当前位置:文档之家› 建立并行计算平台

建立并行计算平台

建立并行计算平台
建立并行计算平台

建立并行计算平台

1.实验目的和要求

建立并行计算平台

2.实验内容

安装mpich,装好后配置环境

3.主要仪器设备

a)Windows操作系统;

b) MPICH软件

4.实验原理、步骤

1、安装mpich

一、配置

2、创建一个用户,用户名与组员创建的用户名相同,在此次实验中用的用户名是“109”

3、注册

3、启动mpich的配置程序,添加组员ZSQ和YB,如图

4、运行软件VC++,新建一个工程project,然后进行VC++环境配置,如图:

5、配置好VC++环境后,在工程project里打开π程序并运行,如图:

π程序运行结果

6、启动guiMPIRun,在自己机ZSQ上运行project.exe,如果配置成功,则输出框出输出结果,如图:

8、跟组员YB并行计算机,然后运行project.exe程序,其结果如图:

9、搭建并行计算平台完成

二、问题

搭建平台遇到的问题:平台搭建后与组员并行计算时,自己机上运行出现如下问题,而组员YB能进行并行计算。

原因:组员YB没有关闭防火墙。

所以,在平台搭建后,要对某程序进行并行计算,各组员应该关掉防火墙!如果其中有人没有关闭的话,是不能与他连接的。

并行计算课程报告

并行计算课程报告 1.学习总结 1.1并行计算简介 并行计算是相对于串行计算来说的。它是一种一次可执行多个指令的算法,目的是提高计算速度,及通过扩大问题求解规模,解决大型而复杂的计算问题。所谓并行计算可分为时间上的并行和空间上的并行。时间上的并行就是指流水线技术,而空间上的并行则是指用多个处理器并发的执行计算。 1.2并行计算机分类和并行机体系结构的特征 按内存访问模型、微处理器和互联网络的不同,当前流行的并行机可分为对称多处理共享存储并行机(SMP:Symmetric Multi-Processing)、分布共享存储并行机(DSM:Distributed Shared Memory)、机群(cluster)、星群(constellation)和大规模并行机(MPP:Massively Parallel Processing)等五类。 SMP并行机有如下主要特征:对称共享存储、单一的操作系统映像、局部高速缓存cache 及其数据一致性、低通信延迟、共享总线带宽、支持消息传递、共享存储并行程序设计。SMP 并行机具有如下缺点:欠可靠、可扩展性(scalability)较差。 DSM 并行机具有如下主要特征:并行机以结点为单位,每个结点包含一个或多个CPU,每个CPU 拥有自己的局部cache,并共享局部存储器和I/O设备,所有结点通过高性能互联网络相互连接;物理上分布存储;单一的内存地址空间;非一致内存访问(NUMA)模式;单一的操作系统映像;基于cache 的数据一致性;低通信延迟与高通信带宽;DSM 并行机可扩展到数百个结点,能提供每秒数千亿次的浮点运算性能;支持消息传递、共享存储并行程序设计。 机群(cluster)有三个明显的特征: ①系统由商用结点构成,每个结点包含2-4 个商用微处理器,结点内部 共享存储。 ②采用商用机群交换机连接结点,结点间分布存储。 ③在各个结点上,采用机群Linux 操作系统、GNU 编译系统和作业管理 系统。 星群(constellation)有三个明显的特征: ①系统由结点构成,每个结点是一台共享存储或者分布共享存储的并行 机子系统,包含数十、数百、乃至上千个微处理器,计算功能强大。 ②采用商用机群交换机连接结点,结点间分布存储。

并行计算综述

并行计算综述 姓名:尹航学号:S131020012 专业:计算机科学与技术摘要:本文对并行计算的基本概念和基本理论进行了分析和研究。主要内容有:并行计算提出的背景,目前国内外的研究现状,并行计算概念和并行计算机类型,并行计算的性能评价,并行计算模型,并行编程环境与并行编程语言。 关键词:并行计算;性能评价;并行计算模型;并行编程 1. 前言 网络并行计算是近几年国际上并行计算新出现的一个重要研究方向,也是热门课题。网络并行计算就是利用互联网上的计算机资源实现其它问题的计算,这种并行计算环境的显著优点是投资少、见效快、灵活性强等。由于科学计算的要求,越来越多的用户希望能具有并行计算的环境,但除了少数计算机大户(石油、天气预报等)外,很多用户由于工业资金的不足而不能使用并行计算机。一旦实现并行计算,就可以通过网络实现超级计算。这样,就不必要购买昂贵的并行计算机。 目前,国内一般的应用单位都具有局域网或广域网的结点,基本上具备网络计算的硬件环境。其次,网络并行计算的系统软件PVM是当前国际上公认的一种消息传递标准软件系统。有了该软件系统,可以在不具备并行机的情况下进行并行计算。该软件是美国国家基金资助的开放软件,没有版权问题。可以从国际互联网上获得其源代码及其相应的辅助工具程序。这无疑给人们对计算大问题带来了良好的机遇。这种计算环境特别适合我国国情。 近几年国内一些高校和科研院所投入了一些力量来进行并行计算软件的应用理论和方法的研究,并取得了可喜的成绩。到目前为止,网络并行计算已经在勘探地球物理、机械制造、计算数学、石油资源、数字模拟等许多应用领域开展研究。这将在计算机的应用的各应用领域科学开创一个崭新的环境。 2. 并行计算简介[1] 2.1并行计算与科学计算 并行计算(Parallel Computing),简单地讲,就是在并行计算机上所作的计算,它和常说的高性能计算(High Performance Computing)、超级计算(Super Computing)是同义词,因为任何高性能计算和超级计算都离不开并行技术。

