当前位置:文档之家› 光伏逆变器的说明介绍

光伏逆变器的说明介绍

光伏逆变器的说明介绍
光伏逆变器的说明介绍

光伏逆变器的简介

光科1103班

摘要:

本文简单介绍了太阳能发电系统结构,叙述了光伏逆变器在光伏发电系统中的重要作用。具体介绍光伏逆变器的分类和工作原理。介绍和比较了单相电压型逆变器几种逆变主电路的电路拓扑结构的优缺点,逆变电路开关器件的选择和吸收保护原理。最后列举了光伏逆变器的主要性能指标。

关键词:

光伏发电系统光伏逆变器单相电压型逆变器拓扑结构性能指标

一、太阳能发电系统简介

21世纪,人类将面临着实现经济和社会可持续发展的重大挑战,在环境污染和资源短缺的双重制约下,能源问题更加突出,而太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。

目前太阳能发电系统主要有独立系统和并网系统两大类,其构成分别如图1和图2

图1 独立型光伏发电系统

图2 并网型光伏发电系统

由图可见,无论是哪种发电系统,逆变器都是太阳能光伏发电系统中除了太阳能电池组件以外的最为重要的部分,是太阳能光伏发电的关键装置,因此对它的研究和开发是太阳能应用推广的必然要求,并存在着巨大的市场前景。太阳能光伏发电系统用逆变器直接决定了太阳能光伏发电系统的利用效率、系统可靠性、以及适用负载范围等性能。

二、逆变器的作用

太阳能光伏发电受日射强度、日射量、日照时间、日射变化以及输出电压等级的限制,并且其输出为直流电,无蓄电功能,不能直接给大部分负载提供电能,因此需要增加逆变器,将直流电变换成稳定可靠、电品质优越的AC220/50Hz交流电供给负载应用。

逆变器不仅具有直交流变换功能,还具有最大限度地发挥太阳电池性能的功能和系统故障保护功能。归纳起来有自动运行和停机功能、最大功率跟踪控制功能、防单独运行功能(并网系统用)、自动电压调整功能(并网系统用)、直流检测功能(并网系统用)、直流接地检测功能(并网系统用)。这里简单介绍自动运行和停机功能及最大功率跟踪控制功能。

1、自动运行和停机功能

早晨日出后,太阳辐射强度逐渐增强,太阳电池的输出也随之增大,当达到逆变器工作所需的输出功率后,逆变器即自动开始运行。进入运行后,逆变器便时时刻刻监视太阳电池组件的输出,只要太阳电池组件的输出功率大于逆变器工作所需的输出功率,逆变器就持续运行;直到日落停机,即使阴雨天逆变器也能运行。当太阳电池组件输出变小,逆变器输出接近0时,逆变器便形成待机状态。

2、最大功率跟踪控制功能

太阳电池组件的输出是随太阳辐射强度和太阳电池组件自身温度(芯片温度)而变化的。另外由于太阳电池组件具有电压随电流增大而下降的特性,因此存在能获取最大功率的最佳工作点。太阳辐射强度是变化着的,显然最佳工作点也是在变化的。相对于这些变化,始终让太阳电池组件的工作点处于最大功率点,系统始终从太阳电池组件获取最大功率输出,这种控制就是最大功率跟踪控制。太阳能发电系统用的逆变器的最大特点就是包括了最大功率点跟踪(MPPT)这一功能。

三、逆变器的分类

有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。

1、集中性逆变器。

集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGB T功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。

2、组串性逆变器

组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。

3、微型逆变器

在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都会引起上述因素,情况非常普遍。而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

4、功率优化逆变器

太阳能发电系统加装功率优化器(Optimizer)可大幅提升转换效率,并将逆变器(Inverter)功能化繁为简降低成本。为实现智慧型太阳能发电系统,装置功率优化器可确实让每一个太阳能电池发挥最佳效能,并随时监控电池耗损状态。功率优化器是介于发电系统与逆变器之间的装置,主要任务是替代逆变器原本的最佳功率点追踪功能。功率优化器藉由将线路简化以及单一太阳能电池即对应一个功率优化器等方式,以类比式进行极为快速的最佳功率点追踪扫描,进而让每一个太阳能电池皆可确实达到最佳功率点追踪,除此之外,还能藉置入通讯晶片随时随地监控电池状态,即时回报问题让相关人员尽速维修。

集中性逆变器

组串性逆变器

微型逆变器

四、逆变器的基本工作原理总结

逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。如图3.

图3 逆变器简单原理图

光伏发电系统是由太阳能电池、主电路、控制电路和负载组成。主电路包括DC/DC 电路、DC/AC电路、滤波电路和隔离变压器。控制电路采用DSP作为主控单元,其中还包括逆变器的SPWM信号发生、闭环控制和最大功率点跟踪电路。如图4

图4 逆变系统结构图

1、逆变主电路的电路拓扑结构

通常,单相电压型逆变器主要分为推挽式、半桥和全桥逆变电路三种。这三种方式根据其不同的特点应用于不同的场合。

推挽式逆变电路的主电路简单,如图5但是开关管需要承受2倍的线路峰值电压,所以适合于低输入电压的场合应用。同时变压器存在偏磁现象,初级绕组有中心抽头,流过的电流有效值和铜损较大,初级绕阻两部分应紧密耦合,绕制工艺复杂。

