当前位置:文档之家› 三位二进制减法计数器(无效态:000,011)数电课程设计

三位二进制减法计数器(无效态:000,011)数电课程设计

三位二进制减法计数器(无效态:000,011)数电课程设计
三位二进制减法计数器(无效态:000,011)数电课程设计

三位二进制减法计数器与74193芯片仿真63进制减法计数器

目录 1 课程设计的目的与作用 (1) 1.1课程设计目的 (1) 2 所用multisim软件环境介绍 (1) 2.1 Multisim软件环境介绍 (1) 2.2 Multisim软件界面介绍 (2) 3设计任务 (3) 3.1设计的总体框图 (3) 3.1.1三位二进制减法计数器的总体框图 (3) 3.1.2 串行序列信号检测器的总体框图 (4) 3.1.3 74193芯片仿真63进制减法计数器原理 (4) 3.2设计过程 (4) 3.2.1 三位二进制同步减法计数器 (4) 3.2.2串行序列信号检测器 (6) 3.2.3 74193芯片仿真63进制减法计数器 (7) 4实验仪器 (7) 4.1三位二进制减法器 (7) 4.2串行序列检测器 (7) 4.3 74193芯片仿真63进制减法器计数 (7) 5仿真结果分析 (8) 5.1三位二进制同步减法计数器的电路原理图及结果 (8) 5.2串行序列信号检测器电路原理图及结果 (11) 5.3 74193芯片仿真63进制减法计数器的电路原理图及结果 (13) 6设计总结和体会 (14) 7参考文献 (15)

1 课程设计的目的与作用 1.1课程设计目的 1.通过Multisim的仿真设计,掌握Multisim软件的基本使用方法; 2.学会在multisim环境下建立电路模型,能进行正确的仿真; 3.通过Multisim的仿真,熟练掌握三位二进制同步加法计数器和串行序列检测器电 路,10000串行序列检测器电路设计; 4.学会分析仿真结果的正确性,与理论计算值进行比较; 5.通过课程设计,加强动手,动脑的能力。 2 所用multisim软件环境介绍 2.1 Multisim软件环境介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础 的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了 电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的 仿真分析能力。 Multisim 10 启动画面图 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。凭借NI Multisim,您可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。借助专业的高级SPICE分析和虚拟仪器,您能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。 突出优点

设计60进制计数器 数电课程设计

电子技术基础实验 课程设计 用74LS161设计六十进制计数器 学院:班级:姓名:学号:电气工程学院电自1418 刘科 20

用74LS161设计六十进制计数器 摘要 计数器是一个用以实现计数功能的时序部件,它不仅可用来及脉冲数,还常用作数子系统的定时、分频和执行数字运算以及其它特定的逻辑功能。目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能和工作波形图以及引出端的排列,就能正确运用这些器件。计数器在现代社会中用途中十分广泛,在工业生产、各种和记数有关电子产品。如定时器,报警器、时钟电路中都有广泛用途。在配合各种显示器件的情况下实现实时监控,扩展更多功能。 利用两片74LS161分别作为六十进制计数器的高位和低位,分别与数码管连接。把其中的一个通过一个与门器件构成一个十进制计数器,另一个芯片构成六进制计数器。十进制计数器(个位)和六进制计数器(十位)均采用反馈清零法利用两个74LS161构成。当个位计数器从1001计数到0000时,十位计数器要计数一次,可通过两芯片之间级联实现。使用200HZ时钟信号作为计数器的时钟脉冲。根据设计基理可知,计数器初值为00,按递增方式计数,增到59时,再自动返回到00。 关键字:60进制,计数器,74LS161,级联 目录 第1章概述 (1) 计数器设计目的 (1) 计数器设计组成 (1) 第2章六十进制计数器设计描述 (2) 74LS161的功能 (2)

方案框架 (3) 第3章六十进制计数器的设计与仿真 (4) 基本电路分析设计 (4) 计数器电路的仿真 (6) 第4章总结 (8)

六十进制计数器设计

六十进制计数器 设计报告 姓名: 学号: 班级:13电气工程1班 系别:自动化工程系 指导教师: 时间: 2015-1-10

目录 1.概述 (2) 1.1计数器设计目的 (3) 1.2计数器设计组成 (3) 2.六十进制计数器设计描述 (4) 2.1设计的思路 (6) 2.2设计的实现 (6) 3. 六十进制计数器的设计与仿真 (7) 3.1基本电路分析设计 (7) 3.2 计数器电路的仿真 (10) 4.总结 (13) 4.1遇到的问题及解决方法 (13) 4.2实验的体会与收获 (14)