大数据与并行计算

西安科技大学 计算机科学与技术学院 实习报告 课程:大数据和并行计算 班级:网络工程 姓名: 学号:

前言 大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。 特点具体有: 大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平台需要具备的几个重要特性,对当前的主流实现平台——并行数据库、MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足,同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未来研究做了展望。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,处理速度快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。第四,只要合理利用数据并对其进行正确、准确的分析,将会带来很高的价值回报。业界将其归纳为4个“V”——Volume(数据体量大)、Variety(数据类型繁多)、Velocity(处理速度快)、Value(价值密度低)。 从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 1.大数据概念及分析 毫无疑问,世界上所有关注开发技术的人都意识到“大数据”对企业商务所蕴含的潜在价值,其目的都在于解决在企业发展过程中各种业务数据增长所带来的痛苦。 现实是,许多问题阻碍了大数据技术的发展和实际应用。 因为一种成功的技术,需要一些衡量的标准。现在我们可以通过几个基本要素来衡量一下大数据技术,这就是——流处理、并行性、摘要索引和可视化。 大数据技术涵盖哪些内容? 1.1流处理 伴随着业务发展的步调,以及业务流程的复杂化,我们的注意力越来越集中在“数据流”而非“数据集”上面。 决策者感兴趣的是紧扣其组织机构的命脉,并获取实时的结果。他们需要的是能够处理随时发生的数据流的架构,当前的数据库技术并不适合数据流处理。 1.2并行化 大数据的定义有许多种,以下这种相对有用。“小数据”的情形类似于桌面环境,磁盘存储能力在1GB到10GB之间,“中数据”的数据量在100GB到1TB之间,“大数据”分布式的存储在多台机器上,包含1TB到多个PB的数据。 如果你在分布式数据环境中工作,并且想在很短的时间内处理数据,这就需要分布式处理。 1.3摘要索引 摘要索引是一个对数据创建预计算摘要,以加速查询运行的过程。摘要索引的问题是,你必须为要执行的查询做好计划,因此它有所限制。 数据增长飞速,对摘要索引的要求远不会停止,不论是长期考虑还是短期,供应商必须对摘要索引的制定有一个确定的策略。 1.4数据可视化 可视化工具有两大类。

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

课程设计报告

课程设计报告 题 目 基于数据挖掘的航电系统故障诊断 专业名称 电子信息工程 学生姓名 王腾飞 指导教师 陈 杰 完成时间 2014年3月18日

摘要 航电系统是飞机的重要组成部分,由于其综合应用了电子、机械、计算机及自动检测等许多学科的先进技术,结构层次很多,所以对其实施故障诊断具有涉及专业领域多、诊断难度大、要求时间短等特点。这对快速处理故障数据提出了很大的挑战。 从独立的联合式航电机箱的按键通电测试,到集中式飞机管理系统数据收集,飞机维修系统经过漫长的发展已演变成故障诊断工具。 现代飞机均采用了中央维修系统,用以收集所有子系统的故障报告、判断故障根源并推荐修理方法。飞机的故障信息和历史数据存放在数据库中。如果用传统的数据分析方法对这些海量的数据进行分析时会显得力不从心,不仅浪费时间而且对于隐含的知识难以有效的进行挖掘。数据挖掘技术十分符合现实的需要,它可以客观地挖掘出历史数据库中潜在的故障规则,这些规则能更好地指导故障的定位与检修,并对潜在的故障做出预测。随着数据的不断增长,如何能自动获取知识已经成为故障诊断技术发展的主要制约条件,而数据挖掘技术为解决这个“瓶颈”问题提供了一条有效的途径。 本文详细介绍了故障诊断技术与数据挖掘技术,并总结了航电系统的故障诊断的特点。拟采用聚类分析的技术对故障数据快速处理,实现对故障的快速定位。 关键词:故障诊断数据挖掘聚类分析航电系统