图5 单相推挽式逆变电路

与推挽式逆变电路相比半桥式逆变器在电路中所使用的功率开关晶体管的耐压要求较低,决不会超过线路峰值电压,其次,晶体管的饱和压降也减少到最小,不在是重要的影响因素。再者,对其输入滤波电容使用电压的要求也较低。由于半桥逆变电路的特殊结构如图6所示,其不存在直流偏磁问题,可以广泛应用于数百瓦一数千瓦的开关电源中。但是其晶体管导通时,集电极电流增加一倍,电流的增大局限性对于中、小功率的开关电源来说,不会构成影响,但是对于大功率的开关电源,由于能够承受高电压,大电流的晶体管价格昂贵,就难以实现了。

图6 单相半桥逆变电路

全桥式逆变电路既保持了半桥式逆变电路的电压性质有兼有推挽式的电流性质。在逆变电路中,采用相同电压、电流容量的开关器件时,全桥式逆变电路可以达到最大功率输出,因此该电路常用于中大功率电源中,电路结构如图7所示。并且与半桥式逆变电路相比,它具有较好的逆变输出波形。

图7 单相全桥式逆变电路

2、逆变电路开关器件的选择

在逆变系统中要求系统的响应快,保护功能强,可靠性高,对于逆变电路来说,开关器件应该具有合适的导通电流、关断承受反压以及尽量小的导通压降和关断时的拖尾电流、尽量短的开通和关断时间、尽量小的开关损耗和可靠稳定的导通和关断性能。

3、逆变电路的吸收保护

3.1直流侧电容的选择

对于光伏并网系统直流侧电容器的选择需要满足下式:

3.2逆变器输出滤波电路设计

滤波器是影响输出波形质量的一个重要环节,在输入电压和输出电压确定的情况下,输出滤波电感的最小值主要由设定的电感电流纹波大小来决定。电流纹波一般取15%~20%的额定电流。

4、光伏逆变器的控制系统

逆变器的控制系统部分是逆变器设计的重点部分,采用先进的控制技术是提高逆变电源性能不可或缺的方法。包括逆变器输出电压、电流采样和滤波,正弦波发生,输出波形控制,接收功率器件发出的过流、过压等保护信号,实现自动保护功能等等。

随着逆变电源对输出波形质量的不断提高,传统的模拟控制型正弦波逆变器已经渐渐的不能满足用户的要求,同时,随着各种高性能微处理器的出现和现代控制技术的发展,使逆变电源的数字控制成为可能,图8为以DSP为控制核心的逆变器控制系统结构框图。与传统的模拟控制方式相比,采用DSP为核心的控制方法具有如下特点:

1)控制灵活、方便,可以在线设置参数,实时完善系统。

2)易于采用先进的控制方法和控制策略,使逆变器的性能更完美。

3)可以应用通讯接口实现多机并联或与上位机的通讯,以实现远程控制。

4)用软件实现不同功能,减少硬件电路。

5)系统的可靠性、抗干扰能力进一步提高。

图8 逆变器控制系统结构图

4.1、并网逆变器输出控制

光伏并网系统是将太阳能电池板发出的直流电转化为正弦交流电,从而向用户以及电网供电的装置。并网逆变器的控制目标为:控制逆变电路输出的交流电流为稳定的、高品质的正弦波,且与电网电压同频、同相,同时希望通过调节输出电流的幅值使光伏阵列工作在最大功率点。

目前,逆变器的输出控制模式主要有两种:电压型控制模式和电流型控制模式。电压型控制模式的原理是以输出电压作为受控量,系统输出与电网电压同频同相的电压信号,整个系统相当于一个内阻很小的受控电压源;电流型控制模式的原理则是以输出电感电流作为受控目标,系统输出与电网电压同频同相的电流信号,整个系统相当于一个内阻较大的受控电流源。由于电网可视为容量无穷大的交流电压源,如果光伏并网逆变器输出采用电压控制,则实际上就是一个电压源与电压源并联运行的系统,这种情况下要保证系统的稳定运行,就必须采用锁相控制技术以实现与市电同步。在稳定运行的基础上,可通过调整逆变器输出电压的大小和相移来控制系统的有功输出和无功输出,但是这种控制方式逆变器输出电压值不易精确控制,并且可能出现环流等问题,不易获得优异性能。

4.2、逆变电源控制方法

4.2.1 电压反馈控制

电压反馈控制技术是以输出电压作为控制对象,其控制原理如图9所示。将逆变器输出电压既町与基准电压相比较后得到误差以,经PI调节后与三角载波信号经过比较器比较,产生占空比变化的SPWM信号去驱动逆变器,这是电压型控制技术的基本原理。

图9电压瞬时值反馈原理框图

如果反馈采用输出电压的平均值与一个电压平均值基准相比较进行的控制叫做电压平均值反馈控制;而如果反馈电压为输出电压的瞬时值,与一个电压瞬时值基准进行比较实现的控制称为电压瞬时值反馈控制。这两种控制策略中,电压平均值控制是恒值调节系统,其优点是输出可以达到无静差,缺点为是响应快速性较差,而电压瞬时值反馈控制策略是一个随动调节系统,由于积分环节存在的相位滞后,统不可能达到无静差,但相对平均值反馈控制,其快速性较好。电压型反馈控制设计和分析较为简单,具有较强的抗干扰能力,但当输入电源电压、负载、功率电路元器件参数发生变化时,只有等到输出电压变化后才能起到调节作用,故其动态响应较慢。