◆1概述 计数器是一个用以实现计数功能的时序部件,它不仅可用来及脉冲数,还常用作数子系统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数制的不同,分为二进制计数器、十进制计数器和任意进制计数器。根据计数器的增减趋势,又分为加法、减法和可逆计数器。还有可预制数和可变程序功能计数器等等。目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能和工作波形图以及引出端的排列,就能正确运用这些器件。 计数器在现代社会中用途中十分广泛,在工业生产、各种和记数有关电子产品。如定时器,报警器、时钟电路中都有广泛用途。在配合各种显示器件的情况下实现实时监控,扩展更多功能。 1.1计数器设计目的 1)每隔1s,计数器增1;能以数字形式显示时间。 2)熟练掌握计数器的各个部分的结构。 3)计数器间的级联。 4)不同芯片也可实现六十进制。 1.2计数器设计组成 1)用两个74ls192芯片和一个与非门实现。 2)当定时器递增到59时,定时器会自动返回到00显示,然后继续计 时。 3)本设计主要设备是两个74LS160同步十进制计数器,并且由200HZ, 5V电源供给。作高位芯片与作低芯片位之间级联。 4)两个芯片间的级联。 ◆2.六十进制计数器设计描述

三位二进制同步减法计数器

1 三位二进制同步减法计数器的设计(000、010) 1.1 课程设计的目的 1、学会利用触发器和逻辑门电路,实现六进制同步减法计数器的设计 2、学会掌握并能使用常用芯片74LS112、74LS08芯片的功能 3、学会使用实验箱、使用软件画图 4、了解计数器的工作原理 1.2 设计的总体框图 1.3 设计过程 1逻辑抽象分析 CP为输入的减法计数脉冲,每当输入一个CP脉冲,计数器就减一个1,当不够减时就向高位借位,即输出借位信号。当向高位借来1时应当为8,减一后为7。状态图中,状态为000输入一个CP脉冲,不够减,向高位借1当8,减1后剩7,计数器的状态应由000转为111,同时向高位输出借位信号,总体框图中C为借位信号。 2状态图 状态000、010为无效状态,据分析状态图为: /0 /0 /0 /0 /0 001011100101110111 /1

3 选择触发器,求时钟方程、输出方程和状态方程 ● 选择触发器 由于状态数M=6,触发器的个数n 满足122n n M -≤≤,故n 的取值为3。选用3个 下降沿触发的JK 触发器。 ● 求时钟方程 因为是同步,故012CP CP CP CP === ● 求输出方程 1.3.1 输出C 的卡诺图 根据输出C 的卡诺图可得输出方程为 C=Q 2n Q 1n ● 求状态方程 计数器的次态的卡诺图为

1.3.2 次态210n n n Q Q Q 的卡诺图 各个触发器的次态卡诺图如下: 1.3.3 2n Q 次态卡诺图 1.3.4 1n Q 的次态卡诺图

1.3.5 0n Q 的次态卡诺图 根据次态卡诺图可得次态方程为: Q 2n+1=Q 1n Q 0n +Q 2n Q 1n Q 1n+1= Q 1n Q 0n + Q 2n Q 1n + Q 2n Q 1n Q 0n Q 0n+1 =Q 2n +Q 0n 4 求驱动方程 Q 2n+1 =Q 1n Q 2n + Q 0n Q 1n Q 2n Q 1n+1=Q 0n Q 2n Q 1n +Q 0n Q 2n Q 1n Q 0n+1=Q 2n Q 0n +Q 2n Q 0n 驱动方程是: J 0 = Q 2n K 0 =Q 2n J 1 =Q 0n Q 2n K 1= Q 0n Q 2 J 2 = Q 1n K 2=Q 0n Q 1n 5 检查是否能自启动 将无效状态100、101分别代入输出方程、状态方程进行计算,结果如下:

三位二进制加法计数器、序列信号发生器的设计、用集成芯片设计一个256进制加法计数器

目录 1课程设计的目的与作用 (1) 2设计任务 (1) 2.1同步计数器 (1) 2.2序列信号发生器 (1) 3设计原理 (1) 3.1同步计数器 (1) 3.1.1加法计数器 (2) 3.1.2减法计数器 (2) 3.1.3用集成芯片设计一个256进制的加法器 (2) 3.2序列信号发生器 (3) 4实验步骤 (3) 4.1同步计数器 (3) 4.1.1加法计数器 (4) 4.1.2减法计数器 (7) 4.1.3用集成芯片设计一个256进制的加法器 (10) 4.2序列信号发生器 (11) 5设计总结与体会 (14) 6参考文献 (15)

1课程设计的目的与作用 1.了解同步计数器及序列信号发生器工作原理; 2.掌握计数器电路的分析,设计方法及应用; 3.掌握序列信号发生器的分析,设计方法及应用; 2设计任务 2.1同步计数器 1.使用设计一个循环型3位2进制加法计数器,其中无效状态为(001,010),组合电路 选用与门和与非门等。 2.根据自己的设计接线。 3.检查无误后,测试其功能。 2.2序列信号发生器 1.使用设计一个能循环产生给定序列的序列信号发生器,其中发生序列(1000001),组 合电路选用与门和与非门等。 根据自己的设计接线。 2.检查无误后,测试其功能。 3设计原理 3.1同步计数器 (1)计数器是用来统计输入脉冲个数电路,是组成数字电路和计算机电路的基本时序逻辑部件。计数器按长度可分为:二进制,十进制和任意进制计数器。计数器不仅有加法计数器,也有减法计数器。如果一个计数器既能完成累加技术功能,也能完成递减功能,则称其为可逆计数器。在同步计数器中,个触发器共用同一个时钟信号。 (2)时序电路的分析过程:根据给定的时序电路,写出各触发器的驱动方程,输出方程,