故障诊断技术 故障诊断技术简介 故障诊断就是指当设备系统不能完成正常的功能时,利用一定的方法找出使该功能丧失的原因及发生故障的部位,实现对故障发展趋势的预测的过程。故障诊断涉及到多方面的技术背景,主要以系统论、信息论、控制论、非线性科学等最新技术理论为基础,它是一门综合性的学科,具有重要的实用价值。 设备系统故障及故障诊断 随着现代化工业的发展,设备系统能够以最佳状态可靠地运行,对于保证产品质量、提高企业的产能、保障生命财产安全都具有极其重要的意义。设备系统的故障是指设备系统在规定时间内、规定条件下丧失规定功能的状况。故障诊断的作用则是发现并确定发生故障的部位及性质,找出故障的起因,预测故障的发展趋势并提出应对措施。故障诊断技术的使用范围不应只局限于设备系统使用和维修过程中,在设备系统的设计制造过程中也可以使用故障诊断技术,为以后的故障监测和设备系统维护创造条件。因此,故障诊断技术应该贯穿于设备系统的设计、制造、运行和维护的全过程当中。 机载设备的故障诊断流程框图:

基于FPGA的并行计算技术

基于FPGA的并行计算技术 更新于2012-03-13 17:15:57 文章出处:互联网 1 微处理器与FPGA 微处理器普遍采用冯·诺依曼结构,即存储程序型计算机结构,主要包括存储器和运算器2个子系统。其从存储器读取数据和指令到运算器,运算结果储存到存储器,然后进行下一次读取-运算-储存的操作过程。通过开发专门的数据和指令组合,即控制程序,微处理器就可以完成各种计算任务。冯·诺依曼型计算机成功地把信息处理系统分成了硬件设备和软件程序两部分,使得众多信息处理问题都可以在通用的硬件平台上处理,只需要开发具体的应用软件,从而极大地降低了开发信息处理系统的复杂性。然而,冯·诺依曼型计算机也有不足之处,由于数据和指令必须在存储器和运算器之间传输才能完成运算,使得计算速度受到存储器和运算器之间信息传输速度的限制,形成所谓的冯·诺依曼瓶颈[1];同时,由于运算任务被分解成一系列依次执行的读取-运算-储存过程,所以运算过程在本质上是串行的,使并行计算模式在冯·诺依曼型计算机上的应用受到限制。 受到半导体物理过程的限制,微处理器运算速度的提高已经趋于缓慢,基于多核处理器或者集群计算机的并行计算技术已经逐渐成为提高计算机运算性能的主要手段。并行计算设备中包含多个微处理器,可以同时对多组数据进行处理,从而提高系统的数据处理能力。基于集群计算机的超级计算机已经成为解决大型科学和工程问题的有利工具。然而,由于并行计算设备中的微处理器同样受冯·诺依曼瓶颈的制约,所以在处理一些数据密集型,如图像分析等问题时,计算速度和性价比不理想。 现场可编程门阵列(FPGA)是一种新型的数字电路。传统的数字电路芯片都具有固定的电路和功能,而FPGA可以直接下载用户现场设计的数字电路。FPGA技术颠覆了数字电路传统的设计-流片-封装的工艺过程,直接在成品PFGA芯片上开发新的数字电路,极大地扩大了专用数字电路的用户范围和应用领域。自从20世纪80年代出现以来,FPGA技术迅速发展,FPGA芯片的晶体管数量从最初的数万个迅速发展到现在的数十亿个晶体管[2],FPGA 的应用范围也从简单的逻辑控制电路发展成为重要的高性能计算平台。 FPGA芯片中的每个逻辑门在每个时钟周期都同时进行着某种逻辑运算,因此FPGA本质上是一个超大规模的并行计算设备,非常适合用于开发并行计算应用。目前,FPGA已被成功地应用到分子动力学、基因组测序、神经网路、人工大脑、图像处理、机器博弈等领域,取得了数十到数千倍的速度提高和优异的性价比[3-18]。

并行编程报告

并行编程报告 课程名称:并行编程原理 专业班级:物联网1102 班 学号 : U201114483 学生姓名:陈炳良 指导教师:金海 报告日期:2014-6-11 计算机科学与技术学院

目录 实验一:利用pthread 并行实现矩阵的乘法运算 (3) 实验目的 (3) 实验概述 (3) 实验结果 (3) 实验代码 (5) 实验总结 (9) 实验二:使用并行方法优化K-means 算法 (10) 实验目的 (10) 实验概述 (10) 实验结果 (10) 实验代码............................................................................................. .11 实验总结............................................................................................. .18

