当前位置:文档之家› 数列的概念经典例题

数列的概念经典例题

数列的概念经典例题
数列的概念经典例题

一、数列的概念选择题

1.已知数列{}n a 的通项公式为()()2

11n

n a n

=--,则6a =( )

A .35

B .11-

C .35-

D .11

2.已知数列{}n a 满足11a =),2n N n *=

∈≥,且()2cos

3

n n n a b n N π

*=∈,则数列{}n b 的前18项和为( ) A .120

B .174

C .204-

D .

373

2

3.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ??=

+ ???

,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S ++

+=( )

A .135

B .141

C .149

D .155

4.已知数列{}n a 的前n 项和为(

)*

22n

n S n =+∈N ,则3

a

=( )

A .10

B .8

C .6

D .4

5.在数列{}n a 中,11a =,对于任意自然数n ,都有12n

n n a a n +=+?,则15a =( )

A .151422?+

B .141322?+

C .151423?+

D .151323?+

6.已知数列,21,

n -21是这个数列的( )

A .第10项

B .第11项

C .第12项

D .第21项

7.若数列的前4项分别是

1111,,,2345

--,则此数列的一个通项公式为( ) A .1(1)n n

--

B .(1)n n -

C .1

(1)1

n n +-+

D .(1)1

n n -+

8.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的

A .21n n n a a a ++=+

B .13599100a a a a a ++++=

C .2499a a a a ++

+=

D .12398100100S S S S S +++

+=-

9.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )

A .存在正整数0N ,当0n N >时,都有n a n ≤.

B .存在正整数0N ,当0n N >时,都有n a n ≥.

C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.

D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥.

10.已知数列{}n a 中,11a =,122

n

n n a a a +=+,则5a 等于( ) A .

25

B .

13 C .

23

D .

12

11.下列命题中错误的是( ) A .()(

)21f n n n N

+

=-∈是数列的一个通项公式

B .数列通项公式是一个函数关系式

C .任何一个数列中的项都可以用通项公式来表示

D .数列中有无穷多项的数列叫作无穷数列 12.在数列{}n a 中,12a =,1

1

1n n a a -=-(2n ≥),则8a =( ) A .1-

B .

12

C .1

D .2

13.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,

1

1

12()n

n

n S S S S 恒成立,则15S 等于( )

A .210

B .211

C .224

D .225

14.已知数列{}n a 的前n 项和为n S ,若*1

n S n N n =∈,,则2a =( ) A .12

-

B .16

-

C .

16

D .

12

15.已知数列{}n a 满足11a =,122

n n a a n n

+=++,则10a =( ) A .

259

B .

145 C .

3111

D .

176

16.已知在数列{}n a 中,112,1

n n n

a a a n +==+,则2020a 的值为( ) A .

1

2020

B .

1

2019

C .

11010

D .

11009

17.已知数列{}n a 满足111n n n n a a a a ++-=+,且11

3

a =,则{}n a 的前2021项之积为( ) A .

23

B .

13

C .2-

D .3-

18.数列1

2,16,112,120

,…的一个通项公式是( ) A .()1

1n a n n =

-

B .()

1

221n a n n =

-

C .111

n a n n =

-+ D .11n a n

=-

19.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,

n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除

后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348

B .1358

C .1347

D .1357

20.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220n

n x b x -+=的实数根,

则10b 等于( ) A .24

B .32

C .48

D .64

二、多选题

21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =

B .733S =

C .135********a a a a a +++???+=

D .

222

122019

20202019

a a a a a ++??????+= 22.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4

n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n

= B .数列{}n a 的通项公式为1

4(1)

n a n n =+

C .数列{}n a 为递增数列

D .数列1

{

}n

S 为递增数列 23.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值

D .613S S =

24.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S > D .110S >

25.已知数列{}2n

n

a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6

D .a 1,a 2,a 3可能成等差数列

26.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=

B .27S S =

C .5S 最小

D .50a =

27.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =

C .95S S >

D .6S 与7S 均为n S 的最大值

28.(多选题)在数列{}n a 中,若22

1n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称

{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )

A .若{}n a 是等差数列,则{}

2

n a 是等方差数列

B .