数电课程设计38进制计数器

1.课程设计的目的 数字电子技术课程是电类专业的主要技术基础课。通过本课程的学习,能够使学生掌握近代数电理论的基础知识、电路分析与计算的基本方法,具备进行试验的初步技能,并为后续课程的学习打下必要的基础。 数字电子技术基础课程设计是学习数字电子技术基础课程之后的实践教学环节,是对课程理论和课程实验的综合和补充,其目的是训练学生综合运用学过的数字电子技术的基础知识。学会并利用一种电路分析软件,对电路进行分析、计算和仿真,通过查找资料,选择方案,设计电路,撰写报告,完成一个较完整的设计过程,将抽象的理论知识与实际电路设计联系在一起,使学生在掌握电路基本设计方法的同时,加深对数字电子技术课程知识的理解和综合应用,培养学生综合运用基础理论知识和专业知识解决实际工程设计问题的能力,以及工程意识和创新能力。 2.设计方案论证 2.1 Multisim软件介绍 Multisim是加拿大Interactive Image Technologies (Electronics Workbench)公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 功能: (1).直观的图形界面 整个操作界面就像一个电子实验室工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如何在真实一起上看到的。 (2).丰富的元器件

四位二进制减法计数器

成绩评定表

课程设计任务书

摘要 Quartus II 是Altera公司的综合性PLD/FPGA开发软件,支持原理图、VHDL、VerilogHDL以及AHDL(Altera Hardware Description Language)等多种设计输入形式,内嵌自有的综合器以及仿真器,可以完成从设计输入到硬件配置的完整PLD设计流程。 Multisim是Interactive Image Technologies (Electronics Workbench)公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。Multisim为用户提供了丰富的元器件,并以开放的形式管理元器件,使得用户能够自己添加所需要的元器件。 本次数电课程设计使用Quartus II仿真环境以及VHDL下载和Multisim 仿真环境来编译实现四位二进制同步减法计数器。在Multisim中选用四个JK 触发器来实现四位二进制减法计数器。运用卡诺图求解时序方程。逻辑电路图中,四个小红灯即为显示器,从右到左显示时序图中的十二种状态,其中,灯亮表示“1”,灭表示“0”,从而达到计数目的。 关键字:VHDL硬件描述语言、四位二进制减计数器、QUARTUSⅡ、Multisim、

目录 一.课程设计目的 (1) 二.课设题目实现框图 (1) 三.实现过程 (1) (一)VHDL的编译和仿真 (1) 1.建立工程 (1) 2.VHDL源程序 (4) 3.编译及仿真过程................................................................... (6) 4.引脚锁定及下载 (9) 5.仿真结果分析................................................................... (11) (二)电路设计................................................................... . (11) 1求驱动方程................................................................... .. (12) 2.基于Multisim的设计电路图 (15) 3.逻辑分析仪显示的波形 (15) 4.仿结果分析 (16) 四.设计体会 (16) 五.参考文献................................................................... . (17)

天津理工大学数电课程设计

《电子技术》课程设计报告《数字钟的设计》 专业: 班级: 学号: 姓名: 指导教师: 完成日期:年月日

设计任务书 一、设计题目: “数字钟的设计” 二、技术要求 1. 设计一台能直接显示“时”、“分”、“秒”的数字钟,要求24小时为一计时周期。 2. 当电路发生走时误差时,要求电路具有校时功能。 三、给定条件及元器件 1.要求电路主要采用中规模集成电路CMOS或TTL 2. 电源电压为+5V。 3.要求设计在数字电路实验箱上完成。 (一):数字钟的组成和基本原理: 数字钟设计周期为24小时,显示满刻度为23时59分59秒,另外应有校时和报时功能。因此一个基本的数字时钟电路主要由五个部分组成。其整机框图如下图: 整机框图 (1):晶体振荡器 晶体振荡器的作用是产生时间标准信号。数字钟的精度,主要取决于时间标准信号的频率及其稳定度。一般为保证其稳定性,一般采用石英晶体振荡器经过分频得到这一信号。选取晶振频率为32768Hz,采用十四级二进制计数器CD4060分频后,得到2Hz的信号,再由74LS74分频获得1Hz的秒信号。 CD4060简介:

CD4060是十四进制串行计数器,即十四分频器,管脚图如下,它内部有十四级二分频器,即Q4—Q10,Q12—Q14,其它四脚没有引出,所以只能得到十种分频系数,最小为16,最大为256。 秒信号获取电路图如下: 图1.秒信号获取电路 (2):计数器 数字钟的秒,分信号产生电路都是由六十进制计数器构成,时信号产生电路由二十四进制计数器构成。它们可由74LS160实现。采用整体复位法构成,电路图如下:

图2.二十四进制计数器 图3.六十进制计数器 (3):译码显示电路 当数字钟的计数器在CP脉冲的作用下,按60秒为一分,60分为一小时,24小时为一天的计数规律计数时,就应将其状态显示成数字信号,这就需要将计数器的状态进行译码并将其显示出来。译码显示电路选用74LS248。 LTS547R LED简介:如下图

实验二含异步清零和同步使能的加法计数器

实验二含异步清零和同步使能的加法计数器 一、实验目的 1、了解二进制计数器的工作原理。 2、进一步熟悉QUARTUSII软件的使用方法和VHDL输入。 3、时钟在编程过程中的作用。 二、实验原理 二进制计数器中应用最多、功能最全的计数器之一,含异步清零和同步使能的加法计数器的具体工作过程如下: 在时钟上升沿的情况下,检测使能端是否允许计数,如果允许计数(定义使能端高电平有效)则开始计数,否则一直检测使能端信号。在计数过程中再检测复位信号是否有效(低电平有效),当复位信号起作用时,使计数值清零,继续进行检测和计数。 其工作时序如图3-1所示: 图3-1 计数器的工作时序 三、实验内容 本实验要求完成的任务是在时钟信号的作用下,通过使能端和复位信号来完成加法计数器的计数。实验中时钟信号使用数字时钟源模块的1HZ信号,用一位拨动开关K1表示使能端信号,用复位开关S1表示复位信号,用LED模块的LED1~LED11来表示计数的二进制结果。实验LED亮表示对应的位为‘1’,LED灭表示对应的位为‘0’。通过输入不同的值模拟计数器的工作时序,观察计数的结果。实验箱中的拨动开关、与FPGA的接口电路,LED灯与FPGA的接口电路以及拨动开关、LED与FPGA的管脚连接在实验一中都做了详细说明,这里不在赘述。 数字时钟信号模块的电路原理如图3-2所示,表3-1是其时钟输出与FPGA的管脚连接表。

图3-2 数字时钟信号模块电路原理 信号名称对应FPGA管脚名说明 DIGITAL-CLK A14数字时钟信号送至FPGA的A14 表3-1 数字时钟输出与FPGA的管脚连接表 按键开关模块的电路原理如图3-3所示,表3-2是按键开关的输出与FPGA的管脚连接表。 图3-3 按键开关模块电路原理 信号名称FPGA I/O名称核心板接口管脚号功能说明S[0]PIN_AF5JP1_91‘S1’ Switch S[1]PIN_AH6JP1_93‘S2’ Switch S[2]PIN_AH7JP1_95‘S3’ Switch S[3]PIN_AH8JP1_97‘S4’ Switch S[4]PIN_AG10JP1_99‘S5’ Switch S[5]PIN_AG11JP1_101‘S6’ Switch S[6]PIN_AH14JP1_90‘S7’ Switch S[7]PIN_AG7JP1_92‘S8’ Switch

含有异步清零和计数使能的16位二进制加减可控计数器

1.含有异步清零和计数使能的16位二进制加减可控计数器 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY cnt16 IS PORT(EN,RST,UPD,CLK : IN STD_LOGIC; OUT1: OUT STD_LOGIC_VECTOR(15 DOWNTO 0)); END cnt16; ARCHITECTURE bhv OF cnt16 IS SIGNAL QQ:STD_LOGIC_VECTOR(15 DOWNTO 0); BEGIN PROCESS(EN,RST,UPD) BEGIN IF RST='1' THEN QQ<=(OTHERS=>'0'); --有复位信号清零 ELSIF EN='1' THEN --EN位高电平开始计数IF CLK'EVENT AND CLK='1' THEN IF UPD='1' THEN --当UDP为1加计数 QQ<=QQ+1; ELSE --当UDP不为1减计数 IF QQ > "0" THEN --当减到0时 QQ<=QQ-1; --给QQ全1 ELSE QQ<=(OTHERS=>'1'); END IF; END IF; END IF; END IF; END PROCESS; OUT1<=QQ; END bhv; 图1-1 16位二进制加减可控计数器的RTL图 图1-2 16位二进制加减可控计数器的波形仿真图