实验一:利用 pthread 并行实现矩阵的乘法运算 实验目的 该实验旨在让学生掌握利用 pthread 进行并行程序设计和性能优化的基本原理和方法,了解并行程序设计中数据划分和任务划分的基本方法,并能够利用pthread 实现矩阵的乘法运算的并行算法,然后对程序执行结果进行简单分析和总结。具体包括:利用 for 循环编写串行的矩阵乘法运算;熟悉 pthread 进行线程创建、管理和销毁的基本原理和方法;利用 pthread 对上述串行的矩阵乘法运算加以改造;通过调整数据划分和任务划分的粒度(改变工作线程的数目),测试并行程序的执行效率;对实验结果进行总结和分析。 实验概述 使用 pThread 完成这项工作。 创建一个新的线程: int pthread_create( pthread_t *thread, const pthread_attr_t *attr, void *(*func) (void *), void *arg); thread 表示线程 ID,与线程中的 pid 概念类似 attr 表示设定线程的属性,可以暂时不用考虑 func 表示新创建的线程会从这个函数指针处开始运行 arg 表示这个函数的参数指针 返回值为 0 代表成功,其他值为错误编号。 主进程等待线程结束: int pthread_join( pthread_t thread, void **retval ); thread 表示线程 ID,与线程中的 pid 概念类似 retval 用于存储等待线程的返回值 两个矩阵相乘: 一个 m 行 n 列的矩阵与一个 n 行 p 列的矩阵可以相乘,得到的结果是一个 m 行 p 列的矩阵,其中的第 i 行第 j 列位置上的数为第一个矩阵第 i 行上的 n 个 数与第二个矩阵第 j 列上的 n 个数对应相乘后所得的 n 个乘积之和。 实验结果

并行计算课程报告

成绩: 并行计算导论课程报告 专业:软件工程 班级:软件二班 学号:140120010057 姓名:蒋琳珂 2017年6月1日

1、并行计算的实际意义 并行计算或称平行计算是相对于串行计算来说的。它是一种一次可执行多个指令的算法,目的是提高计算速度,及通过扩大问题求解规模,解决大型而复杂的计算问题。所谓并行计算可分为时间上的并行和空间上的并行。时间上的并行就是指流水线技术,而空间上的并行则是指用多个处理器并发的执行计算。 在应用需求方面,人类对计算机性能的需求总是永无止境的,在诸如预测模型的构造和模拟、工程设计和自动化、能源勘探、医学、军事以及基础理论研究等领域中都对计算提出了极高的具有挑战性 的要求。例如,在作数值气象预报时,要提高全球气象预报的准确性,据估计在经度、纬度和大气层方向上至少要取200*100*20=40万各网格点。 并行计算机产生和发展的目的就是为了满足日益增长的大规模科学和工程计算、事务处理和商业计算的需求。问题求解最大规模是并行计算机的最重要的指标之一,也是一个国家高新技术发展的重要标志。 2、拟优化的应用介绍 应用jacobi迭代近似求解二维泊松方程。 二维泊松方程:

Ω ?∈=Ω∈=?-),(),,(),(u ),(),,(),(u y x y x g y x y x y x f y x 其中 ),0(*),0(H W =Ω,) ,(),(),(22 22y x u y y x u x y x u ?+?=? ),(y x f 和),(y x g 为已知函数,分别定义在Ω的内部和边界上。 对于任意正整数 x M 和 y N ,将网格剖分成 y x N M *个相同的方格。 在网格节点上,用二阶中心差分来近似二阶偏导数。 21,,1,2,1,,12),(22 2),(22 y j i j i j i y x x j i j i j i y x h u u u jh ih u y h u u u jh ih u x +-+-+-≈??+-≈?? 将差分近似代入泊松方程,便得到了五点差分离散格式,泊松方 程的求 x x j i y x j i j i x j i j i y j i y x N j M i f h h u u h u u h u h h ≤≤-≤≤=+-+-++-+-1,11)()()(2,221,1,2,1,12,22 之后用经典的jacobi 算法来求解此方程组。从任意一初始近似解 y x j i N j M i u ,3,2,1.3,2,1,0,?=?=, 出发,迭代计算: y x y x j i j i x j i j i y j i y x k j i N j M i h h u u h u u h f h h u ,3,2,1.3,2,1) (2) ()(2 21,1,2,1,12,22,?=?=+++++= +-+-, 迭代序号k=1,2,3…直至近似解满足误差要求。

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.doczj.com/doc/dd18482574.html, Eric Haskin haskin@https://www.doczj.com/doc/dd18482574.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

