当前位置:文档之家› 功率放大器技术指标概述

功率放大器技术指标概述

功率放大器技术指标概述
功率放大器技术指标概述

功率放大器技术指标概述

工作频率范围Operating Frequency

放大器满足或优于指标参数时的工作频率范围。

输出功率Output Power:

放大器的输出功率有两种表示方式:饱和功率和1dB压缩点输出功率。前者是输出的最大功率,后者则是指增益下降1dB时的输出功率,前者一般大于后者。对脉冲放大器有峰值功率和平均功率之分,前者表示有信号时的输出功率,后者则是按时间平均后的功率,两者之间的关系与信号的占空比有关。

增益Gain

功放输入输出功率的比值。

增益平坦度Gain flatness

表示放大器在工作频段内功率增益的波动。

噪声指数Noise Figure

指的是功放输出端和输入端信噪比的比值。

输入输出三阶截取点IIP3,OIP3

反映放大器的线性特性的指标。具体指三阶谐波与输入端基波电平相同时对应的输入/输出功率电平。此指标与输入电平的大小和放大器的增益无任何关系。

电压驻波比VSWR

放大器通常设计或用于50Ω阻抗的微波系统中,输入/输出驻波表示放大器输入端阻抗和输出端阻抗与系统要求阻抗(50Ω)的匹配程度。用下式表示:

VSWR = (1+|Γ|)/(1-|Γ|)

其中Γ=(Z-Z0)/(Z+Z0)

VSWR:输入输电压出驻波比

Γ:反射系数

Z:放大器输入或输出端的实际阻抗

Z0:需要的系统阻抗

效率Efficiency

指输入电流×输入电压=总功率

效率=实际输出射频功率/总功率×100%

临道功率比ACPR (Adjacent Channel Power Ratio)

用来衡量主信道的功率泄漏到相邻信道的多少,和放大器的线性、信号的调制等多因素有关。主要应用在象CDMA这样的宽频谱信号的研究上。

脉冲波的上升沿时间和下降沿时间Rise Time and Fall Time

上升沿时间:从脉冲波上升沿10%上升到90%所经历的时间;

下降沿时间:从脉冲波下降沿90%下降到10%所经历的时间;

脉冲宽度:两个脉冲幅值的50%的时间点之间所跨越的时间。

占空比Duty Cycle

在一串理想的脉冲序列中(如方波),正脉冲的持续时间(脉冲宽度pulse width)与脉冲总周期(Pulse cycle)的比值。

脉冲重复频率PRF(Pulse Recurrence Frequency)

每秒钟所产生的触发脉冲的数目

●工作频率范围Operating Frequency

放大器满足或优于指标参数时的工作频率范围。

●增益Gain

增益定义为放大器输出功率与输入功率的比值。通常用dB表示。

●增益平坦度Gain Flatness

增益平坦度描述的是在某一指定温度,增益在整个工作带宽内随频率变化的最大值。

●噪声指数Noise Figure

定义为输入信噪比与输出信噪比之比。

由于所有的放大器都会产生热噪声,输出端的信噪比会降低。所以噪声指数总是大于1。

当用dB来表示时:

放大器的噪声通常也可以用噪声温度来表示(一般用于窄带卫通放大器)。

噪声指数和噪声温度的关系:

●1dB压缩点输出功率Output power @ 1dB compression

所有的有源器件都有线性动态范围,在这个范围内,输出功率随输入功率线性增加。当输出功率增加到接近最大值时,将会饱和。通常把增益下降到比线性增益低1dB时的输出功率定义为输出功率的1dB压缩点,输入输出功率在这一点的非线性关系,有下式可得:

●输入输出电压驻波比VSWR(Input/output)

电压驻波比表示放大器输入端阻抗与输出端阻抗与系统要求阻抗的匹配程度,一般为50Ω。

● 工作电压&电流Operating voltage & current

放大器工作时需要的工作电压&电流,通常Miteq放大器的工作电压为DC 15V,并且器件有内部稳压器。

其他特殊要求指标:

●增益随温度的变化Gain variation versus temperature

增益随温度的变化指在任意指定频率处线性增益随温度变化的最大值。

●总增益窗Overall Gain Window

在放大器的工作温度和工作频率范围之内,增益的最小值和最大值。是对放大器增益的较完整的描述。

●相位匹配Phase Matching

相位匹配指两个或更多器件之间相位的差值。通常此指标是定义在工作频率带宽内的,但是有时也定义在放大器总工作带宽的某一频段(ΔF)内。

●相位跟踪Phase Tracking

相位跟踪和相位匹配类似。

●幅度匹配Amplitude Matching

幅度匹配指两个或更多器件之间增益的差值。通常此指标是定义在工作频率带宽内的,但是有时也定义在放大器总工作带宽的某一频段(ΔF)内。

●幅度跟踪Amplitude Tracking

幅度跟踪和幅度匹配类似。

●动态范围Dynamic range

放大器的动态范围有两种表示方法:

a. 线性动态范围=放大器保持线性的最大信号电平(通常指1dB压缩点时的输入功率值)-最小可检测信号

b. 无杂散动态范围:当放大器最小可检测输出电平与放大器输入等双音时在输出口产生的互调相等时,放大器输入口最小可检测信号与放大器等双音时的输入电平的差值为无杂散动态范围。

●三阶截取点IP3

测量放大器的非线性特性,最简单的方法是测量1dB压缩点功率电平P1dB。另一个颇为流行的方法是利用两个相距5到10MHz的邻近信号,当频率为f1和f2的这两个信号加到一个放大器时,该放大器的输出不仅包含了这两个信号,而且也包含了频率为mf1+nf2的互调分量(IM),这里,称m+n为互调分量的阶数。在中等饱和电平时,通常起支配作用的是最接近基音频率的三阶分量。因为三阶项直到畸变十分严重的点都起着支配作用,所以常用三阶截点(IP3)来表征互调畸变(见图3)。三阶截点是描述放大器线性程度的一个重要指标。