(){}1n

-是等方差数列

C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列

29.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <

B .70a =

C .95S S >

D .170S <

30.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且32019

11

111

a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <

31.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =

D .当8n ≥时,0n a <

32.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <

C .80a =

D .n S 的最大值是8

S 或者9S

33.下列命题正确的是( )

A .给出数列的有限项就可以唯一确定这个数列的通项公式

B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列

C .若a ,b ,c 成等差数列,则111,,a b c

可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列 34.在下列四个式子确定数列{}n a 是等差数列的条件是( )

A .n a kn b =+(k ,b 为常数,*n N ∈);

B .2n n a a d +-=(d 为常数,

*n N ∈);

C .(

)

*

2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2

1

n S n n =++(*n N ∈).

35.已知数列{}n a 满足:13a =,当2n ≥时,)

2

11n a =

-,则关于数列

{}n a 说法正确的是( )

A .28a =

B .数列{}n a 为递增数列

C .数列{}n a 为周期数列

D .2

2n a n n =+

【参考答案】***试卷处理标记,请不要删除

一、数列的概念选择题 1.A 解析:A 【分析】

直接将6n =代入通项公式可得结果. 【详解】 因为()()2

11n

n a n

=--,所以626(1)(61)35a =--=.

故选:A 【点睛】

本题考查了根据通项公式求数列的项,属于基础题.

2.B

解析:B 【分析】

将题干中的等式化简变形得2

11n n a n a n --??

= ???

,利用累乘法可求得数列{}n a 的通项公式,由

此计算出(

)32313k k k b b b k N *

--++∈,进而可得出数列{}n

b 的前18项和.

【详解】

)1,2n a n N n *

--=

∈≥,将此等式变形得2

11n n a n a n --??= ???

由累乘法得2

2

2

3

212

12

11211123n n n a

a a n a a a a a n n

--??????

=??=????= ? ? ?????

??, ()

2cos

3n n n a b n N π*=∈,22cos 3

n n b n π

∴=, ()()222

323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--????∴++=--+--+ ? ????

?592

k =-,

因此,数列{}n b 的前18项和为()5

91234566921151742

?+++++-?=?-=. 故选:B. 【点睛】

本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.

3.D

解析:D 【分析】

利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】

解:由于正项数列{}n a 满足112n n n S a a ??

=+ ???

,*n N ∈, 所以当1n =时,得11a =, 当2n ≥时,11

1111[()]22n n n n

n n n S a S S a S S --??=+=-+ ?-?? 所以11

1

n n n n S S S S ---=

-,

所以2

=n S n ,

因为各项为正项,所以=n S 因为[][][]1234851,1,[]1,[][]2S S S S S S =====

==,

[]05911[][]3S S S ====,[]161724[][]4S S S ==== ,[]252635[][]5S S S ==== ,

[]363740[][]6S S S ==

==.

所以[][][]1240S S S +++=13+25+37+49+511+65=155??????,

故选:D 【点睛】

此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.

4.D

解析:D 【分析】

根据332a S S =-,代入即可得结果. 【详解】

()()3233222224a S S =-=+-+=.

故选:D. 【点睛】

本题主要考查了由数列的前n 项和求数列中的项,属于基础题.

5.D

解析:D 【分析】

在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减

法求15a . 【详解】

12n n n a a n +=+?, 12n n n a a n +-=?, 12112a a ∴-=?, 23222a a -=?,

34332a a -=?

11(1)2n n n a a n ---=-?,

以上1n -个等式,累加得123

11122232(1)2n n a a n --=?+?+?+

+-?①

2341122122232(2)2(1)2n n n a a n n --=?+?+?++-?+-?②

①- ②得23

112222(1)2n n n a a n --=++++--?

12(12)(1)2(2)2212n n n n n --=--?=-?--,

(2)23n n a n ∴=-?+ ,

151515(152)231323a ∴=-?+=?+,

故选:D 【点睛】

本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.