并行计算环境搭建

并行计算环境搭建 一.搭建并调试并行计算环境MPI的详细过程。 1.首先,我们选择在Windows XP平台下安装MPICH。第一步确保Windows平台下安装上了.net框架。 2.在并行环境的每台机子上创建相同的用户名和密码,并使该平台下的各台主机在相同的工作组中。 3.登陆到新创建的帐号下,安装MPICH软件,在选择安装路径时,每台机子的安装路径要确保一致。安装过程中,需要输入一致的passphrase,也即本机的用户名。 4.安装好软件后,要对并行环境进行配置(分为两步): 第一步:注册。在每台机器上运行wmpiregister,按照提示输入帐号和密码,即 本机的登录用户名和密码。 第二步:配置主机。在并行环境下,我们只有一台主机,其他机子作为端结点。 运行主机上的wmpiconfig,在界面左侧栏目中选择TNP工作组,点击“select”按 钮,此时主机会在网络中搜索配置好并行环境的其他机子。配置好并行环境的其他 机子会出现绿色状态,点击“apply”按钮,最后点击“OK”按钮。 5.在并行环境下运行的必须是.exe文件,所以我们必须要对并行程序进行编译并生成.exe文件。为此我们选择Visual C++6.0编译器对我们的C语言程序进行编译, 在编译过程中,主要要配置编译器环境: (1)在编译器环境下选择“工程”,在“link”选项卡的“object/library modules” 中输入mpi.lib,然后点击“OK”按钮。 (2)选择“选项”,点击“路径”选项卡,在“show directories for”下选择“Include files”,在“Directories”中输入MPICH软件中“Include”文件夹的路径; 在“show directories for”下选择“Library files”,在“Directories”中输入 MPICH软件中Library文件夹的路径,点击“OK”。 (3)对并行程序进行编译、链接,并生成.exe文件。 6.将生成的.exe文件拷贝到并行环境下的各台机子上,并确保每台机子的存放路径要相同。 7.在主机上运行“wmpiexec”,在Application中选择生成的.exe文件;输入要执行此程序的进程数,选中“more options”选项卡,在“host”栏中输入主机和各个端结 点的计算机名,点击“execute”执行程序。 二.搭建并调试并行计算环境MPI的详细过程。 1.以管理员身份登录每台计算机,在所有连接的计算机上建立一个同样的工作组,命名为Mshome,并在该工作组下建立相同的帐户,名为GM,密码为GM。 2.安装文件Microsoft NET Framwork1.1,将.NET框架安装到每台计算机上,再安装MPI到每台主机。在安装MPI的过程中,必须输入相同的passphrase,在此输 入之前已建好的帐户名GM。 3.安装好MPI后,再对每台计算机进行注册和配置,其中注册必须每台计算机都要进行,配置只在主控计算机进行: (1)注册:将先前在每台计算机上申请的帐号和密码注册到MPI中去,这样

并行计算课程设计报告

并行计算与多核多线程技术 课程报告 专业 班级 学号 姓名 成绩___________________ 年月日

课程报告要求 手写内容:设计目的、意义,设计分析,方案分析,功能模块实现,最终结果分析,设计体会等。 允许打印内容:设计原理图等图形、图片,电路图,源程序。硬件类的设计,要有最终设计的照片图;软件类设计,要有各个功能模块实现的界面图、输入输出界面图等。 评价 理论基础 实践效果(正确度/加速比) 难度 工作量 独立性

目录 1. 设计目的、意义(功能描述) (1) 2. 方案分析(解决方案) (1) 3. 设计分析 (1) 3.1 串行算法设计 (1) 3.2 并行算法设计 (1) 3.3 理论加速比分析 (2) 4. 功能模块实现与最终结果分析 (2) 4.1 基于OpenMP的并行算法实现 (2) 4.1.1 主要功能模块与实现方法 (2) 4.1.2 实验加速比分析 (3) 4.2 基于MPI的并行算法实现 (3) 4.2.1 主要功能模块与实现方法 (3) 4.2.2 实验加速比分析 (4) 4.3 基于Java的并行算法实现 (4) 4.3.1 主要功能模块与实现方法 (4) 4.3.2 实验加速比分析 (5) 4.4 基于Windows API的并行算法实现 (5) 4.4.1 主要功能模块与实现方法 (5) 4.4.2 实验加速比分析 (6) 4.5 基于.net的并行算法实现 (6) 4.5.1 主要功能模块与实现方法 (6) 4.5.2 实验加速比分析 (6) 4.6并行计算技术在实际系统中的应用 (6) 4.6.1 主要功能模块与实现方法 (6) 4.6.2 实验加速比分析 (7) 5. 设计体会 (7) 6. 附录 (9) 6.1 基于OpenMP的并行程序设计 (9) 6.1.1 代码及注释 (9) 6.1.2 执行结果截图 (11) 6.1.3 遇到的问题及解决方案 (12) 6.2 基于MPI的并行程序设计 (12)

联想网御的多核并行计算网络安全平台

龙源期刊网 https://www.doczj.com/doc/dd18482574.html, 联想网御的多核并行计算网络安全平台 作者:李江力王智民 来源:《中国计算机报》2008年第44期 随着网络带宽的不断发展,网络如何安全、高效地运行逐渐成为人们关注的焦点。上期文章《多核技术开创万兆时代》指出,经过多年不断的努力探索,在历经了高主频CPU、FPGA、ASIC、NP后,我们迎来了多核时代。是不是有了多核,就能够满足当前人们对网络安全处理能力的需求呢?答案也许并非那么简单。 本文将从多核处理器带来的机遇与挑战、多核编程的困境、联想网御的解决方案三个方面来详细阐述多核并行计算相关的技术问题。 多核处理器带来机遇与挑战 通常我们所说的多核处理器是指CMP(ChipMulti-processors)的芯片结构。CMP是由美国斯坦福大学提出的,其思想是将大规模并行处理器中的SMP(Symmetric Multi-processors,对称多处理器)集成到同一芯片内,各个处理器并行执行,在同一个时刻同时有多条指令在执行。 多核处理器的出现使得人们从以前的单纯靠提高CPU主频的“死胡同”走了出来,同时又使得软件开发人员能够采用高级语言进行编程,看似是一个比较完美的技术方案,但同时我们也应该看到多核处理器也给业界带来了一系列的挑战。 同构与异构 CMP的构成分成同构和异构两类,同构是指内部核的结构是相同的,而异构是指内部的核结构是不同的。核内是同构还是异构,对不同的应用,带来的性能影响是不同的。 核间通信 多核处理器各个核之间通信是必然的事情,高效的核间通信机制将是多核处理器性能的重要保障。目前主流的芯片内部高效通信机制有两种,一种是基于总线共享的Cache结构,一种是基于片上的互连结构。采用第一种还是第二种,也是设计多核处理器的时候必须考虑的问题。 并行编程