●反向隔离度Reverse isolation

反向隔离度简单的定义为放大器输出和输入之间的隔离度。通常是在输出端输入一个信号,然后在输入端进行检测。其典型值为放大器增益的2倍。

●相位线性度Phase linearity

信号的相位随频率的变化会因放大器内部的电抗元件而失真。这种’线性’失真称作相位线性度,是通过矢量网络分析仪在放大器的整个工作频率范围内而测得。

功率放大器的技术指标

功率放大器的技术指标: 1) 输出功率:1额定输出功率:是指在一定的谐波失真系数和一定频率范围下所测的功率放大器的输出功率。 2最大输出功率:是指在一定的负载上,功率放大器在规定的谐波失真系数时,采用1000Hz 的正弦波检测信号所得到的连续最大的输出功率。业余条件下,功率放大器的额定输出功率可以通过下式进行换算: 额定输出功率=最大输出功率×0.8 额定输出功率=峰值功率×0.5 2) 放大增益:也为放大倍数,放大器的电压增益是指输出电压和输入电压之比,电流增益是指输出电流和输入电流之比,功率增益是指输出功率与输入功率之比。 3) 频率响应:反应了功率放大器对各种频率信号放大的情况。品质较高的功率放大器能够重放频率较宽的信号。一般的放大器频率响应均应在20Hz~20KHz 4) 信噪比:是指信号电平与噪声电平的比率,用S/N表示。S为信号电平,N为噪声电平。信噪比越高噪声越低。 5) 失真:是指放大器的输入信号与输出信号在几何形态上发生了变化。 其主要有:1谐波失真:由于放大器的非线性而产生的,会使声音走调。 2互调失真:是由各个频率信号之间相互调制而产生的,会使声音尖刺、混浊。 3相位失真:是由于放大器对于不同频率产生的相移不均而产生的。 4瞬态失真:会使声音变抖动、不清晰。 5交越失真:会使重放声产生间歇感。 6) 动态范围:是指放大器的最高输出电压与无信号时的噪声之比。其表示了功率放大器的重放声的动态范围和对微弱信号的表现能力。其会受输出功率的影响。 7) 瞬态响应:是指放大器对脉冲信号(瞬时大信号)的跟随能力。从声音的重放角度来看,瞬态响应较好,重放时就会干净、利落。否则会含糊不清。一般用转换速率SR来表示。转换速率是指在单位时间内信号电压的变化量,其单位是V/μs 。一般前置放大器的SR能够达到5V/μs就可以满足前置放大器的要求。一般功率放大器的SR能够达到50V/μs就可以达到高保真瞬态的要求。 8) 阻尼系数:是表示功率放大器的内阻的指标,它与扬声器的阻抗成正比,通常阻尼系数越大,扬声器的失真就越小。

专业功放主要指标性能测试

专业功放(模拟)测试方法及主要性能指标 专业功放的基本测试方式和常用仪器 A、常用普通测试方式 工具仪器:双踪示波器(20M)、同步失真仪、毫伏表、音频信号发生器、功率负载 基本连接示意图如下: 各种测试仪器实物图: 负载信号发生器(上) 双踪示波器(下)毫伏表 使用此类方式的测试,连接简单、测试方便、比较直观,对输出波形可进行直观的观测。缺点测试精确度不高,误差较大。对参数要求精度很高的产品不适用。

B 、Audio precisionATS 专业音频分析仪测试方式 工具仪器:功率负载、Audio precisionATS(简称AP)及配套设备(电脑等) 连接示意图如下: Audio precisionA TS-2专业音频分析仪见下图: 下图是软件运行界面:

AP测试时使用的单位介绍 1、测试信号幅度时的单位及其定义为 单位定义换算 V (伏)基本单位 Vrms 有效值 Vp 峰值1Vp=1.414Vrms Vpp 峰峰值1Vp=2.828Vrms dBv (伏特分贝)以1V为零电平的分贝=20*log(V/1V) dBu (电压分贝)以0.7746V为零电平的分贝=20*log(V/0.7746v) dBm (毫瓦分贝)以600Ω1mW为零电平的分贝0dBm=1mW(600Ω阻抗) dBg 以发生器的值为零电平的分贝=20*log(V/发生器幅值)dBr (基准分贝)以基准为零电平的分贝=20*log(V/基准值)dBrinv dBr的反相=20*log(V/基准值) W (功率)电功率=V A=V2/R 2、相对量的单位 功能单位定义 THD+N Ratio % 100*(噪声+失真)/(信号+噪音+失真) THD+N Ratio dB 20log[(噪音+失真)/(信号+噪音+失真)] SMPTE/DIN % 100*失真/高频信号 SMPTE/DIN dB 20log(失真/高频信号) Crosstalk dB 20log(非工作通道/工作通道) Wow&Flutter % 100*(抖动频率分量)/(测量的频率) 3、频率单位 单位定义 Hz 基本单位 F/R (分频)是参考频率的倍数 dHz (deltaHz 差频)与参差频率相差的频率 Cent Octaves 八度音阶 Decades 与参考频率的对数值 %Hz (频率比)与参考频率的百分比 d% (差频比)减参考频率后与参考频率的百分比 MdPPM 减参考频率后与参考频率的倍数比 PPM 1kHz=1000PPM;1MHz=1PPM 4、相对以上单位的参考值设定

各类放大器技术指标的分析与比较

目录 引言 (1) 1放大器种类概述 (1) 1.1功率放大器 (1) 1.2运算放大器 (3) 2对各类不同的放大器性能和特点进行分析与比较 (4) 2.1功率放大器的技术指标 (4) 2.2运算放大器的技术指标 (7) 结束语 (8) 参考文献 (8) 错误!未定义书签。

各类放大器技术指标的分析与比较 摘要:放大器是能把输入信号的幅值或功率放大的电路,在通讯、广播、音响等系统中有着广泛的应用。本文主要介绍了功率放大器和运算放大器的工作原理和分类,并在此基础上对它们的技术指标进行了详细的分析与比较,总结了各类放大器的优缺点,为选择放大器提供了更多的参考和依据。通过对各类放大器的分析与比较,能够提高分析问题的能力,对实践具有重要的指导意义。 关键词:放大器;功率放大器;运算放大器;效率;输出功率 引言 放大器是广泛使用于各种电子系统中的一种电路。随着半导体器件及集成技术的迅猛发展,放大器的种类增多,其性能也大幅提高。就音频放大器的类别而言,已不仅限于传统的A类(甲类)和AB类(甲乙类),而出现了更多类别的放大器如D类、T类放大器等。同时集成运放发展迅速,新类型、高性能的运放层出不穷。在种类繁多,功能各异的众多放大器中进行选择使用,就必需对各类放大器的性能指标有个清晰的认识。本文通过对常见的各类音频功率放大器及运放技术指标的分析比较,总结了其各自的优缺点,对实际选用放大器具有参考意义。 1放大器种类概述 1.1功率放大器 功率放大器,简称为“功放”。现实生活中我们会遇到很多情况下主机的额定输出功率不能满足带动整个音响系统的任务,这时就需要在主机和播放设备之间加功率放大器来补充所需的功率缺口,这样功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,所以音响系统能否提供良好的音质输出与功率放大器的性能有着重要的关系[1]。 功率放大器是利用场效应管的电压控制作用或三极管的电流控制作用将电源的功率转换为按照输入信号变化的电流这个原理来实现放大的。同时,因为声音是不同振幅和频率的波,即交流电流信号,而三极管工作在放大区域时集电极电流总是基极电流的α倍,α是三极管的交流电流放大倍数,利用这个原理,若将小信号从基极输入,则在集电极会流出基极电流α倍的电流,再用隔直电容将这个信号隔离出来,就可以得到原来电压或电流α倍的放大信号,这种现象就称