6.B

解析:B 【分析】

根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】

令2121n -=,解得n =11

是这个数列的第11项. 故选:B. 【点睛】

该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.

7.C

解析:C 【分析】

根据数列的前几项的规律,可推出一个通项公式. 【详解】

设所求数列为{}n a ,可得出()11

1

111

a

+-=

+,()21

2

121

a

+-=

+,()31

3

131

a

+-=

+,()41

4

141

a

+-=

+,

因此,该数列的一个通项公式为()1

11

n n

a n +-=

+.

故选:C. 【点睛】

本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.

8.C

解析:C 【分析】

21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到

13599a a a a +++?+=1123459798a a a a a a a a ++++++?++=981001S a +=进而得到B

正确;同理可得到C 错误;由21n n S a +=-得到

12398S S S S +++?+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进

而D 正确. 【详解】

已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-?=+,故A 正确;根据A 选项得到

13599a a a a +++?+=1123459798a a a a a a a a ++++++?++=981001S a +=,故B 正

确;

24698a a a a +++?+=2234569697a a a a a a a a ++++++?++=

1234569697a a a a a a a a ++++++?++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++?+=

,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -

故D 正确. 故答案为C. 【点睛】

这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.

9.A

解析:A 【分析】

运用数列的单调性和不等式的知识可解决此问题. 【详解】

数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,

121n n n n a a a a +++∴≥--,

设1n n n d a a +=-,则1n n d d +≥,

∴数列{}n d 是递减数列.

对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,

所以1220182018d d d ++

+=,又1232018d d d d ≥≥≥

≥,

所以1122018201820182018d d d d d ≥++

+≥,

故120181d d ≥≥,2018n ∴≥时,1n d ≤,

02019N ?=,2019n >时, 20192019202012019111n n a a d d d n -=+++

≤++++=

即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;

结合A ,故B 不正确;

对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;

对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A

【点睛】

本题考查了数列的单调性以及不等式,属于基础题.

10.B

解析:B 【分析】

根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】

在数列{}n a 中,11a =,122n n n a a a +=

+,则1212212

2123

a a a ?=

==++,2322

2213222

23

a a a ?

===++, 3431

222212522a a a ?

===++,45

422215223

25

a a a ?===++. 故选:B. 【点睛】

本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.

11.C

解析:C 【分析】

根据通项公式的概念可以判定AB 正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C 错误,根据无穷数列的概念可以判定D 正确. 【详解】

数列的通项公式的概念:将数列{} n a 的第n 项用一个具体式子(含有参数n )表示出来,称作该数列的通项公式,

故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,

它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,

至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的; 根据无穷数列的概念,可知D 是正确的. 故选:C. 【点睛】

本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定

义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.

12.B

解析:B 【分析】

通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =-

-,3211121a a =-=-=-,43

1

1112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥

8521

2

a a a ∴===

, 故选:B. 【点睛】

本题考查数列的周期性,考查递推公式的应用,是基础题.

13.D

解析:D 【分析】

利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】 解:结合1

1

12()n

n

n S S S S 可知,11122n n n S S S a +-+-=,

得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,

所以11515()15(291)15

22522

a a S ++=

==, 故选:D . 【点睛】

本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.

14.A

解析:A 【分析】

令1n =得11a =,令2n =得2121

2

S a a =+=可解得2a . 【详解】 因为1n S n =

,所以111

11

a S ===, 因为21212S a a =+=

,所以211

122

a =-=-.

故选:A

15.B

解析:B 【分析】 由12

2n n a a n n +=++转化为11

121n n a a n n +??-=- ?+??

,利用叠加法,求得23n a n =-,即可求解. 【详解】 由122n n a a n n +=+

+,可得121

12(1)1n n a a n n n n +??-==- ?++??

所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+

11111

111222*********n n n n n n ????????

=-+-+-++-+ ? ? ? ?-----??????

??

122113n n ??