计算机前沿课程报告

计算机科学与技术专业前沿课程设计报告 题目:新型计算机系统与计算机系统的发展 班级:计算机 学号: 姓名: 日期:2019年12月31日

新型计算机系统与计算机系统的发展 摘要:在过去的20年中,计算机已有了爆炸性的增长,在下一个10年中,由于新型计算机结构和智能计算机的出现预期要增长得更快。下述的计算机硬/软件技术的进展会对结构力学产生很大的影响。计算机产品不断升级换代,当前计算机正朝着巨型化、微型化、智能化、网络化等方向发展,计算机本身的性能越来越优越,应用范围也越来越广泛,篇幅以300字左右。 关键词: 计算机系统;发展趋势;量子计算机;智能化[6] 前言 现今,不同行业领域技术服务的推进和管理制度的优化升级都离不开计算机互联网技术的支持。行业领域工作的差异性决定了计算机领域系统工作的多样性。不同领域在进行综合计算机系统工作落实的过程中应该注重系统的便捷性、多元化特点,将用户的需求放在第一位, 全面升级信息管理系统,不断增强技术水平和工作效率,迎合国内国际发展趋势,优化技术管理服务机制。 1研究目的 随着计算机技术和网络的发展,计算机系统研究已经成为计算机科学、信息科学、工程学、生物学、医学甚至社会科学等领域中各学科之间的学习和研究的对象,并在这些领域中得到高度关注。从宏观结构来看,新型计算机系统是一个为某种应用而由本地通信网络和全球通信网络连接起来的大规模的分散处理系统[1]。网络的每一个结点本身也是一个新型计算机系统,必要时,传统计算机也可以连接到网络中。网络的所有计算机可以共享全网络所拥有的知识库和知识处理能力。 2研究背景与意义 2.1计算机系统的背景 随着元件、器件的不断更新,传统计算机系统已经经历了四代演变。它们都属于以顺序

并行计算大纲

附件二: 成都信息工程学院 硕士研究生课程教学大纲 课程名称(中):并行计算 课程名称(英):Parallel Computing 课程编号: 开课单位:软件工程系 预修课程:C语言,Linux操作系统 适用专业:计算机,电子类,大气类1年级研究生 课程性质:学位课 学时:32学时 学分:2学分 考核方式:考试 一、教学目的与要求(说明本课程同专业培养目标、研究方向、培养要求的关 系,及与前后相关课程的联系) 通过本课程的学习,使学生可以对并行程序设计有一个具体的基本的概念,对MPI有比较全面的了解,掌握MPI的基本功能,并且可以编写基本的MPI程序,可以用MPI来解决实际的比较基本的并行计算问题。具体如下: 从内容上,使学生了解并行计算的基本发展过程及现在的发展水平,掌握并行系统的组织结构,并行机群系统的构建方法。掌握MPI并行编程知识,了解并行技术的遗传算法迭代算法中的应用,了解并行监控系统的构成。 从能力方面,要求学生掌握并行机群系统的实际配置方法,能用MPI编制一般难度的并行算法程序并在机群系统上实现。 从教学方法上,采用启发、引导的教学方法,结合多媒体教学方式,提高学生学习兴趣。 二、课程内容简介 本课程以并行计算为主题,对并行计算技术的发展,应用以及并行计算机模型进行概述,与此同时系统介绍了MPI并行编程环境的使用与搭建,旨在帮助学生完成简单的并行程序设计,掌握并行计算平台的搭建,为深入学习并行计算技术打下坚实的基础。

三、主要章节和学时分(含相应章节内容的教学方式,如理论教学、实验教学、 上机、自学、综述文献等) 主要章节章节主要内容简述教学方式学时备注 第1章并行计算的发展及应用1.并行计算技术的发展过 程 2.并行系统在现代技术中 的应用 理论教学2学时 第2章并行计算机系统与结构1、典型并行计算机系统简 介 2、当代并行计算机体系结 构 理论教学2学时 第3章 PC机群系统的搭建1、机群系统概述 2、机群系统的搭建方法 3、机群系统的性能测试方 法 理论教学4学时 第4章机群系统的MPI编程1、MPI语言概述 2、MPI的六个基本函数 3、MPI的消息 4、点对点通讯 5、群集通讯 6、MPI的扩展 理论教学8学时 第5章实践环节上机完成并行机群系统的 配置。 实现简单并行计算程序的 编写。上机16学 时 (此页可附页) 四、采用教材(正式出版教材要求注明教材名称、作者姓名、出版社、出版时间;自编教材要求注明是否成册、编写者姓名、编写者职称、字数等) 《并行计算应用及实战》机械工业出版社王鹏主编 2008