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

功率放大器技术指标概述

功率放大器技术指标概述 工作频率范围Operating Frequency 放大器满足或优于指标参数时的工作频率范围。 输出功率Output Power: 放大器的输出功率有两种表示方式:饱和功率和1dB压缩点输出功率。前者是输出的最大功率,后者则是指增益下降1dB时的输出功率,前者一般大于后者。对脉冲放大器有峰值功率和平均功率之分,前者表示有信号时的输出功率,后者则是按时间平均后的功率,两者之间的关系与信号的占空比有关。 增益Gain 功放输入输出功率的比值。 增益平坦度Gain flatness 表示放大器在工作频段内功率增益的波动。 噪声指数Noise Figure 指的是功放输出端和输入端信噪比的比值。

输入输出三阶截取点IIP3,OIP3 反映放大器的线性特性的指标。具体指三阶谐波与输入端基波电平相同时对应的输入/输出功率电平。此指标与输入电平的大小和放大器的增益无任何关系。 电压驻波比VSWR 放大器通常设计或用于50Ω阻抗的微波系统中,输入/输出驻波表示放大器输入端阻抗和输出端阻抗与系统要求阻抗(50Ω)的匹配程度。用下式表示:VSWR = (1+|Γ|)/(1-|Γ|) 其中Γ=(Z-Z0)/(Z+Z0) VSWR:输入输电压出驻波比 Γ:反射系数 Z:放大器输入或输出端的实际阻抗 Z0:需要的系统阻抗

效率Efficiency 指输入电流×输入电压=总功率 效率=实际输出射频功率/总功率×100% 临道功率比ACPR (Adjacent Channel Power Ratio) 用来衡量主信道的功率泄漏到相邻信道的多少,和放大器的线性、信号的调制等多因素有关。主要应用在象CDMA这样的宽频谱信号的研究上。 脉冲波的上升沿时间和下降沿时间Rise Time and Fall Time 上升沿时间:从脉冲波上升沿10%上升到90%所经历的时间; 下降沿时间:从脉冲波下降沿90%下降到10%所经历的时间; 脉冲宽度:两个脉冲幅值的50%的时间点之间所跨越的时间。 占空比Duty Cycle 在一串理想的脉冲序列中(如方波),正脉冲的持续时间(脉冲宽度pulse width)与脉冲总周期(Pulse cycle)的比值。

功放技术参数的分析

音响技术基础知识 A Vtechnology 艺术团体经常进行巡回演出,音响器材尤其是功率放大器要经过火车、汽车运输,各种地形复杂的道路会带来振动,所以要求功率放大器结构非常结实、抗振特性良好、设计科学、加工工艺精细。在不同城市、乡镇进行的文艺演出还会遇到各种意想不到的复杂情况,如演出剧场或现场的电网电压不稳定,或临时演出由于观众较多,需要加大额定输出功率提高现场演出的响度以满足室外演出的需要等。因此要求功率放大器有适应多种功能的能力,除要求功能全外,更主要的还要有很高水平的音色质量表现,如对美声演唱要求有很宽的频带(频率通带)才能把美声歌曲优美的泛音表现出来,从而丰富声乐音色的艺术表现,而对于音乐中各种乐器的个性色彩的表现又要求功放有极低的本底噪声,即有很高的信噪比和极低的失真度,才能将各种不同乐器的乐音细节明朗地表现出来。这就要求功率放大器有很高水平的技术参数来做保证。 1 技术参数 1.1 功率放大器的额定功率 额定功率指在规定的总谐波条件下功率放大器长期承受额定负载阻抗上的输出功率,是适用的功率。 最大输出功率是在不考虑失真的情况下,给功率放大器输入足够大的信号电平,将音量开至最大时,功率放大器所能输出的最大功率。这是短时间使用的功率。 峰值功率是指功率放大器在处理音乐信号时能够在瞬间输出的最大功率。峰值功率反映功率放大器处理音乐信号的能力,是一个参考功率。 提高功率放大器输出功率的方法有两种方法。一种是降低负载阻抗。输出电压不变的情况下将8 Ω改变成4 Ω,理论上输出功率会增加2倍,但因功率放大器内部直流电源容量和晶体管耗数功率的限制,实际上可提高功率为1.6倍。另一种采用桥式跨接法,双通道立体声可选用桥接方式进行跨接使用。 双通道立体声桥接后理论上是每声道的4倍功率,实际上的输出功率约为3倍。这种模式可选用但并不提倡。电路电桥要求每个双声道放大器的技术指标完全相同,保持0点电位始终保持0电位。如某个电位有点偏离,某个电路稍有点不平衡,一只功率放大器就会驱动另一只功率放大器,两只功率放大器就会产生相位差和电平差,使输出波形产生严重的失真。当不平衡状态严重时,由于相互“倒灌”可导致功率放大器的损坏。所以临时现场扩声的应急时可采用桥式接法,室内固定专业音响系统均不选用。 1.2 频率响应范围 频率响应是指功放对音频信号的各个频率分量的放大能力,他表明功放在通频带宽度内各个频率分量的不均匀程度特性等。 理想的频率特性曲线是平直的,即功放的输出电平在各个频率都比较平直,说明功放对各个频率分量的放大能力是均匀的。如功放的频率特性曲线有波峰波谷,说明功放对某频率放大能力过强(形成波峰),对某频率的放大能力过弱(形成波谷)。如果功放的频率特性有较大的波峰和波谷,放音的音色就会变差,所以一般波峰波谷的存在不准许超过3 dB,严格的指标是±2 dB。 人耳听觉的频率范围是20 Hz~20 kHz,如果频响范围达到这个标准则为高水平。 为完美地表现乐音的表现力,充分地表现出高频泛音的频率空间,要求功放有足够频带的宽度,以表现音色的个性,对频带的上限要有适度的扩张频带,20 kHz以上也要有一定的空间。 对频带的下限扩张可保证次低音的重放。如果功放频带不够宽,则音色会变得干涩、生硬,以致于当一些音色相近的乐器同时演奏时,代表他们各自音色特点的泛音被削波损失,从而造成辨别不出到底是哪种乐器发出的声音。 1.3 阻尼系数 大口径的低音扬声器,因为音圈运动的惯性而不能与音频的驱动信号同步,纸盆的余振使扬声器重放声音混浊不清。尤其是400 Hz以下的频率影响最大。 功放技术参数的分析李鸿宾