2.1 计数器和译码器合起来的程序 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY CNT4_YM IS PORT(CLK,RST,ENA:IN STD_LOGIC; COUT:OUT STD_LOGIC; LED7S:OUT STD_LOGIC_VECTOR(6 DOWNTO 0)); END CNT4_YM; ARCHITECTURE BEHV OF CNT4_YM IS SIGNAL CQI:STD_LOGIC_VECTOR(3 DOWNTO 0); BEGIN PROCESS(CLK,RST,ENA) BEGIN IF RST='1' THEN CQI<=(OTHERS=>'0'); ELSIF CLK'EVENT AND CLK='1' THEN IF ENA='1' THEN IF CQI<9 THEN CQI<=CQI+1; ELSE CQI<=(OTHERS=>'0'); END IF; END IF; END IF; IF CQI=9 THEN COUT<='1'; ELSE COUT<='0'; END IF; END PROCESS; PROCESS(CQI) BEGIN CASE CQI IS WHEN"0000"=>LED7S<="0111111"; WHEN"0001"=>LED7S<="0000110"; WHEN"0010"=>LED7S<="1011011"; WHEN"0011"=>LED7S<="1001111"; WHEN"0100"=>LED7S<="1100110"; WHEN"0101"=>LED7S<="1101101"; WHEN"0110"=>LED7S<="1111101"; WHEN"0111"=>LED7S<="0000111"; WHEN"1000"=>LED7S<="1111111"; WHEN"1001"=>LED7S<="1101111"; WHEN"1010"=>LED7S<="1110111"; WHEN"1011"=>LED7S<="1111100"; WHEN"1100"=>LED7S<="0111001"; WHEN"1101"=>LED7S<="1011110"; WHEN"1110"=>LED7S<="1111001"; WHEN"1111"=>LED7S<="1110001"; WHEN OTHERS=>NULL; END CASE; END PROCESS; END BEHV; 2.2 计数器和译码器分开的程序 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY JSYM IS PORT(CLK,RST,ENA:IN STD_LOGIC; COUT:OUT STD_LOGIC; OUTY:OUTSTD_LOGIC_VECTOR(3 DOWNTO 0)); END JSYM; ARCHITECTURE BEHV OF JSYM IS BEGIN PROCESS(CLK,RST,ENA) V ARIABLE CQI:STD_LOGIC_VECTOR(3 DOWNTO 0); BEGIN IF RST='1' THEN CQI:=(OTHERS=>'0'); ELSIF CLK'EVENT AND CLK='1' THEN IF ENA='1' THEN IF CQI<9 THEN CQI:=CQI+1; ELSE CQI:=(OTHERS=>'0'); END IF; END IF; END IF; IF CQI=9 THEN COUT<='1'; ELSE COUT<='0'; END IF; OUTY<=CQI; END PROCESS; END BEHV; LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY DECL7S IS PORT(A:IN STD_LOGIC_VECTOR(3 DOWNTO 0); LED7S:OUT STD_LOGIC_VECTOR(6 DOWNTO 0) ); END DECL7S; ARCHITECTURE BEHV OF DECL7S IS BEGIN PROCESS(A) BEGIN CASE A IS WHEN"0000"=>LED7S<="0111111"; WHEN"0001"=>LED7S<="0000110"; WHEN"0010"=>LED7S<="1011011"; WHEN"0011"=>LED7S<="1001111"; WHEN"0100"=>LED7S<="1100110"; WHEN"0100"=>LED7S<="1101101"; WHEN"0101"=>LED7S<="1111101"; WHEN"0110"=>LED7S<="0000111"; WHEN"0111"=>LED7S<="1111111"; WHEN"1000"=>LED7S<="1101111"; WHEN"1010"=>LED7S<="1110111"; WHEN"1011"=>LED7S<="1111100"; WHEN"1100"=>LED7S<="0111001"; WHEN"1101"=>LED7S<="1011110"; WHEN"1110"=>LED7S<="1111001"; WHEN"1111"=>LED7S<="1110001"; WHEN OTHERS=>NULL; END CASE; END PROCESS; END;

数电课程设计

一、数字电子钟 1.设计目得 (1)培养数字电路得设计能力。 (2)掌握数字电子钟得设计、组装与调试方法。 2.设计内容及要求 (1)设计一个数字电子钟电路。要求: ①按24小时制直接显示“时”、“分”、“秒”。 ②当电路发生走时误差时具有校时功能。 ③具有整点报时功能,报时音响为4低1高,即在59分51秒、53秒、55秒、57秒输出500Hz信号,在59分59秒时输出1000 Hz信号,音响持续时间为1秒,最后一响结束时刻正好为整点。 (2)用中小规模集成电路组成电子钟,并在实验仪上进行组装、调试。 (3)画出各单元电路图、整机逻辑框图与逻辑电路图,写出设计、实验总结报告。 (4)选作部分:①闹钟系统。②日历系统。 3.数字电子钟基本原理及设计方法 数字电子钟得逻辑框图如图1411所示。它由振荡器、分频器、计数器、译码器、显示器、校时电路与整点报时电路组成。振荡器产生得脉冲信号经过分频器作为秒脉冲,秒脉冲送入计数器计数,计数结果通过“时”、“分”、“秒”译码器显示时间。有得数字电子钟还加有定时响铃、日历显示等其它功能,需增加相应得辅助电路。 图1411 数字电子钟得基本逻辑框图 (1)振荡分频电路 振荡器就是数字电子钟内部用来产生时间标准“秒”信号得电路。构成振荡器得电路很多,图1412(a)就是RC环形多谐振荡器,其振荡周期T≈2、2RC。作为时钟,最主要得就是走时准确,这就要求振荡器得频率稳定。要得到频率稳定得信号,需要采用石英晶体振荡器。石英晶体振荡器电路如图1412(b)所示,这种电路得振荡频率只取决于石英晶体本身得固有频率。 图1412 振荡器