4.2.2电流反馈控制

电流反馈控制是一种新颖的控制方法,具有其独特的优点。对于电压型的电流反馈系统,当交流侧电压发生波动时,若PWM开关频率固定,则电流跟踪偏差大小也发生波动。然

而当交流侧电压发生波动的同时,若PWM的开关频率也作相应的波动时,则电流跟踪的偏差几乎不变。滞环控制是一种应用广泛的闭环电流反馈控制方法,其主要优点是响应速度快、结构简单。图10为采用滞环比较器的瞬时值比较方式原理图。图中将指令电流I a和实际并网电流I net,进行比较,两者的偏差作为滞环比较器的输入,通过滞环比较器产生

控制主电路中开关通断的PWM信号,该PWM信号经驱动电路控制功率器件的通断,从而控制并网电流I net的变化。

图10 采用滞环比较器的电流瞬时值比较原理图

电流滞环跟踪控制方式特点有:

1系统具有快速的瞬态响应:由于电流反馈作用,当输入直流电压波动或负载突变引起输出电压变化时,都将引起电感电流的变化,使功率器件的开关状态产生变化,从而改变输出电压波形。

2系统具有较高的稳定性:前述具有电压单环反馈控制系统是一个二阶系统,是一种有条件的稳定系统,需要对电路作精心的校正设计;相反,具有电流单环反馈控制系统则是一个一阶系统,是一种无条件稳定系统。

3电流型全桥电路容易产生失控:电流脉宽不等固然可以维持电感端压的伏秒值平衡。但却会导致电容电荷的安秒值不平衡,在全桥电路结构中,这种不平衡会导致直流侧分压电容端压不等,电源中点漂移,恶性循环的结果将使电路失控。

4开关频率不固定:由于器件的丌关点完全取决于电流到达上下限值的时间,因此滞环控制的丌关频率并不固定,这与电压型控制下载波频率恒定的PWM控制有很大不同。由于开关频率是变化的,电路工作可靠性下降,输出电压的频谱特性变差,所有这些对系统性能都是不利的。

除了上面介绍的电流滞环跟踪控制法,还有很多电流型控制策略的电路拓扑,例如,定时控制的电流瞬时值比较法,三角波比较方式的电流跟踪法等等,在此就不在详细介绍。

五、光伏逆变器的主要技术指标

1、输出电压的稳定度

在光伏系统中,太阳电池发出的电能先由蓄电池储存起来,然后经过逆变器逆变成220V或380V的交流电。但是蓄电池受自身充放电的影响,其输出电压的变化范围较大,如标称12V的蓄电池,其电压值可在10.8~14.4V之间变动(超出这个范围可能对蓄电池造成损坏)。对于一个合格的逆变器,输入端电压在这个范围内变化时,其稳态输出电压

的变化量应不超过额定值的±5%,同时当负载发生突变时,其输出电压偏差不应超过额定值的±10%。

2、输出电压的波形失真度

对正弦波逆变器,应规定允许的最大波形失真度(或谐波含量)。通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许l0%)。由于逆变器输出的高次谐波电流会在感性负载上产生涡流等附加损耗,如果逆变器波形失真度过大,会导致负载部件严重发热,不利于电气设备的安全,并且严重影响系统的运行效率。

3、额定输出功率

对于包含电机之类的负载,如洗衣机、电冰箱等,由于其电机最佳频率工作点为50Hz,频率过高或者过低都会造成设备发热,降低系统运行效率和使用寿命,所以逆变器的输出频率应是一个相对稳定的值,通常为工频50Hz,正常工作条件下其偏差应在±l%以内。

4、负载功率因素

表征逆变器带感性负载或容性负载的能力。正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。在负载功率一定的情况下,如果逆变器的功率因数较低,则所需逆变器的容量就要增大,一方面造成成本增加,同时光伏系统交流回路的视在功率增大,回路电流增大,损耗必然增加,系统效率也会降低。

5、逆变器效率

逆变器的效率是指在规定的工作条件下,其输出功率与输入功率之比,以百分数表示,一般情况下,光伏逆变器的标称效率是指纯阻负载,80%负载情况下的效率。由于光伏系统总体成本较高,因此应该最大限度地提高光伏逆变器的效率,降低系统成本,提高光伏系统的性价比。目前主流逆变器标称效率在80%~95%之间,对小功率逆变器要求其效率不低于85%。在光伏系统实际设计过程中,不但要选择高效率的逆变器,同时还应通过系统合理配置,尽量使光伏系统负载工作在最佳效率点附近。

6、额定输出电流

表示在规定的负载功率因数范围内逆变器的额定输出电流。有些逆变器产品给出的是额定输出容量,其单位以VA或kVA表示。逆变器的额定容量是当输出功率因数为1(即纯阻性负载)时,额定输出电压为额定输出电流的乘积。

7、保护措施

一款性能优良的逆变器,还应具备完备的保护功能或措施,以应对在实际使用过程中出现的各种异常情况,使逆变器本身及系统其他部件免受损伤。

(1)输入欠压保护:当输入端电压低于额定电压的85%时,逆变器应有保护和显示。

(2)输入过压保护:当输入端电压高于额定电压的130%时,逆变器应有保护和显示。

(3)过电流保护:逆变器的过电流保护,应能保证在负载发生短路或电流超过允许值时及时动作,使其免受浪涌电流的损伤。当工作电流超过额定的150%时,逆变器应能自动保护。

(4)输出短路保护:逆变器短路保护动作时间应不超过0.5s。

(5)输入反接保护:当输入端正、负极接反时,逆变器应有防护功能和显示。

(6)防雷保护:逆变器应有防雷保护。

(7)过温保护等。

另外,对无电压稳定措施的逆变器,逆变器还应有输出过电压防护措施,以使负载免受过电压的损害。

8、噪声

电力电子设备中的变压器、滤波电感、电磁开关及风扇等部件均会产生噪声。逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。

参考文献:

1 李臣.小型光伏发电系统逆变器的研制.

