PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID 调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。 PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-stat e Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性

PID(比例积分微分)控制器

PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC 系统等等。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制: 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制: 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制: 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

4比例积分调节器与比例积分控制规律.

比例积分调节器 ⒈调节器的基本电路如图2.1.12所示。 图2.1.12 调节器基本电路 1Z ——输入阻抗 f Z ——反馈阻抗 g R ——从a 点起计算的输入阻抗 K ——开环放大倍数,由于通常为倒相输入,故用负值表示 则调节器的闭环放大倍数T K 为 )1(1 11 1 111111100Z Z R Z K Z Z R Z Z Z R Z R KZ R KZ Z R Z Z R Z K R Z R Z u u K u u K f g f f g f f g g g f f g f g f g g sr so T +++- =+++-= +++-==(2.1.3) 当运算放大器的闭环放大倍数K 》1(一般为K>10000),则 1 Z Z K f T - ≈(2.1.4) ⒉比例积分调节器与比例积分控制规律

上一小节从无静差的角度突出地表明了积分控制优于比例控制的地方,但是另一方面,在控制的快速性上,积分控制却又不如比例控制。 如图2.1.15所示,在同样的阶跃输入作用之下,比例调节器的输出可以立即响应,而积分调节器的输出却只能逐渐地变。 合起来就行了,这便是比例积分控制。 ⑴PI调节器 在模拟电子控制技术中,可用运算放大器来实现PI调节器,其线路如图2.1.16所示。 ⑵ PI

s s K s K s U s U s W τττ1 1)()()(pi pi in ex pi += +== ⑶PI 调节器输入输出关系特性曲线 PI 调节器输出是由比例和积分两部分相加而成的。 ⑷PI 调节器组成的系统控制规律 由此可见,比例积分控制综合了比例控制和积分控制两种规律的优点,又克服了各自的缺点,扬长避短,互相补充。比例部分能迅速响应控制作用,积分部分则最终消除稳态偏差。

PID(比例-积分-微分)

自动控制原理实验报告 实验名称:线性系统的时域分析 实验时间:2013.12.25 实验地点: 实验学生(签名): 实验设备验收人员(签名): 实验成绩: 实验指导教师(签名):————————————————————————————— 一、实验目的 1、认识各种电路元件,了解其功能,并能在电路板上连接电路图,分析电路的工作原理。 2、掌握线性系统的时域特性规律,观察比例微分环节、比例-积分-微分环节输出时域响应曲线,并测量相应参数。 3、熟悉自动控制原理实验装置,能够熟练运用LabACTn软件解决线性系统的时域输出响应。 二、实验原理及内容 1、微分环节 为了便于观察比例微分的阶跃响应曲线,本实验增加了一个小惯性环节,其模拟电路如图3-1-5所示。

图3-1-5 典型比例微分环节模拟电路 实际比例微分环节的传递函数:)11((S)(S)(S)S TS K U U G i O τ++== 微分时间常数:C R R R R R T )( 32 12 1++= 惯性时间常数:C R 3=τ 02 1R R R K += 额外定义如下参数: 3 3 21)//(R R R R K D += s K T D 06.0=?=τ 比例微分环节对幅值为A 的阶跃响应为:))(()(K t KT A t U A +=δ 2、PID (比例-积分-微分)环节 PID (比例-积分-微分)环节模拟电路如图3-1-6所示。 图3-1-6 PID (比例-积分-微分)环节模拟电路 典型PID 环节的传递函数: s T K s T K K s T s T K s U s U s G d p i p p d i p i O ++=++== )1 1()()()( 其中 232121)( C R R R R R T d ++=, 121)(C R R T i +=, 02 1 R R R K p +=。 惯性时间常数: 23C R =τ, τ?=D d K T , 3 3 21)R //(R R R K D += 。 典型PID 环节对幅值为A 的阶跃响应为: ] )([)(0t T K t T K K A t U i p d p p + +?=δ