=-+=- ???

所以102143105

a =-=. 故选:B. 【点睛】

数列的通项公式的常见求法:

1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;

2、对于递推关系式可转化为1

()n n

a f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1

n n a pa q +=+的数列,可采用构造法求解数列的通项公式.

16.C

解析:C 【分析】

由累乘法可求得2

n a n

=,即可求出. 【详解】

11n n n a a n +=+,即11n n a n a n +=+, 12

321123

2112321

212

32n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=

????

??=??????--2n

=,

202021

20201010

a ∴=

=. 故选:C.

17.B

解析:B 【分析】

由111n n n n a a a a ++-=+,且11

3a =,可得:111n n n

a a a ++=-,可得其周期性,进而得出结论.

【详解】

因为111n n n n a a a a ++-=+,且11

3

a =, 所以111n

n n

a a a ++=

-, 21

132113

a +

∴==-,33a =-,412a =-,513a =,??, 4n n a a +∴=.

123411

···2(3)()132

a a a a ∴=??--??=.

则{}n a 的前2021项之积50511

133

=?=.

故选:B 【点睛】

方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.

18.C

解析:C 【分析】

根据选项进行逐一验证,可得答案. 【详解】 选项A. ()

1

1n a n n =-,当1n =时,无意义.所以A 不正确.

选项B. ()1221n a n n =-,当2n =时,()2

111

22221126

a ==≠???-,故B 不正确. 选项C.

11122=-,111162323==-?,1111123434==-?,1111204545

==-?

所以111

n a n n =

-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 111

1012

a =-=≠,故D 不正确. 故选:C

19.C

解析:C 【分析】

由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又

202067331=?+,由此可得答案

【详解】

解:由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,???,

所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=?+,

所以数列{}n a 的前2020项的和为673211347?+= 故选:C

20.D

解析:D 【分析】

根据题意,得到1n n n a a b ++=,12n

n n a a +=,求得22a =,推出

1

1

2n n a a +-=,进而可求出10a ,11a ,从而可求出结果.

【详解】

因为n a ,1n a +是方程220n

n x b x -+=的实数根, 所以1n n n a a b ++=,12n

n n a a +=,

又11a =,所以22a =; 当2n ≥时,1

12

n n n a a --=,所以

11

112n n n n n n

a a a a a a ++--==, 因此4102232a a =?=,5

111232a a =?=

所以101011323264b a a =+=+=. 故选:D. 【点睛】

本题主要考查由数列的递推关系求数列中的项,属于常考题型.

二、多选题

【分析】

由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】

对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,

可得:.故是斐波那契数列中的第

解析:ABCD 【分析】

由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】

对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;

对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++???+=.故1352019a a a a +++???+是斐波那契数列中的第2020项.

对D ,斐波那契数列总有21n n n a a a ++=+,则2

121a a a =,()222312321a a a a a a a a =-=-,

()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-

2222123201920192020a a a a a a +++??????+=,故D 正确;

故选:ABCD. 【点睛】

本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.

22.AD 【分析】

先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】

因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;

解析:AD

先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】

11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 1

1104n n n S S S -≠∴

-= 因此数列1{

}n S 为以1

1

4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n

=+-=∴=,即A 正确; 当2n ≥时1111

44(1)4(1)

n n n a S S n n n n -=-=

-=--- 所以1,141,24(1)

n n a n n n ?

=??

=??-≥-??,即B ,C 不正确;

故选:AD 【点睛】

本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.

23.ABD 【分析】

由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】

∵等差数列的前项和为,, ∴,解得, 故,故A 正确; ∵,,故有,故B 正确; 该数

解析:ABD 【分析】

由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】

∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()11187

5282

a a d a d ?++=+

,解得19a d =-, 故10190a a d =+=,故A 正确;

∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119

2

22

n n n n S na d d d n -=+=-? ,它的最值,还跟d 的值有关,

故C 错误; 由于61656392S a d d ?=+=-,1311312

13392

S a d d ?=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】

思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.