2 李春鹏,张廷元,周封.太阳能光伏发电综述.

3 陈维,沈辉,邓幼.光伏发电系统中逆变器技术应用及展望.

4 光伏逆变器概述

光伏逆变器功能特点和主要技术参数说明

光伏逆变器功能特点和主要技术参数说明 将直流电能变换成为交流电能的过程称为逆变,完成逆变功能的电路称为逆变电路,而实现逆变过程的装置称为逆变器或逆变设备。太阳能光伏系统中使用的逆变器是一种将太阳能电池产生的直流电能转换为交流电能的转换装置。它使转换后的交流电的电压、频率与电力系统交流电的电压、频率相一致,以满足为各种交流用电装置、设备供电及并网发电的需要,它是光伏系统的大脑。 1.离网逆变器的主要特点 (1)采用16位单片机或32位DSP微处理器进行控制; (2)太阳能充电采用PWM控制模式,大大提高了充电效率; (3)采用数码或液晶显示各种运行参数,可灵活设置各种定值参数; (4)方波、修正波、正弦波输出。纯正弦波输出时,波形失真率一般小于5%; (5)稳压精度高,额定负载状态下,输出精度一般不大于±3%; (6)具有缓启动功能,避免对蓄电池和负载的大电流冲击; (7)高频变压器隔离,体积小、重量轻; (8)配备标准的RS232/485通信接口,便于远程通信和控制; (9)可在海拔5500m以上的环境中使用。适应环境温度范围为-20~50℃; (10)具有输入接反保护、输入欠压保护、输入过压保护、输出过压保护、输出过载保护、输出短路保护、过热保护等多种保护功能。 2.并网型逆变器主要性能特点 (1)功率开关器件采用新型IPM模块,大大提高系统效率; (2)采用MPPT自寻优技术实现太阳能电池最大功率跟踪,最大限度地提高系统的发电量; (3)液晶显示各种运行参数,人性化界面,可通过按键灵活设置各种运行参数; (4)设置有多种通信接口可以选择,可方便地实现上位机监控(上位机是指:人可以直接发出操控命令的计算机,屏幕上显示各种信号变化如电压、电流、水位、温度、光伏发电量等); (5)具有完善的保护电路,系统可靠性高; (6)具有较宽的直流电压输入范围; (7)可实现多台逆变器并联组合运行,简化光伏发电站设计,使系统能够平滑扩容; (8)具有电网保护装置,具有防孤岛保护功能。 二、光伏逆变器的主要技术参数 1.额定输出电压 光伏逆变器在规定的输入直流电压允许的波动范围内,应能输出额定的电压值,一般

单机版-研旭光伏并网逆变器说明书_图文(精)

研旭光伏并网逆变器 YXSG-2.5KSL , YXSG-3KSL , YXSG-5KSL 安装使用手册 目录 1、安全说 明 (3) 2、产品描 述 (5) 2.1光伏并网系 统 .................................................................................................................... 6 2.2电路结构 ............................................................................................................................ 7 2.3特点 . .. (7)

2.4逆变器外观描 述 (8) 3、安 装 .......................................................................................................................................... 10 3.1 安装须 知 ......................................................................................................................... 10 3.2 安装流程说明 .. (11) 3.3安装准备 .......................................................................................................................... 12 3.4 选择合适的安装场 地 ..................................................................................................... 12 3.5 安装逆变 器 (14) 3.6 电气连 接 (14) 4、 LCD 操作说 明 . ......................................................................................................................... 21 4.1 按键功能说明 .. (21) 4.2 界面介 绍 (22) 5、故障排 除 (27) 5.1 初始化失败 ..................................................................................................................... 27 5.2 LCD 显示故 障 (27)

工频逆变器说明书

工频纯正弦波逆变器 说明书

目录 目录 (2) 一.特点 (3) 二.面板说明 (4) 三.技术参数 (5) 四.安装 (6) 1.连接示意图 (6) 2.使用导线平方数 (6) 3.安装指南 (7) 4.远程控制安装 (7) 五.蓄电池类型选择 (8) 六.工作原理 (9) 1.充电阶段解释 (9) 2.充电曲线图 (9) 七.使用说明 (10) 八.应用领域 (10) 1.家庭娱乐 (10) 2.家庭设备 (11) 3.办公设备 (11) 4.照明设备 (12) 九.状态指示及故障对照表 (12)

一.特点 ●安静,高效率运作 ●前面板LED指示灯和可调开关选择器 ●可选设置铅酸电池,胶体电池,或玻璃纤维隔板(AGM)电池 ●70A自动三阶段充电(大电流充电,吸收,和浮充) ●快速开关(栅板到电池和电池栅板)的备用电源 ●较低的闲置电流(小于1瓦)能和发动机一致,在没有负载情况下 节约能源. ●在极端环境条件下具有持久的寿命 ●高负载能力可以承担比较大的负载,在过载情况下能稳定处理电 路板形涂层可以保护他们免遭腐蚀及提高使用寿命和可靠性 ●持久的粉末涂层,耐腐蚀钢底盘,具有防水功能 ●保护功能: a)过电压和低电压保护 b)高温保护 c)自动过载保护 d)短路保护