功率放大器技术参数的测量

功放技术参数的测 一.常用测试仪器 信号源:GOOD WILL INSTRUMENT公司(固伟)GFG-8015G 宁波中策电子有限公司X010A 毫伏表:GOOD WILL INSTRUMENT公司(固伟)GFG-417B 宁波中策电子有限公司DF2173B 示波器:IWATSU ELECTRIC公司(日本)SS-7802A 失真仪:宁波中策电子有限公司DF4121A 二.频率响应的测量 术语:增益限制的有效频率范围 是指在振幅允许的范围内功放系统能够重放的频率范围,以及在此范围内信号的变化量,称为频率响应。 在该频率范围内,实际频响与所要求的频响的偏差不得超过规定限度。 1.将各仪器按上图所示方法连接(可不使用示波器),功放输出端接入一额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,从毫伏表读取电压值,使功放输出为 额定输出电压。 并以此为电压参考点。

3.缓慢调节信号源上的频率旋钮,从功放规定的频率下限至频率上限,其输出电压变化范 围不得超过±3dB。 4.若连接示波器,看观测输出电压波形。 三.失真度的测量 理想的放大器应该是把输入的信号放大后,毫无改变的还原出来。但是由于各种原因经功放放大后的信号与输入信号相比较,往往产生了不同程度的畸变,这个畸变就是失真。用百分比表示,其数值越小越好。 1.将各仪器按上图所示方法连接,功放输出端接入额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,使功放输出为额定电压。 3.对失真仪进行相对电平(0 dB)校准。 4.测量失真度,读出并记录此测量值。 5.可使用示波器监测输出波形是否异常。 四.输入灵敏度的测量 输入灵敏度:功放在额定负载上,输出额定电压时的输入激励电压称为输入灵敏度。

功率放大器性能指标测试

功率放大器性能指标测试 1、测试要求: 1.1电源为额定工作电压±2%,频率50H Z±1HZ 1.2测试信号标准频率:模拟:1KHZ,数字997HZ,超低音:30HZ (常用:80HZ,40HZ,100HZ) 1.3整机必须工作在以下状态: 1.3.1主音量电位器置最大 1.3.2如果有中置、环绕、超低音、音量置0dB 1.3.3音调电位器置中点。 1.3.4如果有等串响度,置于OFF位置。 1.3.5如果有声场处理器,置于关断位置。 1.3.6如果有其它滤波器,置于关断位置。 1.3.7接上额定负载,测试时用假负载,不允许用喇叭作负载。 1.3.8当测试卡拉OK功能时,把混响、延时、效果关最小位置。2 3、使用设备:双通示波器:HITACHI V-252 单针毫伏表:KIKUSUI AVM23

信号发生器:LODESTAR AG-2603AD 失真仪:ZD ZQ4121A 负载电阻:8?、4?、6?或额定负载。 4、失真限制的输出功率。 4.1测试目的:主要了解该机的输出功率是否达到额定功率。 4.2测量方框图:如图1 4.3输入信号:输入信号为标准参考频率,信号电平为额定源电动 势电平。 4.4测量步骤: 4.4.1按规定将被测样置于1.3状态,各通道接上足够功率的额 定负载电阻。 4.4.2调节主音量电位器,直到输出电压的总谐波失真达到额定 值,测量输出电压V 4.4.3失真限制的输出功率按下公式计算:P=V2/R(“V”为额定失真限制的输出电压;“R”为额定负载的阻值。) 5、信噪比: 5.1测量目的:主要考核整机在静态状态下,噪声输出电平是否 达到指标要求。 5.2测量方框图:如图1 5.3测量输入信号:信号频率为标准参考频率,信号电平为:额 定源电动势电平 5.4测量步骤:

功放电路性能指标及测试方法

1. 功放电路性能指标及测试方法 功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、效率、频率响应、输入灵敏度、信噪比等项目指标为主。配备必要的仪器仪表主要有:音频信号发生器、音频毫伏表、示波器、失真度测量仪等。 (1)输出功率是指功放输送给负载的功率,以瓦(W )为基本单位。功放在放大倍数和负载一定的情况下,输出功率的大小由输入信号的大小决定,包括最大输出功率和额定输出功率两种。 额定输出功率:指在一定的谐波失真指标内,功放输出的最大功率。应该注意,功放的负载和谐波失真指标不同,额定输出功率也随之不同。通常规定的谐波失真指标有1%和10%。由于输出功率的大小与输入信号有关,通常测量时给功放输入频率为1KHz 的正弦信号,测出等阻负载电阻上的电压有效值o U ,此时功放的输出功率o P 可表示为 : 2o o =L U P R (4-1-4) 式中L R 为等效负载的阻抗。这样得到的输出功率,实际上为平均功率OAV P 。当输入信号幅度逐渐增大时,功放开始过载,波形削顶,谐波失真加大。谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。 最大输出功率:在上述情况下不考虑失真的大小,给功放输入足够大的信号,功放所能输出的最大功率称为最大输出功率。额定输出功率和最大输出功率是我国早期功放产品说明书上常用的两种功率。通常最大输出功率是额定功率的2倍。 2 L Uom Pom R (4-1-5) 其中,Uom 为放大器的最大输出电压有效值。 功放电路功率测量线路如图4-1-4所示,示波器用于监视波形失真之用,MV 表示音频毫伏表,L R 是负载电阻,O U 、I U 分别表示输出和输入信号电压。