(a)RC环形多谐振荡器 (b)石英晶体多谐振荡器 由于石英晶体振荡器产生得频率很高,要得到秒信号,需采用分频电路。例如,振荡器输出4 MHz信号,先经过4分频变成1 MHz,再经过6次10分频计数器,便可得到1Hz得方波信号作为秒脉冲。 (2)计数器 把秒脉冲信号送入秒计数器个位得CP输入端,经过6级计数器,分别得到“秒”个位、十位,“分”个位、十位,以及“时”个位、十位得计时。“秒”、“分”计数器为60进制,“时”计数器为24进制。 24进制计数器如图1413所示。当“时”个位计数器输入端CP来到第10个触发脉冲时,该计数器归零,进位端Q D5向“时”十位计数器输出进位信号。当第24个“时”脉冲(来自“分”计数器输出得进位信号)到来时,十位计数器得状态为0010,个位计数器得状态位0100,此时“时”十位计数器得Q B6与“时”个位计数器得Q C5输出为1。两者相与后送到两计数器得清零端R0A与R0B,通过74LS90内部得R0A与R0B与非后清零,完成24进制计数。同理可构成60进制计数器。 CP 来自分计数器 的进位信号 图1413 24进制计数器 (3)译码显示电路 译码驱动器采用8421 BCD码七段译码驱动器74LS48,显示器采用共阴极数七段数码显示器,有关74LS48与七段显示器得使用方法前面已经作了介绍,这里不再赘述。 (4)校时电路 当数字电子钟出现走时误差时,需要对时间进行校准。实现校时电路得方法很多,如图1414所示电路即可作为时计数器或分计数器得校时电路。 图1414 校时电路 现设用该电路作为分计数器得校时电路,图中采用RS触发器作为无抖动开关。通过开关K得接入位置,可以选择就是将“1 Hz信号”还就是将“来自秒计数器得进位信号”送至分计数器得CP端。当开关K置于B端时,RS触发器得输出、,“来自秒计数器得进位信号”被送至分计数器得CP端,分计数器正常工作;需要校正分计数器时,将开关K置于A端,这时RS触发器得输出、,“1 Hz信号”被送至分计数器得CP端,分计数器在“1Hz信号”得作用下快速计数,直至正确得时间,再将开关K置于B端,达到了校准时间得目得。 (5)整点报时电路 电路得设计要求在差10 s为整点时开始每隔1 s鸣叫一次,每次持续时间为1 s,共鸣叫5次,前4次为低音500 Hz,最后一次为高音1 kHz。因为分计数器与秒计数器从59分51秒计数到59分59秒得过程中,只有秒个位计数器计数,分十位、分个位、秒十位计数器得状态不变,分别为Q D4Q C4Q B4Q A4=0101,Q D3Q C3Q B3Q A3=1001,Q D2Q C2Q B2Q A2=0101,所以Q C4=Q A4=Q D3=Q A3=Q C2=Q A2=1不变。设Y1=Q C4Q A4Q D3Q A3Q C2Q A2,又因为在51、53、55、57秒时Q A1=1,Q D1=0,输出500Hz信号f2;59秒时Q A1=1,Q D1=1,输出1kHz信号f1,由此可写出整点报时电路得逻辑表达式为:

三位二进制同步减法计数器(无效状态:000、111)电压串联负反馈放大电路

课程设计任务书

目录 1. 数字电子设计部分 (1) 1.1 课程设计的目的与作用 (1) 1.2设计任务: (1) 1.2.1同步计数器 (1) 1.2.2串行序列信号检测器 (1) 1.3设计原理: (2) 1.3.1同步计数器 (2) 1.3.2串行序列信号检测器 (2) 1.4实验步骤: (3) 1.4.1同步计数器: (3) 1.4.2串行序列检测器 (6) 1.5设计总结和体会 (9) 1.6参考文献 (10) 2.模拟电子设计部分 (11) 2.1课程A设计的目的与作用 (11) 2.1.1课程设计 (11) 2.2 设计任务、及所用multisim软件环境介绍 (11) 2.2.1 设计任务:负反馈放大电路的基本框图 (11) 2.2.2 Multisim软件环境的介绍 (12) 2.3电路模型的建立 (15) 2.4理论分析及计算 (15) 2.4.1电路反馈类型的判断 (15) 2.4.2对电压串联负反馈电路的理论分析 (16) 2.5仿真结果分析 (19) 2.6设计总结和体会 (23) 2.7 参考文献 (24)

1. 数字电子设计部分 1.1课程设计的目的与作用 1.了解同步计数器及序列信号发生器工作原理; 2.掌握计数器电路的分析,设计方法及应用; 3.掌握序列信号发生器的分析,设计方法及应用; 4.学会正确使用JK触发器。 1.2设计任务: 1.2.1同步计数器 1. 使用设计一个循环型3位2进制同步减法计数器,其中无效状态为(000,111),组合 电路选用与门和与非门等。 2. 根据同步计数器原理设计减法器的电路图。 3. 根据电路原理图使用Multisim进行仿真。 4. 将电路图进行实际接线操作。 5. 检查无误后,测试其功能。 1.2.2串行序列信号检测器 1.使用设计一个序列信号检测器,其中序列为(1110),组合电路选用与门和与非门等。 2.根据序列发生检测器原理设计检测器的原理图。 3.根据电路原理图使用Multisim进行仿真。 4.将电路图进行实际接线操作。 5.检查无误后,测试其功能。