二. 面板说明 正面面板 交流输出端面板 市电输入零线 市电输入火线 机器输出地线 市电输入地线 机器输出零线 机器输出火线 远程指示灯

三. 技术参数 输入波形 正弦波(实用工具或发电机) 标称输入电压 120V 230V 低压跳闸 90V ±4% 184V/154V ±4% 低压重启 100V ±4% 194V/164V ±4% 高压跳闸 140V ±4% 253V ±4% 高压重启 135V ±4% 243V ±4% 交流最大输入电压 150V 270V 额定输入频率 50Hz/60Hz(自动检测) 低频跳闸 47Hz-50Hz, 57Hz-60Hz 高频跳闸 55Hz-50Hz, 65Hz-60Hz 输出波形 与输入波形相同(旁路模式) 过载保护 断路器 短路保护 断路器 转换开关额定值 30安培/40安培 在线转换式转换效率 95%以上 线传输时间 10ms (标准) 旁路无电池连接 是 旁路最大电流 30安/40安 旁路过载电流 35安/45安(报警) 逆变器规格/输出 输出波形 纯正弦波 持续输出功率 1000W 2000W 3000W 4000W 5000W 6000W 持续输出功率 1000V A 2000V A 3000V A 4000V A 5000V A 6000V A 功率因数 0.9-1.0 输出电压调节 ±10% rms 输出频率 50Hz ±0.3Hz 60Hz ±0.3Hz 额定效率 大于88% 峰值额定值 3000 6000 9000 12000 15000 18000 短路保护 是 , 故障后十秒 接蓄电池端面板 直流输入负极 直流输入正极

太阳能光伏并网逆变器的设计原理框图

随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,必须完成从补充能源向替代能源的过渡。光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。 在光伏并网系统中,并网是核心部分。目前并网型系统的研究主要集中于DC-DC和DC-AC 两级能量变换的结构。DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。其中DC-AC是系统的关键设计。 太阳能光伏并网系统结构图如图1所示。本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。前级用于最大功率追踪,后级实现对并网电流的控制。控制都是由DSP芯片TMS320F2812协调完成。 图1 光伏并网系统结构图 逆变器的设计 太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将发出的直流电逆变成单相交流电,并送入电网。同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。并且具有完善的并网保护功能,保证系统能够安全可靠地运行。图2是并网逆变器的原理图。

图2 逆变器原理框图 控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。驱动电路起到提高脉冲的驱动能力和隔离的作用。保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。 在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式: Vac=Vs+jωL·IN+RS·IN (1) 式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。 图1 光伏并网系统结构图 图3 控制矢量图 在网压Vac(t)为一定的情况下,IN(t)幅值和相位仅由光伏并网逆变器输出端的脉冲电压中的基波分量Vs(t)的幅值,及其与网压Vac(t)的相位差来决定。改变Vs(t)的幅值和相位就可以控制输入电流IN(t)和Vac(t)同相位。PWM整流器输入侧存在一个矢量三角形关系,在实际系统中RS 值的影响一般比较小,通常可以忽略不计得到如图3b所示的简化矢量三角形关系,即下式: (2) 在一个开关周期内对上式进行周期平均并假设输入电流能在一个开关周期内跟踪电流指令即可推导出下式: (3)式中K= L/TC,TC为载波周期。 从该模型即可以得到本系统所采用的图4所示的控制框图。此方法称为基于改进周期平均模型的固定频率电流追踪法。

光伏并网逆变器的研究概要

光伏并网逆变器的研究 【中文摘要】针对全球范围内能源紧张的局面,开发利用太阳能越来越受到重视。太阳能光伏并网发电是太阳能利用的主要形式,具有广阔的发展远景。本文就是在此背景下,对太阳能并网发电系统的核心器件并网逆变器进行重点研究。为此,论文主要对逆变器的电路拓扑结构、最大功率点跟踪、并网控制方案以及在并网过程中的反孤岛技术进行了分析研究。首先,简述了国内外光伏发电的现状和发展趋势,根据单相光伏并网发电系统的特点,本文选择了合适的主电路拓扑结构,该结构没有变压器,具有体积小、本钱低、控制方案易实现等优点。其次,通过比较分析目前太阳能电池进行最大功率跟踪的各种传统方法,运用了一种基于改进型Fibonacci线性搜索的最大功率跟踪算法。理论上证实了通过调节DC/DC升压电路的占空比可以改变太阳能电池的输出功率,以使太阳能电池工作于最大输出功率点上。本文阐述了添加反孤岛效应保护的必要性,通过对反孤岛效应的主动和被动检测方法的对比,最后采用了周期性扰动AFDPF检测方法并对其进行仿真验证。最后,本文对光伏并网逆变器的控制方案进行了分析,采用了基于SPWM的电流输出控制算法,该方法具有开关频率固定、物理意义清楚、实现方便等优点,通过MATLAB进行了仿真,结果表明了该方案的有效性和可行性。'); 【Abstract】 For the strenuous energy sources currently in the global scope,exploiting and utilizing the solar energy is paid more attention by many people than before. Photovoltaic(PV) generation,one important method of using solar energy,is very promising.Under this background,the dissertation deeply researches the PV grid-connected inverter,which is the hard core of the system.The *** analyzed the topology of the inverter,maximum power point tracing(MPPT),the control method of the inverter and the technology of grid-connected such as anti-island.Firstly,it briefly introduces the present situation and the development prospects of Photovoltaic generating at home and abroad.Based on the character of single-phase PV grid-connected system,the *** expatiated a suitable topological construction,which doesn\'t use the transformer with features which the small size, low cost and easy control strategy and so on.Secondly,by comparing many different traditional methods,this *** finds a new way to use a new Fibonacci search algorithm to realize the maximum power point tracking(MPPT).In this thesis,it is demonstrated theoretically that the maximum power-output can be matched by adjusting the duty ratio of the DC/DC circuit.This *** presents the needed of anti-islanding effect,analyses the active and passive detecting methods separately,then verifies the validity of the active frequency drift with periodical disturbance and positive feedback method.Finally,several popular control methods of inverter are simply analyzed.Based on SPWM,the scheme of current control have