功放参数指标

功放参数指标 关键字:功放参数指标 自从爱迪生在1877年发明留声机至今已有120多年了,由当年机械式录音/重播系统发展到现在的高科技数码系统,其中的进步可谓翻天覆地。不过在这120多年中的音响技术发展却是很不平均的,在发明留声机后的大约60至80年中,音响技术的发展是相当缓慢的不过也取得了一定的成果,例如录放音以电动方式取代了机械方式,开始采用多极真空管等等。使音响技术得以快速发展是在927年,美国贝尔实验室公布了划时代的负反馈(负回输,NFB)技术,声频放大器从此开始步入了一个新纪元。所谓高保真(High Fidelity)放大器,其鼻祖应该是追溯至1947年发表的威廉逊放大器,当时Willianson先生在一篇设计Hi Fi放大器的文章中介绍了一种成功运用负回输技术,使失真降至0.5%的胆机线路,音色之靓在当时堪称前无古人,迅即风靡全世界,成为了Hi Fi史上一个重要的里程碑。在威廉逊放大器面世后4年,即1951年,美国Audio杂志又发表了一篇“超线性放大器”的文章。第二年6月,又发表了一篇将威廉逊放大器超线性放大器相结合的线路设计。由於超线性设计将非线性失真大幅度降低,许多人硌起仿效,再次形成了一个热潮。超线性设计的影响时至今日21世纪仍然存在,可以说威廉逊放大器和超线性放大器标志著负回输技术在音响技术中的成熟。从那时候开始,放大器的设计和种类可谓百花争艳。技术的进步是前70年所望鹿莫及的。 放大器的的规格是衡量其性能的一个重要指标,当然另一个重要指标是以耳朵收货。常听发烧友说音响器材的规格没多大意义,许多测试数据优良的放大器其声音却惨不忍听。这话只说对了一半,首先这优良的数据一般是在产品开发阶段测试原型机时得出的。在大量生产阶段一般来说其性能都会打一定的折扣,视乎器材的档次而定。其次的就是目前的科技虽然使放大器性能获得很大改善,但要对20~20KHz的声频信号作出人耳无法察觉失真的放大,是一件极不容易的事,况且一般放大器的所谓性能规格只是给出寥寥几项数据,其中大多数只是在某些物定条件下测量的。根本不足以反映放大器的基本性能。 用以评定放大器的技术规格的方法分为动态和静态两种,静态规格是指以稳态下弦波进行测量所得的指标。这实际上是属於古典自动控制理论(Classical Control Theory)中的频率分析法。在二十世纪二三十的代便已开始使用。测试项目包括有频率响应,谐波失真,信噪比,互调失真及阻尼系数等。动态规格是指用较复杂的信号例如方波,窄脉冲等所测量得的指标,包括有相位失真,瞬态响应及瞬态互调失真等。动态测试实际上也类似工业自动控制系统中常见的瞬态响应测试,只不过工业测试常用的是阶跃信号(Step Signal)而音响测试则用缩短了的阶跃信号——方波。要大体上反映出放大器的品质,必须综合考虑动态测试和数据。至於人耳试听方面由於含有较多主观因素,在此不打算详加讨论。由於大部份厂商对其产品一般都只是给出少数参数应付了事,故此笔者希望藉此机会对一些较重要的音响器材规格作一番介绍,方便新进发烧友及一些非工程技术人仕对音响技术有更深入的领会。 频率响应 在众多技术指标中,频率响应是最为人们所熟悉的一种规格。一部分放大器而言。理论上只需要做到20至2万周频率响应平直就已足够,但是真正的乐音中含有的泛音(谐波)是有可能超越这个范围的,加上为了改善瞬态反应的表现,所以对放大器要求有更高的频应范围,例如从10 Hz~100 kHz等。习惯上对频率响应范围的规定是:当输出电平在某个低频点下降了3分贝,则该点为下限步率,同样在某个高频点处下降了3分贝,则定为上限频率。这个数分贝点有另外一个名称,叫做半功率点(Half Power Point)。因为当功率下降了一半

微波低噪声放大器的主要技术指标、作用及方案设计

微波低噪声放大器的主要技术指标、作用及方案设计 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高。功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,而这也同时对系统的接收灵敏度提出了更高的要求。 1微波低噪声放大器的作用 一般情况下,一个接收系统的接收灵敏度可由以下计算公式来表示: 由上式可见,在各种特定(带宽BW、解调S/N已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机噪声系数的关键部件则是处于接收机 前端的低噪声放大器。 图1所示是接收机射频前端的原理框图。由图1可见,低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以,低噪声放大器的设计对整个接收机来说是至关重要的。

2微波低噪声放大器的主要技术指标 2.1噪声系数 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: 对单级放大器而言,其噪声系数的计算为: 其中Fmin为晶体管 噪声系数,是由放大器的管子本身决定的,Γopt、Rn和Γs分别为获得Fmin时的 源反射系数、晶体管等效噪声电阻以及晶体管输入端的源反射系数。 对多级放大器。其噪声系数的计算应为: 其中NFn为第n级放大器的噪声系数,Gn为第n级放大器的增益。 对噪声系数要求较高的系统,由于噪声系数很小,用噪声系数表示很不方便,故常用噪声温度来表示,噪声温度与噪声系数的换算关系为: 其中Te为放大器的噪声温度,T0=2900K,NF为放大器的噪声系数。 2.2放大器增益 放大器的增益定义为放大器输出功率与输入功率之比: G=Pout/Pin(7)

功率放大器的性能指标

功率放大器的性能指标有哪些? 功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、频率响应、失真度三项指标为主。 1.输出功率 输出功率是指功放输送给负载的功率,以瓦(W)为基本单位。功放在放大量和负载一定的情况下,输出功率的大小由输入信号的大小决定。过去,人们用额定输出功率来衡量输出功率,现在由于高保真度的追求和对音质的评价不一样,采用的测量方法不同,因此形成了许多名目的功率称呼,应当注意。 (1) 额定输出功率(RMS) 额定输出功率是指在一定的谐波失真指标内,功放输出的最大功率。应该注意,功放的的负载和谐波失真指标不同,额定输出功率也随之不同。通常规定的谐波失真指标有1%和10%。由于输出功率的大小与输入信号有关,为了测量方便,一般采用连续正弦波作为测量信号来测量音响设备的输出功率。通常测量时给功放输入频率为1000Hz的正弦信号,测出等阻负载电阻上的电压有效值(V),此时功放的输出功率(P)可表为 P=V2/RL 式中:RL为扬声器的阻抗 这样得到的输出功率,实际上为平均功率。当音量逐渐开大时,功放开始过载,波形削顶,谐波失真加大。谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。 (2)最大输出功率 在上述情况下不考虑失真的大小,给功放输入足够大的信号,并将音量和音调电位器调到最大时,功放所能输出的最大功率称为最大输出功率。额定输出功率和最大输出功率是我国早期音响产品说明书上常用的两种功率。通常最大输出功率是额定功率的2倍。但是,在放音时却有这样的情况,两台最大有用功率及扬声器灵敏度都差不多的功放在试听交响乐节目时,当一段音乐从低潮过去以后突然来一突发性打击乐器声,可能一台功放能在瞬间给出相当大的功率,给人以力度感,另一台功放却显得底气不足。为了标志功放这种瞬间的突发输出功率的能力,除了测量上述的最大有用功率和最大输出功率之外,有必要测量功放的音乐输出功率和峰值输出功率。才能全面地反映功放的输出能力。 (3)音乐输出功率(MPO)