24.ABD 【分析】

转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】 因为,所以,即,

因为数列递减,所以,则,,故A 正确; 所以最大,故B 正确; 所以,故C 错误

解析:ABD 【分析】

转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】

因为57S S =,所以750S S -=,即670a a +=,

因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137

131302

a a S a

+?==<,故C 错误; 所以()111116

111102

a a S a

+?=

=>,故D 正确.

故选:ABD.

25.ACD 【分析】

利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】

因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=

解析:ACD 【分析】

利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为

1

112a =+,1(1)2

n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得1

5

d =-. 故选ACD

26.BD 【分析】

设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】

设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,

解析:BD 【分析】

设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】

设等差数列{}n a 的公差为d ,则81187

88282

S a d a d ?=+

=+,91198

99362

S a d a d ?=+

=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,

解得14a d =-,()()115n a a n d n d ∴=+-=-,()()21

9122

n n n d n n d S na --=+=.

对于A 选项,59233412a a d d +=?=,()2

8

88942

d S d -?=

=-,A 选项错误; 对于B 选项,()2

2

29272

d S

d -?=

=-,()2

7

79772

d S

d -?=

=-,B 选项正确;

对于C 选项,()2

298192224n d d S n n n ??

??=-=--?? ???????

.

若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】

在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.

27.BD 【分析】

设等差数列的公差为,依次分析选项即可求解. 【详解】

根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,

解析:BD 【分析】

设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】

根据题意,设等差数列{}n a 的公差为d ,依次分析选项:

{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;

又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】

本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.

28.BCD 【分析】

根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】

对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正

解析:BCD 【分析】

根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】

对于A 选项,取n a n =,则

()()()422444221111n n a a n n n n n n +????-=+-=+-?++????

()()221221n n n =+++不是常数,则{}

2

n a 不是等方差数列,A 选项中的结论错误;

对于B 选项,()()2

2

111110n n

+????---=-=????

为常数,则(){

}

1n

-是等方差数列,B 选项

中的结论正确;

对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得22

1n n a a p +-=,则数列

{}2n

a 为等差数列,所以(

)

2

21kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方

差数列,C 选项中的结论正确;

对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得

n a dn m =+,

则()()()()2

2

2

1112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,

由于数列{}n a 也为等方差数列,所以,存在实数p ,使得22

1n n a a p +-=,

则()222d n m d d p ++=对任意的n *

∈N 恒成立,则()2202d m d d p

?=??+=??,得0p d ==,

此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】

本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.

29.ABD 【分析】

结合等差数列的性质、前项和公式,及题中的条件,可选出答案. 【详解】

由,可得,故B 正确;

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

数列经典题目集锦答案

数列经典题目集锦一 一、构造法证明等差、等比 类型一:按已有目标构造 1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N * . (1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列, 求证:数列{a n }从第二项起为等差数列; (3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论. 类型二: 整体构造 2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N * 都成立. (1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列. 二、两次作差法证明等差数列 3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a , 且* 1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数). (1)求A 与B 的值;(2)求数列{}n a 为通项公式; 三、数列的单调性 4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,() 1 1131n n n n n n a S S a a λ+++= +?+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式; (2)若11 2 n n a a +<对一切*n ∈N 恒成立,数λ的取值围. 5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式; (2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序 后能构成等差数列”成立的充要条件; (3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++L 1 3246n n +=?--, 且集合*| ,n n b M n n N a λ??=≥∈???? 中有且仅有3个元素,求λ的取值围.