基于Abaqus软件的并行计算异构集群平台的搭建

第31卷第5期 2011年10月地震工程与工程振动JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol.31No.5Oct.2011收稿日期:2011-05-27;修订日期:2011-07-25 基金项目:国家公益性行业(地震)科研专项(200808022);江苏省自然科学基金项目(BK2008368) 作者简介:毛昆明(1985-),男,博士研究生,主要从事轨道交通引起的环境振动方面研究.E- mail :kun -ming@yeah.net 通讯作者:陈国兴(1963-),男,教授,博士,主要从事土动力学与岩土地震工程研究.E- mail :gxchen@njut.edu.cn 文章编号:1000-1301(2011)05-0184-06 基于Abaqus 软件的并行计算异构集群平台的搭建 毛昆明,陈国兴 (南京工业大学岩土工程研究所,江苏南京210009) 摘要:在异构集群上充分利用新、旧硬件资源调度计算任务是实现集群高性能并行计算的难点。 通过测试已搭建集群服务器的CPU 和内存对Abaqus 软件计算速度的影响,发现CPU 的主频对 Abaqus /Explicit 模块计算速度的影响大,CPU 的缓存对Abaqus /Standard 模块速度影响大;当内存满 足计算任务的最小需求时, 增加内存对计算速度无任何影响;当内存不足时,计算速度会大幅减慢。据此测试结果,新增4台服务器作为计算节点和一台Infiniband QDR 交换机作为交换节点,搭建了新 的异构集群, 性能测试结果表明:相对于千兆以太网络交换机,Infiniband QDR 交换机的并行计算效率更好,且集群的计算节点越多越显著;Abaqus /Standard 模块并行计算效率的提高幅度要比Abaqus / Explicit 模块的稍高一些。针对异构集群硬件构架相差较大的2批新、旧硬件,设置了2个管理节点、 2个网络节点、2个存储节点,充分利用了新、旧硬件资源,高效地实现了在一个异构集群平台上提交 与下载任务。 关键词:异构集群;Abaqus 软件;并行计算;Infiniband QDR 交换机 中图分类号:P315.69文献标志码:A Construction of parallel computing heterogeneous cluster platform based on Abaqus software MAO Kunming ,CHEN Guoxing (Institute of Geotechnical Engineering ,Nanjing University of Technology ,Nanjing 210009,China ) Abstract :Taking full advantage of new and old hardware resources on the heterogeneous cluster to schedule compu-ting jobs is a difficult point in the realization of high performance parallel computing.The influence of servers ’CPU and memory on computing speed of Abaqus software on the cluster which has been constructed is tested.The conclusions are drawn :CPU clock speed has a great effect on the computing speed of Abaqus /Explicit module and CPU internal cache has a great effect on computing speed of Abaqus /Standard module.When memory satisfies the minimum requirement of a computing job ,increasing memory has no effect on the computing speed.When memory is insufficient ,computing speed will slow down sharply.According to the testing results ,four servers as the compu- ting nodes and an Infiniband QDR switch as the network node are added , and then the heterogeneous cluster is con-structed.Parallel computing speed of the Infiniband QDR switch is tested ,and the result shows that the parallel effect of the Infiniband QDR switch is superior to the gigabit ethernet switch.The more the number of computing nodes is ,the better the parallel effect is.Abaqus /Standard module ’ s elevated range of parallel computing efficien-cy is slightly better than Abaqus /Explicit module ’s.Specific to two groups of new and old equipment whose archi-