基本运算电路比例积分微分

第一节基本运算电路 一、比例运算电路 比例运算电路有反相输入、同相输入和差动输入三种基本形式。1.反相比例运算电路 ·平衡电阻――使两个差分对管基极对地的电阻一致,故R 2 的阻值为 R 2=R 1 //R F 反相比例运算电路 ·虚地概念 运放的反相输入端电位约等于零,如同接地一样。“虚地”是反相比例运算电路的一个重要特点。 可求得反相比例运算放大电路的输出电压与输入电压的关系为 反相比例运算电路的输入电阻:由于反相输入端为“虚地”,显然电路的输 入电阻为 R i =R 1 。 反相比例运算电路有如下几个特点: ①输出电压与输入电压反相,且与R F 与R 1 的比值成正比,与运放内部各项 参数无关。当R F =R 1 时,u O =-u I ,称为反相器。 ②输入电阻R i =R 1 ,只决定于R 1 ,一般情况下反相比例运算电路的输入电阻 比较低。 ③由于同相输入端接地,反相输入端为“虚地”,因此反相比例运算电路没有共模输入信号,故对运放的共模抑制比要求相对比较低。 2.同相比例运算电路 利用“虚短”和“虚断”,可得输出电压与输入电压的关系为

同相比例运算电路有如下几个特点: ①输出电压与输入电压同相,且与R F 与R 1 的比值成正比,电压放大倍数 当R f =∞或R 1 =0时,则u O =u I 。这种电路的输出电压与输入 电压幅度相等、相位相同,称为电压跟随器,又称为同相跟随器。 ②同相比例运算电路的输入电阻很高。由于电路存在很深的负反馈实际的输入电阻要比R id 高很多倍。 ③同相比例运算电路由于u +=u - 而u + =u I ,因此同相比例运算电路输入端 本身加有共模输入电压u IC =u I 。故对运放的共模抑制比相对要求高。 无论是反相比例运算电路还是同相比例运算电路由于引入的是电压负反馈(详细分析见第七章),所以输出电阻R o 很低。 3.差分比例运算电路 利用“虚短”和“虚断”,即i +=i - =0、u + =u - ,应用叠加定理可求得 当满足条件R 1=R 2 、R F =R 3 时, 电路的输出电压与两个输入电压之差成正比,实现了差分比例运算。 电路的差模输入电阻为R i =2R 1 。 缺点:对元件的对称性要求较高,外接电阻要求精密匹配,即使选用误差为±0.1%的电阻,也往往不能满足要求。在要求改变运算关系时,又必须同时选配两对高精密电阻,非常不方便。输入电阻不够高。 4.比例电路应用实例 二、加法电路

比例控制

比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t); u(t) = e(t)*P SP——设定值、e(t)——误差值、y(t)——反馈值、u(t)——输出值、P——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。 也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制. 比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) + Ki∑e(t) +u0 u(t)——输出、Kp——比例放大系数、Ki——积分放大系数、e(t)——误差、u0——控制量基准值(基础偏差) 大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的。 PI两个结合使用的情况下,我们的调整方式如下: 1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,我们还可以在些P值的基础上再加大一点。 2、加大I值,直到输出达到设定值为止。 3、等系统冷却后,再重上电,看看系统的超调是否过大,加热速度是否太慢。 通过上面的这个调试过程,我们可以看到P值主要可以用来调整系统的响应速度,但太大会增大超调量和稳定时间;而I值主要用来减小静态误差。 PID控制: 因为PI系统中的I的存在会使整个控制系统的响应速度受到影响,为了解决这个问题,我们在控制中增加了D微分项,微分项主要用来解决系统的响应速度问题,其完整的公式如下:

比例,比例积分控制参数设定

目录 摘要.....................................................I 1 P和PI控制原理 (2) 1.1 比例(P)控制 (2) 1.2 比例-微分控制 (2) 2 P和PI控制参数设计 (3) 2.1 初始条件: (3) 2.2.1 比例系数k的设定 (3) 2.2.2 加入P控制器后系统动态性能指标计算 (5) 2.2.3加入P控制器后系统动态性能分析: (9) 2.3.1 原系统性能分析 (10) 2.3.2 加入PI控制器后系统性能指标 (11) k取不同值对系统系能的影响 (12) 2.3.3 k和 1 2.3.4 加入PI控制器后系统动态性能分析 (17) 3 P和PI控制器特点比较 (19) 3.1 比例(P)控制器: (19) 3.2比例-积分(PI)控制器: (19) 5 参考文献 (21)