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

数列经典例题

类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式, 而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】

【变式2】数列中,,求通项公式. 【答案】. 类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且 ,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时, , 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且 ,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而

的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,, ,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴ 类型三:倒数法求通项公式 3.数列中,

,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而 恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在 等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为, 15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101 100 2.数列, )1(1 += n n a n 其前n 项之和为,109 则在平面直角坐标系中, 直线0)1(=+++n y x n 在y 轴上的截距为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且6 22 321 9,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设, log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和. 4.正项数列}{n a 满足0 2)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令, )1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且1 2,4224 +==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 1 1*221 1N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26 ,7753 =+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

高中数列经典例集

一、 经典例题剖析 考点一:等差、等比数列的概念与性质 例题1.(1)数列{a n }和{b n }满足)(121n n b b b n a +++= (n=1,2,3…), (1)求证{ b n }为等差数列的充要条件是{a n }为等差数列。 (2)数列{a n }和{c n }满足*)(21N n a a c n n n ∈+=+,探究}{n a 为等差数列的充分必要条例题2.已知数列{}n a 的首项 121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。 (1)证明:{}n b 从第2项起是以2为公比的等比数列; (2)设n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,求实数a 的值; (3)当a>0时,求数列{}n a 的最小项。 例题4. 已知数列{}n a 满足411=a ,()),2(2 111N n n a a a n n n n ∈≥--=--. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设21 n n a b =,求数列{}n b 的前n 项和n S ; (Ⅲ)设2 )12(sin π-=n a c n n ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,74+1; ⑶ 求证:),2(21111111*21N n n a a a n ∈≥<++++++< 例题6已知数列{}n a 满足()111,21n n a a a n N *+==+∈ (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列; (Ⅲ)证明:()23111123n n N a a a *++++<∈

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

数列经典例题集锦.

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=. (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++ ++=, 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

(完整版)高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2 = 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 3 22111=== a S b , ∴ 21 2 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 212)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3n n n a (1)(2)n n =≥,1 2)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ΛΛ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n Λ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n Λ 例5.A 例6. 解:1324321-+++++=n n nx x x x S ΛΛ①()n n n nx x n x x x xS +-++++=-132132ΛΛ② ①-②()n n n nx x x x S x -++++=--1211ΛΛ, 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111∴()() 21111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++=ΛΛ 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+2732354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918=== a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列 ∴ b 1b 3=b 22,∴ b 23=81,∴ b 2=21,∴ 1312178 14 b b b b ? +=????=??,∴ 13218b b =???=??或 12182b b ?=?? ?=? ∴ 13212()24n n n b --== 或 1251 428n n n b --=?= ∵ 1 ()2n a n b =,∴ 12 log n n a b =,∴ a n =2n -3 或 a n =-2n +5 例20. 2392 n n +

最新浙江高考数列经典例题汇总

浙江高考数列经典例题汇总 1. 【2014年.浙江卷.理19】(本题满分14分)已知数列 {}n a 和{}n b 满足 ()()* ∈= N n a a a n b n 221Λ.若{}n a 为等比数列,且. 6,223 1 b b a +== (Ⅰ)求n a 与 n b ; (Ⅱ)设 () * ∈-= N n b a c n n n 1 1。记数列{}n c 的前n 项和为n S . (i )求 n S ; (ii )求正整数k ,使得对任意* ∈N n ,均有 n k S S ≥. 2. 【2011年.浙江卷.理19】(本题满分14分)已知公差不为0的等差数列 {} n a 的首项 1a a = (a R ∈),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列 (Ⅰ)求数列 {} n a 的通项公式及 n S (Ⅱ)记1231111...n n A S S S S = ++++ , 212221111...n n B a a a a =++++,当2n ≥时,试比 较 n A 与 n B 的大小.

3. 【2008年.浙江卷.理22】(本题14分)已知数列 {}n a ,0≥n a ,01=a , 22111() n n n a a a n N ?+++-=∈. n n a a a S +++=Λ21)1()1)(1(1 )1)(1(11121211n n a a a a a a T +++++++++= ΛΛ. 求证:当? ∈N n 时, (Ⅰ) 1 +n S n ; (Ⅲ)3

数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a

1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1232,11 1≥+-==-n a n n a a n n 的通项公式。

高中数列经典习题(含答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和31= n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证 111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比. 9、有两个各项都是正数的数列{n a },{n b }.如果a 1=1,b 1=2,a 2=3.且n a ,n b ,1+n a 成等差数列,

相关主题
文本预览
相关文档 最新文档