逆变器使用说明书

车载逆变器用户手册 1、简介 感谢您购买HUASYN系列的逆变器。为了您能舒适、安全的使用本产品,请仔细阅读本说明书,说明书中包含关于本产品的重要信息,请保留此说明书以供以后参考。 HUASYN系列逆变器拥有您所期待的的卓越品质,无论你接在汽车点烟器插孔,还是接在电瓶上,都能直接转换为交流电。它可广泛用于各类家用电器上,让您在商务工作、驾车旅游、停电应急的时候,给您源源不断的动力。 2、产品特性 采用专用智能IC控制逆变器产品,具有非常完善的保护功能和指示功能。采用优质的双面线路板及电子元件,保证产品的高质量,高性能。转换效率高、小巧轻便、适用范围广的特点。 产品示意图: 75W 100W 150W 200W 300W 500W 3、使用说明 a:使用环境 基于安全和性能的考虑,HUASYN系列产品应该在以下环境下使用: 干燥:不能浸水或淋雨

阴凉:环境温度应该在0℃到40℃之间 通风:保持壳体上方5CM内无异物,其它端面通风良好,确认风扇不会在工作过程中不会发生阻塞或障碍(适用于有带风扇的产品),以便防止出现通风不良的情况。 b:操作方法 1、确定所使用的电器功率应小于所使用的逆变器的额定输出功率。 2、当使用设备输出功率小于200W时,将逆变器开关置于关闭位置,然后雪茄头紧密地插入车内点烟器插口,确保雪茄头良好接触。 3、当使用设备输出功率大于200W时,必须通过鳄鱼夹线使用,引线的太阳端子接至逆变器接线柱,颜色应该匹配,引线端为红色的接逆变器上的红色接线柱,引线端为黑色的接逆变器的黑色接线柱;另外一端的鳄鱼夹连接所使用过的电瓶,红色鳄鱼夹接“+”级,黑色鳄鱼夹接“﹣”级)。 4、输入端接好后,打开开关,逆变器指示灯将发亮,表示已经有交流电输出,逆变器便可以开始正常工作。 5、将需要使用的电器插入的逆变器的输出端AC插座或USB接口充电,根据你所使用的设备选择。 6、开启你的电器开关,HUASYN逆变器便可以给你带来源源不断的交流电能。 4、产品规格

毕业设计-单相光伏并网逆变器的控制原理及电路实现

第一章绪论 1.1 光伏发电背景与意义 作为一种重要的可再生能源发电技术,近年来,太阳能光伏(Photovoltaie,PV)发电取得了巨大的发展,光伏并网发电已经成为人类利用太阳能的主要方式之一。目前,我国已成为世界最大的太阳能电池和光伏组件生产国,年产量已达到100万千瓦。但我国光伏市场发展依然缓慢,截至2007年底,光伏系统累计安装100MWp,约占世界累计安装量的1%,产业和市场之间发展极不平衡。为了推动我国光伏市场的发展,国家出台了一系列的政策法规,如《中华人民共和国可再生能源法》、《可再生能源中长期发展规划》、《可再生能源十一五发展规划》等。这些政策和法规明确了太阳能发电发展的重点目标领域。《可再生能源中长期发展规划》还明确规定了大型电力公司和电网公司必须投资可再生能源,到2020年,大电网覆盖地区非水电可再生能源发电在电网总发电量中的比例要达到3%以上。对于这一目标的实现,光伏发电无疑会起到非常关键的作用。 当下,我国地方和企业正积极共建兆瓦级以上光伏并网电站,全国已建和在建的兆瓦级并网光伏电站共11个(2008年5月前估计),典型的如甘肃敦煌10MW 并网光伏特许权示范项目,青海柴达木盆地的1000MW大型荒漠太阳能并网电站示范工程,云南石林166MW并网光伏实验示范电站。可以预见,在接下来的几年里,光伏并网发电市场将会为我国摆脱目前的金融危机提供强大的动力,光伏产业依然会持续以往的高增长率,光伏市场的前景仍然令人期待。光伏并网发电系统是利用电力电子设备和装置,将太阳电池发出的直流电转变为与电网电压同频、同相的交流电,从而既向负载供电,又向电网馈电的有源逆变系统。按照系统功能的不同,光伏并网发电系统可分为两类:一种是带有蓄电池的可调度式光伏并网发电系统;一种是不带蓄电池的不可调度式光伏并网发电系统。典型的不可调度式光伏并网发电系统如图1-1所示。

光伏逆变器分类

逆变器作为光伏发电的重要组成部分,主要的作用是将光伏组件发出的直流电转变成交流电。目前,市面上常见的逆变器主要分为集中式逆变器与组串式逆变器,还有新潮的集散式逆变器。今天就针对三种逆变器来谈一谈各自的特点。 一、集中式逆变器 集中式逆变器顾名思义是将光伏组件产生的直流电汇总转变为交流电后进行升压、并网。因此,逆变器的功率都相对较大。光伏电站中一般采用500kW 以上的集中式逆变器。 (一)集中式逆变器的优点如下: 1.功率大,数量少,便于管理;元器件少,稳定性好,便于维护; 2.谐波含量少,电能质量高;保护功能齐全,安全性高; 3.有功率因素调节功能和低电压穿越功能,电网调节性好。 (二)集中式逆变器存在如下问题: 1.集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,组件配置不灵活; 2.集中式逆变器占地面积大,需要专用的机房,安装不灵活; 3.自身耗电以及机房通风散热耗电量大。 二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。