功放参数的解释

一台严格出炉的功放,其技术参数绝不含糊: 一.频响能力(Power Band Width):音域20Hz ~ 80KHz ,而喇叭频响由低音至高音相应要求有20Hz ~ 20KHz 这围的响应能力。但作为信号传输的“瓶颈”的功放的频响则要求更宽,如:7Hz ~ 80KHz Hz,以保证信号的完整。 信噪比(Signal To Noise Ratio ):这是最直接反映功放素质的参数,一般都在80dB的比值以上,高质素的产品往往达105dB以上,追求声底纯净,不容忽视。 二.失真度(THD):这个可结合功放另外两个重要的指标:额定功率(Rms)和最大功率(Peak Power)一齐讨论。一台功放在其Rms功率情况下工作,失真应该比较小,一般达0.5% ~ 0.01%这个围。Peak 功率或桥接时,信号可能产生变形、削波等失真,比值会高:0.5% ~ 1%都是正常的。比值越小,当然越理想. 三.输入灵敏度(Input Sensitivity):这是针对不同厂家,不同品牌的主机、前级音源而设置的调校电平,围由100mv ~ 4V甚至更高,调音时须与音源匹配。 四.输入阻抗(Input Impedance):一般要求功放输入阻抗要高,输出阻抗要低,输入阻抗越高,越有效阻隔各类杂讯,常见值10KΩ或更高。

五.负载能力(Load Impedance):家用功放一般是8Ω/4Ω两种;车用功放、立体声时:2Ω至8Ω;桥接:4Ω至8Ω。但个别特别设计的功放,阻抗可以低至0.1Ω,能力不凡。这个时候,一台功放,则可以并接几十个低音单元,营造理想的声压级。这个场景,恐怕要在音响比赛时才能见到。 六.工作电压:车用一般是10V ~ 15 V正常工作。 七.阻尼系数(Damping Factor):由额定负载(4Ω)输出阻抗计算出来,普遍认为:输出阻抗越小,阻尼系数越高,则该功放越好。事实上高素质的功放,比值大多50以上,个别甚至超500,虽则专家认为:50左右已经足够。我个人经验:系数高,则线材要求可放宽。过高则影响音色,但对低音表现有帮助。 八.转换速率(Slew Rate):单位时间功率放大器最高放大级将较强的信号激励放大为高压,强电流的交流音频的能力,高档机种30V/us以上,个别超50V/us。比值高,转换能力好,音乐的层次、动态结合扬声器能接近原声还原发挥。 1、A类功放(又称甲类功放) A类功放输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导电流,并使这两

射频功率放大器的主要技术指标

射频功率放大器是各种无线发射机的主要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大如缓冲级、中间放大级、末级功率放大级,获得足够的射频功率后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器电路设计需要对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题进行综合考虑。 射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。 为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。 3.1.1输出功率 在发射系统中,射频末级功率放大器输出功率的范围可小到毫瓦级(便携式移动通信设备)、大至数千瓦级(发射广播电台)。 为了要实现大功率输出,末级功率放大器的前级放大器单路必须要有足够高的激励功率电平。显然大功率发射系统中,往往由二到三级甚至由四级以上功率放大器组成射频功率放大器,而各级的工作状态也往往不同。 根据对工作频率、输出功率、用途等的不同要求,可以用晶体管、FET 、射频功率集成电路或电子管作为射频功率放大器。 在射频功率方面,目前无论是在输出功率或在最高工作频率方面,电子管仍然占优势。现在已有单管输出功率达2000kW 的巨型电子管,千瓦级以上的发射机大多数还是采用电子管。 当然,晶体管、FET 也在射频大功率方面不断取得新的突破。例如,目前单管的功率输出已超过100W ,若采用功率合成技术,输出功率可以达到3000W 。 3.1.2效率 效率是射频功率放大器极为重要的指标,特别是对于移动通信设备。定义功率放大器的效率,通常采用集电极效率?c 和功率增加效率PAE 两种方法。 1. 集电极效率?c 集电极效率?c 定义为输出功率P out 与电源供给功率P dc 之比,即 dc out p P =c η (3.1.1) 2.功率增加效率(PAE ,power added efficiency ) 功率增加效率定义为输出功率P out 与输入功率P in 的差于电源供给功率P dc 之比,即 c p dc in out PAE A P P P PAE ηη)11(-=-== (3.1.2) 功率增加效率PAE 的定义中包含了功率增益的因素,当有比较大的功率增益。 如何提高输出功率和保证高的效率,是射频功率放大器设计目标的核心。 3.1.3线性 ? 衡量射频功率放大器线性度的指标有三阶互调截点(IP3)、1dB 压缩点、谐波、邻道功率比等。邻道功率比衡量由放大器的非线性引起的频谱再生对邻道的干扰程度。 ? 由于非线性放大器的效率高于现行放大器的效率,射频功率放大器通常采用非线性放大器。但是分线性放大器在放大输入信号的放大的同时会产生一系列的有害影响。 ? 从频谱的角度看,由于非线性的作用,输出信号中会产生新的频率分量,如三阶互调分 量、五阶互调分量等,它干扰了有用信号并使被放大的信号频谱发生变化,即频带展宽了。

功率放大器的分类及其参数

功率放大器的分类及其参数 功率放大器(简称:功放)(Power Amplifier)功率放大器,顾名思义,是将功率放大的放大器。进入微弱的信号,如话筒、VCD、微波等等送到前置放大电路,放大成足以推动功率放大器信号幅度,最后后级功率放大电路推动喇叭或其它设备,它最大的功用,是当成输出级(Output Stage)使用。从另一个角度来看,它是在做大信号的电流放大,以达到功率放大的目的。从广义上来说功率放大器不局限于音频放大,很多场合都会用到它,如射频、微波、激光等等。 功率放大器的分类:1、纯甲类功率放大器 纯甲类功率放大器又称为A类功率放大器(Class A),它是一种完全的线性放大形式的放大器。在纯甲类功率放大器工作时,晶体管的正负通道不论有或没有信号都处于常开状态,这就意味着更多的功率消耗为热量。纯甲类功率放大器在汽车音响的应用中比较少见,像意大利的Sinfoni高品质系列才有这类功率放大器。这是因为纯甲类功率放大器的效率非常低,通常只有20-30%,音响发烧友们对它的声音表现津津乐道。 2、乙类功率放大器 乙类功率放大器,也称为B类功率放大器(Class B),它也被称为线性放大器,但是它的工作原理与纯甲类功率放大器完全不同。B类功放在工作时,晶体管的正负通道通常是处于关闭的状态除非有信号输入,也就是说,在正相的信号过来时只有正相通道工作,而负相通道关闭,两个通道绝不会同时工作,因此在没有信号的部分,完全没有功率损失。但是在正负通道开启关闭的时候,常常会产生跨越失真,特别是在低电平的情况下,所以B 类功率放大器不是真正意义上的高保真功率放大器。在实际的应用中,其实早期许多的汽车音响功放都是B类功放,因为它的效率比较高。 3、甲乙类功率放大器