设计60进制计数器数电课程设计

. . .. .. 电子技术基础实验 课程设计 用74LS161设计六十进制计数器 学院:班级:: 学号: 电气工程学院 电自1418 刘科2014303010328

用74LS161设计六十进制计数器 摘要 计数器是一个用以实现计数功能的时序部件,它不仅可用来及脉冲数,还常用作数子系统的定时、分频和执行数字运算以及其它特定的逻辑功能。目前,无论是TTL还是CMOS 集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能和工作波形图以及引出端的排列,就能正确运用这些器件。计数器在现代社会中用途中十分广泛,在工业生产、各种和记数有关电子产品。如定时器,报警器、时钟电路中都有广泛用途。在配合各种显示器件的情况下实现实时监控,扩展更多功能。 利用两片74LS161分别作为六十进制计数器的高位和低位,分别与数码管连接。把其中的一个通过一个与门器件构成一个十进制计数器,另一个芯片构成六进制计数器。十进制计数器(个位)和六进制计数器(十位)均采用反馈清零法利用两个74LS161构成。当个位计数器从1001计数到0000时,十位计数器要计数一次,可通过两芯片之间级联实现。使用200HZ时钟信号作为计数器的时钟脉冲。根据设计基理可知,计数器初值为00,按递增方式计数,增到59时,再自动返回到00。 关键字:60进制,计数器,74LS161,级联

目录 第1章概述 (1) 1.1 计数器设计目的 (1) 1.2 计数器设计组成 (1) 第2章六十进制计数器设计描述 (2) 2.1 74LS161的功能 (2) 2.2 方案框架 (3) 第3章六十进制计数器的设计与仿真 (4) 3.1 基本电路分析设计 (4) 3.2 计数器电路的仿真 (6) 第4章总结 (8)

电子线路异步二进制计数器教案

异步二进制计数器 【教学目标】 1、知识目标: (1)理解异步二进制计数器的功能; (2)掌握异步二进制计数器的电路结构; (3)理解异步二进制计数器的工作原理。 2、能力目标: (1)提高实践动手能力; (2)提高思考问题、分析问题的能力。 3、情感目标:激发学习兴趣。 【教学重难点】 重点: (1)异步二进制计数器的功能; (2)异步二进制计数器的电路结构; 难点: (1)仪器使用、实践技能; (2)异步二进制计数器的工作原理。 【授课方式】 理实一体化 【教学过程】 【复习引入】 这节课我们来学习一种常见的时序逻辑电路,叫做计数器。计数器是怎样构成的,它能实现什么功能呢?今天我们通过做一个实验,让大家从实验中来发现和总结计数器的功能和工作原理。 做实验之前,我们首先来复习一下JK边沿触发器及其逻辑功能:

1、观察图中符号,CP 脉冲的有效触发边沿是它的什么边沿? (下降沿) 2、置0端和置1端是什么电平或脉冲有效? (低电平) 触发器正常工作时,置0端和置1端应给予高电平还是低电平? (高电平) 3、TTL 数字集成电路输入端悬空可视为输入什么? (高电平) 4、JK 触发器的逻辑功能?填入上表。特别注意当JK 输入都为1时,触发器实现的是什么功能? 【新课】 一、实践准备: (一)实验器材: 异步二进制计数器实验电路板一块、EE1640C 函数信号发生器/计数器一台、YJ56-1双路稳压电源一台、万用表一架、导线、电烙铁及焊锡。 (二)认识电路板: 1、双JK 触发器集成电路74LS112的管脚排列: 2、请同学们对照管脚排列图理解元件接线图: J K Qn 功能 0 0 Qn 保持 1 1 n Q 翻转 0 1 0 置0 1 1 置1

三位二进制减法计数器的设计

目录 1设计目的与作用 (1) 设计目的及设计要求 (1) 设计作用 (1) 2设计任务 (1) 3三位二进制减法计数器的设计 (1) 设计原理 (1) 设计过程 (2) 4 74161构成227进制同步计数器并显示 (4) 设计原理 (4) 设计过程 (4) 5仿真结果分析 (5) 三位二进制减法计数器仿真结果 (5) 74161构成227进制同步计数器的仿真结果 (8) 6设计总结 (8) 7参考文献 (9)

1设计目的与作用 设计目的及设计要求 按要求设计三位二进制减法计数器(无效状态001,011)及用74161构成227进制同步计数器并显示,加强对数字电子技术的了解,巩固课堂上学到的知识,了解计数器,并且加强对软件multisim的了解。 设计作用 multisim仿真软件的使用,可以使我们对计数器及串行检测器有更深的理解,并且学会分析仿真结果,与理论结果作比较。加强了自我动手动脑的能力。 2设计任务 1.三位二进制减法计数器(无效状态001,011) 构成227进制同步计数器并显示 3三位二进制减法计数器的设计 设计原理 设计一个三位二进制减法计数器(无效状态001,011) 000 /0010 /0100 /0101 /0110 /0 111