(二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起, 稳定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。 三、集散式逆变器 集散式逆变器是近两年来新提出的一种逆变器形式,其主要特点是“集中 逆变”和“分散MPPT跟踪”。集散式逆变器是聚集了集中式逆变器和组串式逆变器两种逆变器优点的产物,达到了“集中式逆变器的低成本,组串式逆变器 的高发电量”。 (一)集散式逆变器优点: 1.与集中式对比,“分散MPPT跟踪”减小了失配的几率,提升了发电量; 2.与集中式及组串式对比,集散式逆变器具有升压功能,降低了线损; 3.与组串式对比,“集中逆变”在建设成本方面更具优势。 (二)集散式逆变器问题; 1.工程经验少。较前两类而言,尚属新形式,在工程项目方面的应用相对 较少; 2.安全性、稳定性以及高发电量等特性还需要经历工程项目的检验; 3.因为采用“集中逆变”,因此,占地面积大,需专用机房的缺点也存在 于集散式逆变器中。

200-500KW光伏发电逆变器说明书

https://www.doczj.com/doc/e011712037.html, Content PV Solar System (1) I.PV Grid-Connected System (1) 1.String PV Grid-Connected Inverter (1) (1)Transformerless Type (1) (2)Transformer Type (3) 2.Power Plant PV Grid-Connected Inverter (4) (1)10-30KW Transformer Power Plant (4) (2)50-100KW Transformer Power Plant (6) (3)250KW Transformer Power Plant (8) (4)250-500KW Transformerless Power Plant (10) II.PV Off-Grid Inverter (12) III.PV Grid-Connected Fittings (14) 1.PV Combiner Box (14) 2.DC Distribution Cabinet (15) 3.AC Distribution Cabinet (15) 4.Monitor Software (16) 5.Data Acquisition (17) IV.System Integration (18) https://www.doczj.com/doc/e011712037.html,rge And Middle Scale PV Power Station (19) 2.Small Scale PV Power System (19) 3.BIPV&BAPV (20)

大功率光伏逆变器介绍

大功率光伏逆变器 (100kwp~500kwp) 一、光伏逆变器简介 逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正 弦波逆变器和组合式三相逆变器。对于用于并网系统的逆变器,根据有无变压器 又可分为变压器型逆变器和无变压器型逆变器。 (1)并网光伏发电系统并网式光伏发电系统由光伏组件、并网逆变器、计量装置及配电系统组成。光伏组件将太阳光能转换为直流电能,再由逆变器将直流电能转换为高品质的正弦波电流,直接馈入电网或者做为本地用电设备的电力来源。(2)离网光伏发电系统离网式光伏发电系统由光伏组件、控制器、蓄电池、离网逆变器及配电系统组成,与并网式光伏发电系统的工作原理十分相似,唯一不同的是离网系统输出的电力被直接消耗使用而不输送到电网中。离网式系统中配备有蓄电池,用于储存电能,可以满足阳光不足状态下的发电需求。通过控制器可以实现对蓄电池的控制。对于无法接入公共电网的偏远地区,离网式光伏发电系统是解决用电需求最完。 二、产品型号 ESI——————————光伏逆变器 5———————————额定输入电压 1.24vdc 2.48vdc 3.450vdc 3———————————输出电压 2.220vac 3.380vac B———————————变压器功能B可并联N不可并联 100——————————额定输出功率100kw、250kw、500kw X———————————厂商代码X希望电子有限公司T—— —————————T有隔离变压器N无隔离变压器 三、执行标准 .GB/T19939 光伏系统并网技术要求 .GB/T20046 光伏(PV)系统电网接口特性 .GB/T20513 光伏系统性能监测测量、数据交换和分析导则 .GB/Z19964 光伏发电站接入电力系统的技术规定 .GB/T3859.1 半导体变流器基本要求的规定 .GB/T3859.2 半导体变流器应用导则

30kw逆变器使用说明书

用户手册 WI300-240-CM01 离网型纯正弦波逆变器

版本:3.0

目录 一、安全说明 0 1.1 使用安全 0 1.2 维护安全 0 二、产品概述 (1) 三、产品结构 (1) 3.1 产品结构示意图 (1) 3.2 LCD显示界面 (2) 四、设备原理框图 (3) 五、产品安装 (4) 5.1 安装流程 (4) 5.2 安装细节说明 (5) 5.3 环境选择 (6) 5.4 电气连接 (7) 5.4.1 逆变器与蓄电池组相连接 (7) 5.4.2 逆变器与用电负载相连接 (8) *5.4.3 逆变器与市电电网相连接 (10) 六、故障排除 (11) 七、质保与售后服务 (12) 八、质保与售后服务 (13)