1 P 和PI 控制原理 1.1 比例(P )控制 比例控制是一种最简单的控制方式。其控制器实质上是一个具有可调增益的放大器。在信号变换过程中,P 控制器值改变信号的增益而不影响其相位。在串联校正中,加大了控制器增益k ,可以提高系统的开环增益,减小的系统稳态误差,从而提高系统的控制精度。控制器结构如图1: 图1 1.2 比例-微分控制 具有比例-微分控制规律的控制器称PI 控制器,其输出信号m(t)同时成比例的反应出输入信号e(t)及其积分,即: ?+=t i dt t e T k t ke t m 0)()()( (1) 式(1)中,k 为可调比例系数;i T 为可调积分时间常数。PI 控制器如图2所示。 图2 在串联校正时,PI 控制器相当于在系统中增加了一个位于原点的开环极点,同时也增加了一个位于s 左半平面的开环零点。位于原点的极点可以提高系统的型别,以消除或减小系统的稳态误差,改善系统的稳态性能;而增加的负实零点则用来减小系统的阻尼程度,缓和PI 控制器极点对系统稳定性及动态性能产生的不利影响。只要积分时间常数i T 足够大,PI 控制器对系统稳定性的不利影响可大为减弱,在控制工程中,PI 控制器主要用来改善控制系统的稳态性能。 k r(t) - c(s) e(t) m(t) ) 11(s T k i + R(s) - C(s) E(s) M(s)

比例积分调节阀

比例积分调节阀 比例积分调节阀又称为比例积分电动调节阀,它属于中央空调末端控制类产品,作为控制风机盘管内水流的执行部件它受控于比例积分温控器。比例积分温控器通过控制比例积分调节阀,精确调节风机盘管内的水流量(制冷时为冷冻水,制热时为热水),以此达到保持室内恒温的目的。 比例积分调节阀按阀体机构形式可分为:两通单座阀、两通平衡阀、三通分流阀、三通合流阀。 比例积分调节阀按阀体材质可分为:黄铜阀、铸铜阀、铸铁阀、铸不锈钢阀。 上面介绍了比例积分调节阀的一些基本知识,下面我们详细阐述比例积分调节阀在全新风机组控制系统中的应用。

全新风机组控制系统解决方案

?全新风机组控制系统解决方案应用分析 1 全新风机组温度控制系统是由比例积分温度控制器TC-1、安装在送风管内的温度传感器TE-1和比例积分电动调节阀TV-1组成。温度控制器TC-1的作用是把置于送风风道的温度传感器TE-1所检测到的送风温度传送至温控器与温控制设定的温度进行比较,并根据比较结果经过比例、积分运算,对电动调节阀TV-1进行控制,从而使送风温度保持在所需要的范围。 2 电动调节阀TV-1与送风风机连锁,以保证切断风机电源时风阀亦同时关闭。 3 装设在新风入口处的常闭二位(ON/OFF)电动风阀DM-1与送风风机连锁。当送风风机启动时新风风门全开。 4 在需要制冷时,温控器置于制冷模式,当传感器测量的温度达到或高于设定温度时,温控器给电动调节阀TV-1一个关阀信号,电动调节阀TV-1的关阀接点接通阀门关闭。如果测量温度低于设定温度,温控器给电动阀一个开阀信号,电动阀开阀TV-1接点接通阀门打开。在需要制热时,温控器置于制热模式,当传感器测量的温度达到或低于设定温度时,温控器给电动调节阀TV-1一个关阀信号,电动调节阀TV-1的关阀接点接通阀门关闭。如果测量温度高于设定温度,温控器给电动调节阀TV-1一个开阀信号,电动调节阀TV-1开阀接点接通阀门打开。

PID中比例积分微分的经验调节

PID中比例积分微分的经验调节 PID调节经验 Kp: 比例系数 ----- 比例带(比例度)P:输入偏差信号变化的相对值与输出信号变化的相对值之比的百分数表示(比例系数的倒数) T:采样时间 Ti: 积分时间 Td: 微分时间 温度T: P=20~60%,Ti=180~600s,Td=3-180s 压力P: P=30~70%,Ti=24~180s, 液位L: P=20~80%,Ti=60~300s, 流量L: P=40~100%,Ti=6~60s。 (1)一般来说,在整定中,观察到曲线震荡很频繁,需把比例带增大以减少震荡;当曲线最大偏差大且趋于非周期过程时,需把比例带减少 (2)当曲线波动较大时,应增大积分时间;曲线偏离给定值后,长时间回不来,则需减小积分时间,以加快消除余差。