功放与音响的主要性能指标

功放与音响的主要性能指标 输出功率 衡量一件器材对高、中、低各频段信号均匀再现的能力。用图表的形式来展示音响器材的相对幅度和频率的函数关系。 本底噪声 指由于设备硬件本身的原因而给输出信号中增添的多余信号。 灵敏度 对放大器来说,一般指达到额定输出功率或电压时输入端所加信号的电压大小;音箱的灵敏度是指在经音箱输入端输入1W\1KHZ信号时,在距音箱喇叭平面垂直中轴前方一米的地方所测试得的声压级。 总谐波失真加噪声(THD+N) THD+N是指由设备本身产生的失真谐波频率的总和,它是代表了输入信号与输出信号之间的吻合程度。 互调失真(IMD) 指由放大器所引入的一种输入信号的和及差的失真。 信噪比(SNR) 表示信号与噪声电平的分贝差。 立体声分离度 指设备的两个通道之间相互隔离、互不干扰的程度。 阻抗 指设备输入信号的电压与电流的比值。 阻尼系数 指放大器的额定负载(扬声器)阻抗与功率放大器实际阻抗的比值。阻尼系数是放大器在信号消失后控制扬声器锥体运动的能力。 抖晃(Wow) 指录音机或录音座转速的缓慢变化导致产生不稳定的畸形声音。 颤动(dither) 指有意添加在音频信号上用于改善低电平下数字信号的解析力的少量噪声。 时基误差(jitter) 指数字音响系统中用作同步的时钟自身在时间上的变化。 粉红噪声 每个八度带有相同能量的随机噪声。常用作测定音响或聆听环境的频谱的测试信号。

白噪声 所有频率具有相同能量的随机噪声称为白噪声。用来测试音箱的谐振和灵敏度的。 信噪比测量(S/N或SNR) “信号”测量一般采用的是指定输出电平的中频段正弦信号(通常为1kHz),“指定电平”通常是指设备的最大标称或标准的工作电平。 “噪声”测量必须指定测量带宽和加权滤波器。两个测量的比值就是设备的信噪比。 如果测量仪器特性包括一个“相对dB”单位,其0dB基准可以设定成等于输入信号电平值,那么信噪比的测量就比较容易了。 利用这一特性,功放信噪比测量就变成如下简单的步骤: 1. 建立指定的输出参考电平并正确接好输入端; 2. 操作测量仪器,使这一电平成为0dB的基准值; 3. 取消信号源。 虽然现在仪表指示的就是信噪比,但是表示成负值(比如,90dB的信噪比被表示为-90dB)。专业功放测试:THD+N测量&串音测量&两通道比率测量 功放失真测量方法 1. 总谐波失真(THD) THD(不要与THD+N,总谐波失真加噪声相混淆)通常是由一系列单独谐波幅度测量结果计算出来的,而不是一次测量得到的。THD是单独谐波幅度的平方求和开方之后得到的。TH D技术指标一般要说明包含在计算中的最高次谐波的次数;比如,“THD含盖到5次谐波”。THD并不是经常进行的测量,因为它要求用一个相当不常用的分析仪来测量低于正常工作电平很多的某次谐波,并且要自动或手动计算出结果。应注意的是,许多早期的THD+N结构的分析仪在其面板上标注的是THD,并且许多人在使用的实际是THD+N技术时,认为是THD测量. 2. 总谐波失真+噪声(THD+N) 目前最常用的失真测量方法就是THD+N技术了。其中的主要功能块就是可调谐的陷波器。在工作时,该滤波器手动或自动调谐到正弦波的基波频率上,以便基波被很大衰减。所设计的滤波器实际在2次和高次谐波处没有插入损耗,所以谐波基本上无衰减地通过。宽带噪声,与AC电源有关的哼声和任何其他处在陷波器频率上下的干扰信号也可以无衰减地通过;这也就是“+N”(加噪声)部分的由来。THD+N技术是极为吸引人的,因为DUT输出中除了纯测量信号的任何成分都会使测量下降。低的THD+N测量结果不仅说明谐波失真低,而

对数放大器的技术指标

里我们有必要对对数放大器的相关指标做进一步的说明,因为他们与工程实践密切相关。也是在使用对数放大器中必须考虑的问题。 噪声 所有信号处理系统都受到随机噪声的限制,这便对最小信号设置了可被检测或识别的门限。随机噪声和信号输入端的带宽密切相关,随机噪声常用“噪声频谱密度(SND)”来定义,总的噪声功率与系统的噪声带宽BN(用Hz来表示)成正比。在线性系统中,输出噪声功率N与系统的带宽有关,这里的带宽通常是指3dB带宽,对于理想低通系统而言,3dB带宽就是系统的等效噪声带宽。而在非线性系统中例如对数放大器,情况就不同了,即使输入端很小的噪声都会引起放大器末级的过载现象。因此对数放大器的主要缺点是会降低大信号的信噪比。所以对数放大器的前级一般的噪声频谱密度(NSD)设计的非常低。例如AD8307的前级放大器SND为1.5nV/。 交调失真 两个单一频率的交调失真指标在射频应用中特别重要。它是表征放大器的交调失真(IMD)的质量因数。谐波失真是由幅度传递函数特性中的非线性所致。交调失真由两个或更多不同频率的信号混频而成。当输入信号只含一种频率时,放大器的输出仅产生谐波失真,若输入信号含两中频率,则输出产生谐波失真和交调失真。此时,输出包含了放大器的直流偏移、有用信号、二次谐波、二阶交调失真、三次谐波、三阶交调失真等等。大多数的交调失真可以被滤掉(包括二阶交调失真),但输入信号的两个频率靠的很近时,三阶交调失真将和两个基频相近而不容易被滤掉。通常三阶交调失真与窄带应用有关,而二阶交调失真与宽带应用有关。如果放大器的非线性可以用幂级数展开的话,那么输入信号每增加1dB,二阶交调失真会增加2dB,三阶交调失真会增加3dB。输入信号超过一定值后,放大器开始饱和,同时IMD分量明显增加,理想输出功率和二阶交调,三阶交调失真功率会会在某一点相交。这些交点在纵轴上的投影既对应的输出功率通常为放大器输出功率提供基准。交点功率越大,使 IMD增大的电平就越大。所以给定的信号电平下IMD就越低。(如图4所示)。另一个值得关注的参数是1dB压缩点(1dB compression point),从这点开始,输出信号已开始受到限制,并相对理想的输入输出曲线衰减1dB。