/1 排列n n n 210 Q Q Q 图 状态图 设计过程 a .选择触发器 由于JK 触发器的功能齐全,使用灵活,在这里选用3个CP 上升沿触发的边沿JK 触发器。 b .求时钟方程 采用同步方案,故取012CP CP CP CP === c .求状态方程 由所示状态图可直接画出电路次态n+1n+1n+1 210Q Q Q 卡诺图。再分解开便可以得到如图各触 发器的卡诺图。 Q 1n Q 0n Q 2n 00 01 11 10 1 图次态n+1 n+1n+12 10Q Q Q 卡诺图 Q 1n Q 0n Q 2n 00 01 11 10

数电模电计数器课设-最终版

目录 数字电子设计部分 1.课程设计的目的与作用 (1) 1.1课程设计的目的 (1) 1.2课程设计的作用 (1) 2.六进制同步减法计数器(无效状011 100) (1) 2.1基本原理 (1) 2.2系统设计框图 (2) 3.六进制异步加法计数器(无效状011 100) (3) 3.1基本原理 (3) 3.2设计的总体框图 (5) 3.3 运行结果 (5) 4.全加器 (5) 5.设计总结和体会 (6) 6.参考文献 (6) 模拟电子设计部分 1.课程设计的目的与作用 (7) 1.1课程设计的目的 (7) 1.2课程设计的作用 (7) 2.设计任务、及所用multisim软件环境介绍 (7) 2.1设计任务 (7) 2.2multisim软件环境的介绍 (7) 3.电路模型的建立,理论分析与计算及仿真结果总结 (8) 3.1反向比例输入电路 (8) 3.2同相比例输入电路 (10) 3.3差分比例输入运算电路 (12) 3.4单限比较器 (15) 3.5滞回比较器 (17) 3.6双限比较器 (19) 4.设计总结和体会 (24) 5.参考文献 (24)

数字电子部分 一、课程设计目的与作用 1.1课程设计目的 1.学会使用数字电子实验平台 2.熟悉各个芯片和电路的接法 3.熟练掌握设计触发器的算法 4.懂得基本数字电子电路的功能,会分析,会设计 二、六进制同步减法计数器(无效状态011 100) 2.1基本原理 状态转换图: 000<---001<---010<---101<---110<---111<---000

Q0n 1.2系统设计框图

三位二进制减法计数器精选文档

三位二进制减法计数器 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

成绩评定表 课程设计任务书

目录

1 课程设计的目的与作用 1.了解同步计数器及序列信号发生器工作原理; 2.掌握计数器电路的分析,设计方法及应用; 3.掌握序列信号发生器的分析,设计方法及应用 2 设计任务 三位二进制同步减法计数器 1.设计一个循环型三位二进制减法计数器,其中无效状态为(000,110),组合电路选用与门和与非门等。 2.根据自己的设计接线。 3.检查无误后,测试其功能。 串行序列发生器的设计 1.设计一个能循环产生给定序列的串行序列信号发生器,其中发生序列(1101),组合电路选用与门和与非门等。 2.根据自己的设计接线。 3.检查无误后,测试其功能。 基于74191芯片仿真设计54进制减法计数器并显示计数过程 1.设计一个基于74191芯片仿真设计54进制减法计数器并显示计数过程,组合电路部分选用与门和与非门等。 2.根据自己的设计接线。 3.检查无误后,测试其功能。

3设计原理 三位二进制减法计数器 1.计数器是用来统计输入脉冲个数电路,是组成数字电路和计算机电路的基本时序逻辑部件。计数器按长度可分为:二进制,十进制和任意进制计数器。计数器不仅有加法计数器,也有减法计数器。如果一个计数器既能完成累加技术功能,也能完成递减功能,则称其为可逆计数器。在同步计数器中,个触发器共用同一个时钟信号。 2.时序电路的分析过程:根据给定的时序电路,写出各触发器的驱动方程,输出方程,根据驱动方程带入触发器特征方程,得到每个触发器的次态方程;再根据给定初态,一次迭代得到特征转换表,分析特征转换表画出状态图。 是输入计数脉冲,所谓计数,就是记CP脉冲个数,每来一个CP脉冲,计数器就加一个1,随着输入计数脉冲个数的增加,计数器中的数值也增大,当计数器记满时再来CP脉冲,计数器归零的同时给高位进位,即要给高位进位信号。 串行序列发生器的设计 1.序列是把一组0,1数码按一定规则顺序排列的串行信号,可以做同步信号地址码,数据等,也可以做控制信号。 2.计数型序列信号发生器是在计数器的基础上加上反馈网络构成。要实现序列长度为M 序列信号发生器。其设计步骤为: a.先设计一个计数模值为M的计数器; b.再令计数器每一个状态输出符合序列信号要求; c.根据计数器状态转换关系和序列信号要求设计输出组合网络 3.3 74191芯片仿真设计54进制减法计数器并显示计数过程 1.写出的二进制代码 2.求归零逻辑 3.异步置数的值

相关主题
文本预览
相关文档 最新文档