计算机技能高考基础知识(常考知识点记忆)精编版

模块一:信息、数据及通信的基本概念 考点1:信息、数据的基本概念 1、数据:所有能够被计算机接受和处理的符号的集合都称为数据 2、信息:有意义的数据的内容。指数据经过加工处理后得到的有价值的知识。 3、信息的基本特征:载体依附性、人地性、时效性、共享性、传递性、客观性、可处理性、真伪性 考点2:通信的基本概念 1、信号是数据在传输过程中的具体物理表示形式。 2、信号分为模拟信号(连续信号)和数字信号,数据信号相对模拟信号,抗干扰强,可靠性高。 3、调制解调器可完成数字信息与模拟信号之间的转换。其中,调制是将数据信号转换为模拟信号;解调是将模拟信号转换为数字信号。 4、通信系统三个基本要素:信源、信道、信宿 考点3:计算机的发展、类型及其应用领域。 1、第一台计算机:ENIAC,美国,1946年宾夕法尼亚大学 2、计算机的发展过程 3、计算机主要特点:运算速度快、精确度高、具有记忆和逻辑判断能力 4、计算机的主要应用 1)科学计算:例如:气象预报、海湾战争中伊拉克导弹的监测 2)数据/信息处理:例如:高考招生中考生录取与统计工作,铁路、飞机客票的预定系统,银行系统 的业务管理 3)计算机控制 4)计算机辅助系统:例如:用CAI演示化学反应 5)人工智能:例如:代替人类到危险的环境中去工作 6)办公自动化系统中的应用:例如:Internet发email 常用缩写: CBE:计算机辅助教育 CAI:计算机辅助教学 CMI:计算机管理教学 CAD:计算机辅助设计 CAT:计算机辅助翻译 CAM:计算机辅助制造 CAE:计算机辅助工程 5、计算机的分类: 1)根据规模大小分类:巨型机、大型通用机、微型机、工作站、服务器 2)根据用途分类:通用计算机、专用计算机 3)根据计算机处理数据的类型:模拟计算机、数字计算机、数字与模拟计算机 6、计算机科学研究与应用 人工智能:研究如何让计算机来完成过去只有人才能做的智能的工作。 网格计算:专门针对复杂科学计算的新型计算模式。 中间件技术:是介于应用软件和操作系统之间的系统软件。 云计算:是分布式计算、网格计算、并行计算、网络存储及虚拟化计算机和网络技术发展融合的产物,

《并行算法》课程总结与复习

《并行算法》课程总结与复习 Ch1 并行算法基础 1.1 并行计算机体系结构 并行计算机的分类 ?SISD,SIMD,MISD,MIMD; ?SIMD,PVP,SMP,MPP,COW,DSM 并行计算机的互连方式 ?静态:LA(LC),MC,TC,MT,HC,BC,SE ?动态:Bus, Crossbar Switcher, MIN(Multistage Interconnection Networks) 1.2 并行计算模型 PRAM模型:SIMD-SM, 又分CRCW(CPRAM,PPRAM,APRAM),CREW,EREW SIMD-IN模型:SIMD-DM 异步APRAM模型:MIMD-SM BSP模型:MIMD-DM,块内异步并行,块间显式同步 LogP模型:MIMD-DM,点到点通讯 1.3 并行算法的一般概念 并行算法的定义 并行算法的表示 并行算法的复杂度:运行时间、处理器数目、成本及成本最优、加速比、并行效率、工作量 并行算法的WT表示:Brent定理、WT最优 加速比性能定律 并行算法的同步和通讯 Ch2 并行算法的基本设计技术 基本设计技术 平衡树方法:求最大值、计算前缀和 倍增技术:表序问题、求森林的根 分治策略:FFT分治算法 划分原理: 均匀划分(PSRS排序)、对数划分(并行归并排序)、方根划分(Valiant归并排序)、功能划分( (m,n)-选择) 流水线技术:五点的DFT计算 Ch3 比较器网络上的排序和选择算法 3.1 Batcher归并和排序 0-1原理的证明 奇偶归并网络:计算流程和复杂性(比较器个数和延迟级数)

双调归并网络:计算流程和复杂性(比较器个数和延迟级数) Batcher排序网络:原理、种类和复杂性 3.2 (m, n)-选择网络 分组选择网络 平衡分组选择网络及其改进 Ch4 排序和选择的同步算法 4.1 一维线性阵列上的并行排序算法 4.2 二维Mesh上的并行排序算法 ShearSort排序算法 Thompson&Kung双调排序算法及其计算示例 4.3 Stone双调排序算法 4.4 Akl并行k-选择算法:计算模型、算法实现细节和时间分析 4.5 Valiant并行归并算法:计算模型、算法实现细节和时间分析 4.7 Preparata并行枚举排序算法:计算模型和算法的复杂度 Ch5 排序和选择的异步和分布式算法 5.1 MIMD-CREW模型上的异步枚举排序算法 5.2 MIMD-TC模型上的异步快排序算法 5.3分布式k-选择算法 Ch6 并行搜索 6.1 单处理器上的搜索 6.2 SIMD共享存储模型上有序表的搜索:算法 6.3 SIMD共享存储模型上随机序列的搜索:算法 6.4 树连接的SIMD模型上随机序列的搜索:算法 6.5 网孔连接的SIMD模型上随机序列的搜索:算法和计算示例 Ch8 数据传输与选路 8.1 引言 信包传输性能参数 维序选路(X-Y选路、E-立方选路) 选路模式及其传输时间公式 8.2 单一信包一到一传输 SF和CT传输模式的传输时间(一维环、带环绕的Mesh、超立方) 8.3 一到多播送 SF和CT传输模式的传输时间(一维环、带环绕的Mesh、超立方)及传输方法8.4 多到多播送 SF和CT传输模式的传输时间(一维环、带环绕的Mesh、超立方)及传输方法8.5 贪心算法(书8.2) 二维阵列上的贪心算法 蝶形网上的贪心算法 8.6 随机和确定的选路算法(书8.3) Ch12矩阵运算

相关主题
文本预览
相关文档 最新文档