用户手册中带有*内容为具有市电互补功能产品的使用说明。

一、安全说明 1.1使用安全 本手册中使用安全标志,强调潜在的安全风险和重要的安全信息,如果操作不当可能导致人身伤害或设备损坏。 严禁在有易燃性、易爆性气体或物品的环境下使用,谨防火焰和火花; 无论在何种工作状态下,请勿带电拆除或连接设备连线,以免发生危险; 逆变器输出禁止与市电电网相连接,使用前要做到市电线路与逆变器线路隔 离,否则将严重损坏逆变器。 应安装在儿童触摸不到的位置,以确保儿童安全。 逆变器检修或维护时,在拆除相关连接线后必须等待超过10分钟时间间隔方 可打开设备盖板,防止逆变器电容器件存储的电荷对人身造成电击伤害。 使用过程中请勿用杂物阻塞设备的散热孔,确保良好的通风和散热; 若设备发生保护报警,禁止立刻重启设备,应按照故障分析内容查明原因且 修复后再次开机使用。 1.2维护安全 蓄电池组虚接或损坏是造成设备出现故障的主要因素之一。建议您每两周定

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

光伏逆变器概述(完整版)

光伏逆变器概述 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。

1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGB T功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。 3、微型逆变器 在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都会引起上述因素,情况非常普遍。而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。 4、功率优化器 太阳能发电系统加装功率优化器(Optimizer)可大幅提升转换效率,并将逆变器(Inverter)功能化繁为简降低成本。为实现智慧型太阳能发电系统,装置功率优化器可确实让每一个太阳能电池发挥最佳效能,并随时监控电池耗损状态。功率优化器是介于发电系统与逆变器之间的装置,主要任务是替代逆变器原本的最佳功率点追踪功能。功率优化器藉由将线路简化以及单一太阳能电池即对应一个功率优化器等方式,以类比式进行极为快速的最佳功率

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

逆变器用户使用手册

GDLYEC-PV-3~270/500光伏并网逆变器 用户使用手册 版本2.0 国电龙源电气有限公司

目录 1关于本手册 (3) 1.1 前言 (4) 1.2 内容简介 (4) 1.3 面向读者 (4) 1.4 手册使用 (4) 2 安全须知 (5) 2.1 警示符号说明 (6) 2.2 安全提示 (7) 2.3 操作中的注意事项 (9) 3 产品简介 (10) 3.1 光伏并网系统 (11) 3.2 产品特点 (11) 3.3 电气原理 (12) 3.4 产品外观 (14) 4 产品功能与LCD操作指南 (17) 4.1 GDL YEC-PV-3~270/500主要功能 (18) 4.1.1 并网发电 (18) 4.1.2 MPPT功能 (18) 4.1.3低电压穿越功能 (18) 4.1.4 保护功能 (19) 4.1.5 远程控制功能 (20) 4.1.6自动开关机功能 (20) 4.2 GDL YEC-PV-3~270/500运行模式 (20) 4.3 GDL YEC-PV-3~270/500 LCD操作指南 (22) 4.3.1 LCD主界面 (22) 4.3.2 LCD控制指令发送 (24) 5 产品安装 (30) 5.1 注意事项 (31) 5.2 机械尺寸 (31) 5.3 放置与移动 (31) 5.4直流输入线缆连接 (32) 5.4.1 直流输入电气参数规格 (32)

5.4.2直流输入线缆要求 (33) 5.4.3线缆连接 (33) 5.5交流输出线缆连接 (36) 5.5.1交流输出电气规格 (36) 5.5.2 交流输出线缆要求 (36) 5.5.3 线缆连接 (36) 5.6 系统地线连接 (38) 5.6.1地线线缆要求 (38) 5.7 远程监控通信线连接 (38) 6 产品运行指南 (40) 6.1 启动 (41) 6.2 关机 (42) 7 电气特性 (43)

逆变器操作说明和故障处理

一逆变器原理介绍 1.1逆变(invertion):把直流电转变成交流电的过程。 逆变电路是把直流电逆变成交流电的电路。当交流侧和电网连结时,为有源逆变电路。变流电路的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,称为无源逆变。 逆变桥式回路把直流电压等价地转换成常用频率的交流电压。逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。 1.2 IGBT的结构和工作原理 1.2.1 IGBT的结构 IGBT是三端器件,具有栅极G、集电极C和发射极E。IGBT由N沟道VDMOSFET 与双极型晶体管组合而成的,VDMOSFET多一层P+注入区,实现对漂移区电导率进行调制,使得IGBT具有很强的通流能力。图1-1为IGBT等效原理图及符号表示 图1-1 IGBT等效原理图及符号表示 1.2.2IGBT的工作原理 IGBT的驱动原理与电力MOSFET基本相同,是一种场控器件。 其开通和关断是由栅极和发射极间的电压U GE决定的。

当U GE为正且大于开启电压U GE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而使IGBT导通。 当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。 电导调制效应使得电阻R N减小,这样高耐压的IGBT也具有很小的通态压降。 1.3逆变电路介绍 1.3.1逆变产生的条件为 1,要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。 2要求晶闸管的控制角α>π/2,使U d为负值。 两者必须同时具备才能实现有源逆变。 逆变运行时,一旦发生换相失败,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器的输出平均电压和直流电动势变成顺向串联,由于逆变电路的内阻很小,形成很大的短路电流,这种情况称为逆变失败,或称为逆变颠覆。 逆变失败的原因 1触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致使晶闸管不能正常换相。 2晶闸管发生故障,该断时不断,或该通时不通。 3交流电源缺相或突然消失。 4换相的裕量角不足,引起换相失败 为了防止逆变失败,不仅逆变角β不能等于零,而且不能太小,必须限制在某一允许的最小角度内。 1.3.2逆变电路基本的工作原理 图1-2单相逆变电路原理图

相关主题
文本预览
相关文档 最新文档