(3)如果曲线震荡的厉害,需把微分作用减到最小,或暂时不加微分;曲线最大偏差大而衰减慢,需把微分时间加长而加大作用 (4)比例带过小,积分时间过小或微分时间过大,都会产生周期性的激烈震荡。积分时间过小,震荡周期较长;比例带过小,震荡周期较短;微分时间过大,震荡周期最短 (5)比例带过大或积分时间过长,都会使过渡过程变化缓慢。比例带过大,曲线如不规则的波浪较大的偏离给定值。积分时间过长,曲线会通过非周期的不正常途径,慢慢回复到给定值。 注意:当积分时间过长或微分时间过大,超出允许的范围时,不管如果改变比例带,都是无法补救的 1. PID调试步骤 没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的吗。 为什么PID应用如此广泛、又长久不衰? 因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。

什么是比例积分控制

什么是比例积分控制 我接触楼宇自控,常常碰到比例积分阀及其PID比例积分控制。比例是指什么,积分是指什么,如何进行比例积分真弄不明白。请BA、空调大鳄出手指教。 PID是比例,积分,微分的缩写. 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的 不稳定。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分 调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律 结合,组成PI调节器或PID调节器。 微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。 还是要弄明白这三个参数的意义,到时候设置PID参数就好设置了.另外,可以去网上查查PID控制. PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数

pid控制器比例积分微分控制规律优缺点及适用场合

PID控制器比例、积分、微分控制规律优缺点及适用场合 P控制规律 比例控制的输出信号与输入偏差成比例关系。偏差一旦产生,控制器立即产生控制作用以减小偏差,是最基本的控制规律。当仅有比例控制时系统输出存在稳态误差。 I控制规律 对于一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个系统是有差系统。为了消除稳态误差,必须引入积分控制规律。积分作用是对偏差进行积分,随着时间的增加,积分输出会增大,使稳态误差进一步减小,直到偏差为零,才不再继续增加。因此,采用积分控制规律的主要目的就是使系统无稳态误差,提高系统的准确度。积分作用的强弱取决于积分时间常数TI,TI越大,积分作用越弱,反之则越强。由于积分引入了相位滞后,使系统稳定性变差。因此,积分控制一般不单独使用,通常结合比例控制构成比例积分(PI)控制器。 D控制规律 在微分控制中,控制器的输出与输入偏差信号的微分(即偏差的变化率)成正比关系。可减小超调量,并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。

微分控制反映偏差的变化率,只有当偏差随时间变化时,微分控制才会对系统起作用,而对无变化或缓慢变化的对象不起作用。因此微分控制在任何情况下不能单独与被控制对象串联使用。 需要说明的是,对于一台实际的PID控制器,如果把微分时间TD调到零,就成为一台比例积分控制器;如果报积分时间TI放大到最大,就成了一台比例微分控制器;如果把微分时间调到零,同时把积分时间放到最大,就成了一台纯比例控制器。 由于PID控制规律综合了比例、积分、微分三种控制规律的优点,具有较好的控制性能,因而应用范围更广。PID控制器可以调整的参数是KP、TI、TD。适当选取这三个参数的数值,可以获得较好的控制质量,实际应用过程中很多工程技术人员对PID参数整定不是很数量,这是应选择自整定功能强和控制算法先进的人工智能调节器,方便获得最佳的PID参数。在选择PID控制规律时,应根据被控对象的动态、静态特性以及实际控制要求和控制品质来选择。

比例、积分、微分控制策略

比例、积分、微分控制策略 尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。 比例(P)控制 单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。 对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。 单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。 比例积分(PI)控制 比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。 积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。 积分时间的大小表征了积分控制作用的强弱。积分时间越小,控制作用越强;反之,控制作用越弱。 积分控制虽然能消除余差,但它存在着控制不及时的缺点。因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。因此,比例积分控制可以实现较为理想的过程控制。 比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。但是积分作用的引入,会使系统稳定性变差。对于有较大惯性滞后的控制系统,要尽量避免使用。 比例微分(PD)控制 比例积分控制对于时间滞后的被控对象使用不够理想。所谓“时间滞后”指的是:当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟,比如容量滞后,此时比例积分控制显得迟钝、不及时。为此,人们设想:能否根据偏差的变化趋势来做出相应的控制动作呢?犹如有经验的操作人员,即可根据偏差的大小来改变阀门的开度(比例作用),又可根据偏差变化的速度大小来预计将要出现的情况,提前进行过量控制,“防患于未然”。这就是具有“超前”控制作用的微分控制规律。微分控制器输出的大小取决于输入偏差变化的速度。 微分输出只与偏差的变化速度有关,而与偏差的大小以及偏差是否存在与否无关。如果偏差为一固定值,不管多大,只要不变化,则输出的变化一定为零,控制器没有任何控制作用。微

相关主题
文本预览
相关文档 最新文档