功放-性能指标

功放-性能指标 功放的主要性能指标有输出功率,频率响应,失真度,信噪比,输出阻抗,阻尼系数等。 输出功率:单位为W,由于各厂家的测量方法不一样,所以出现了一些名目不同的叫法。例如额定输出功率,最大输出功率,音乐输出功率,峰值音乐输出功率。 音乐功率:是指输出失真度不超过规定值的条件下,功放对音乐信号的瞬间最大输出功率。 峰值功率:是指在不失真条件下,将功放音量调至最大时,功放所能输出的最大音乐功率。 额定输出功率:当谐波失真度为10%时的平均输出功率。也称做最大有用功率。通常来说,峰值功率大于音乐功率,音乐功率大于额定功率,一般的讲峰值功率是额定功率的5--8倍。 频率响应:表示功放的频率范围,和频率范围内的不均匀度。频响曲线的平直与否一般用分贝[db]表示。家用HI-FI功放的频响一般为20Hz--20KHZ正负1db.这个范围越宽越好。一些极品功放的频响已经做到0--100KHZ。 失真度:理想的功放应该是把输入的讯号放大后,毫无改变的忠实还原出来。但是由于各种原因经功放放大后的信号与输入信号相比较,往往产生了不同程度的畸变,这个畸变就是失真。用百分比表示,其数值越小越好。HI-FI功放的总失真在0。03%--0。05%之间。功放的失真有谐波失真,互调失真,交叉失真,削波失真,瞬态失真,瞬态互调失真等。 信噪比:是指信号电平与功放输出的各种噪声电平之比,用db表示,这个数值越大越好。一般家用HI-FI功放的信噪比在60db以上。 输出阻抗:对扬声器所呈现的等效内阻,称做输出阻抗。 功放-故障维修 HI-FI音响与AV放大器的常见故障有整机不工作、无声音输出、音轻、噪声大、失真、啸叫等。 下面介绍各种故障的检修思路与检修技巧。 整机不工作 整机不工作的故障表现为通电后放大器无任何显示,各功能键均失效,也无任何声音,像未通电时一样。 检修时首先应检查电源电路。可用万用表测量电源插头两端的直流电阻值(电源开关应接通),正常时应有数百欧姆的电阻值。若测得阻值偏小许多,且电源变压器严重发热,说明电源变压器的初级回路有局部短路处;若测得阻值为无穷大,应检查保险丝是否熔断、变压器初级绕组是否开路、电源线与插头之间有无断线。有的机器增加了温度保护装置,在电源变压器的初级回路中接人了温度保险丝(通常安装在电源变压器内部,将变压器外部的绝缘纸去掉即可见到),它损坏后也会使电源变压器初级回路开路。 若电源插头两端阻值正常,可通电测量电源电路各输出电压是否正常。对于采用系统控制微处理器或逻辑控制电路的放大器,应着重检查该控制电路的供电电压(通常为+5V)是否正常。 如无+5V电压,应测量三端稳压集成电路7805的输入端电压是否正常,若输入端电压不正常,应检查整流、滤波电路。若7805输入端电压正常,而输出端无十5V电压或电压偏低,可断开负载看+5V电压能否恢复正常。若+5V电压正常,则故障在负载电路;若+5V电压仍不正常,则故障在7805本身。 若系统控制电路的+5V供电电压正常,应再检查微处理器的时钟及复位信号是否正常、键控与显示驱动电路有无损坏。 无声音输出 无声故障表现为操作各功能键时,有相应的状态显示,但无信号输出。 检修有保护电路的放大器时,应看开机后保护继电器能否吸合。若继电器无动作,应测量功放电路中点输出电压是否偏移、过流检测电压是否正常。若中点输出电压偏移或过流检测电压异常,说明功率放大电路有故障,应检查正、负电源是否正常。若正、负电压不对称,可将正、负电源的负载电路断开,以判断是电源电路本身不正常还是功放电路有故障所致。若正、负电源正常,应检查功放电路中各放大管有无损坏。 若功放电路中点输出电压和过流检测电压均正常,而保护继电器不吸合,则故障在保护电路,应检查继电器驱动集成电路或驱动管有无损坏、各检测电路是否正常。若继电器触点能吸合,但无声音输出,应先检查扬声器是否正常、继电器触点是否接触良好、静噪电路是否动作。 若上述部分均正常,再用信号干扰法检查故障是在功放后级还是前级电路。用万用表的R×1挡,将红表笔接地,黑表笔快速点触后级放大电路的输入端,若扬声器中有较强的“喀喀”声,说明故障在前级放大电路;若扬声器无反应,则故障在后级放大电路。 对于未采用外设保护电路的集成电路功放电路(通常在集成电路内部有热保护),可先测量其供电电压正常与否。若供电电压正常,再用信号干扰法检查:在功放集成电路的信号输入端加入直流断续信号,若扬声器有较强的“喀喀”声,说明功放集成电路正常,故障在前级放大电路;若无“喀喀”声,而且检查有关外围元件也正常,则故障在功放集成电路本身。 电子管功放无声音输出,也应先检查其电源,观看灯丝是否亮,管壳温度是否正常。若灯丝不亮,管壳很凉,应检查功放管灯丝及屏极电压正常与否。若电压不正常,再进—步检查电源电路,必要时应断开电源负载电路,以确定是电源电路故障还是负载有短路。若各电压正常,可在音量电位器的中心头加入直流断续干扰信号,若有较强反应,说明后级放大电路正常,故障在前级放大电路;反之,故障在后级放大电路。可分别在推动管的栅极和输入放大管的栅极加入干扰信号,在哪—级加干扰信号无反应,说明该级后面的电路工作不正常。对可疑元件(如电子管)可用代换法检修。 具有杜比环绕声解码功能的AV放大器,若在杜比环绕声状态肘各声道均无声而直通状态下主声道声音正常,在电源电路正常的情况下,通常是杜比环绕声解码电路或系统控制电路工作不正常。若在环绕声和直通模式下各声道均无声,应检查系统控制电路、信号选择电路和总音量控制电路。

相关主题
文本预览
相关文档 最新文档