当前位置:文档之家› 广义与或树的启发式搜索算法BTAO

广义与或树的启发式搜索算法BTAO

广义与或树的启发式搜索算法BTAO
广义与或树的启发式搜索算法BTAO

利用α-β搜索过程的博弈树搜索算法编写一字棋游戏

利用α-β搜索过程的博弈树搜索算法编写一字棋游戏南京信息工程大学研究生实验报告 课程名称人工智能与专家系统 实验名称利用α-β搜索过程的博弈树搜索算法编写一字棋游戏 学生姓名王灿田 学号 20111221332 院系信息与控制学院 专业系统分析与集成 任课教师梅平 2012年6月10日 1利用α-β搜索过程的博弈树搜索算法编写一字棋游戏 1.α-β搜索过程 在极小极大搜索方法中,由于要先生成指定深度以内的所有节点,其节点数将随着搜索深度的增加承指数增长。这极大地限制了极小极大搜索方法的使用。能否在搜索深度不变的情况下,利用已有的搜索信息减少生成的节点数呢, 设某博弈问题如下图所示,应用极小极大方法进行搜索。假设搜索的顺序为从下到上,从左到右。当计算完a的值为0后,由于b是极大节点,马上就可以知道b的值大于等于0。接下来求c的值。由于c是极小节点,由d的值为-3,知道c 的值小于等于-3。而a和c都是b的子节点,所以即便不扩展节点e,也可以知道b的值一定为0了。所以在这种情况下,没有生成节点e的必要。同样,在知道b 的值为0后,由于k是极小节点,所以立即知道k的值要小于等于0。而通过节点f、g,知道h的值至少为3。这样即便不扩展A所包围的那些节点,也能知道k的值一定为0。所以A包围的那些节点也没有生成的必要,不管这些节点取值如何,

都不影响k的值。如果在搜索的过程中,充分利用这些信息,不就可以少生成很多节点,从而提高搜索的空间利用率吗,α-β过程正是这样一种搜索方法。 图1 MINIMAX过程是把搜索树的生成和格局估值这两个过程分开来进行,即先生成全部搜索树,然后再进行端节点静态估值和倒推值计算,这显然会导致低效率。如图1中,其中一个MIN节点要全部生成A、B、C、D四个节点,然后还要逐个计算其静态估值,最后在求倒推值阶段,才赋给这个MIN节点的倒推值,?。其实,如果生成节点A后,马上进行静态估值,得知f(A),,?之后,就可以断定再生成其余节点及进行静态计算是多余的,可以马上对MIN节点赋倒推值,?,而丝毫不会影响MAX的最好优先走步的选择。这是一种极端的情况,实际上把生成和倒推估值结合起来进行,再根据一定的条件判定,有可能尽早修剪掉一些无用的分枝,同样可获得类似的效果,这就是α-β过程的基本思想。 22.利用α-β搜索过程的一字棋的实例 图2一字棋第一阶段α-β剪枝方法 为了使生成和估值过程紧密结合,采用有界深度优先策略进行搜索,这样当生成达到规定深度的节点时,就立即计算其静态估值函数,而一旦某个非端节点有条件确定其倒推值时就立即计算赋值。从图2中标记的节点生成顺序号(也表示节点编号)看出,生成并计算完第6个节点后,第1个节点倒推值完全确定,可立即赋给倒推值,1。这时对初始节点来说,虽然其他子节点尚未生成,但由于s属极大值层,可以推断其倒推值不会小于,1,我们称极大值层的这个下界值为α,即可以确定s的α,,1。这说明s实际的倒推值决不会比,1更小,还取决于其他后继节点的倒推值,因此继续生成搜索树。当第8个节点生成出来并计算得静态估值为,1后,就可以断定第7个节点的倒推值不可能大于,1,我们称极小值层的这个上界值为β,即可确定节点,的β,,1。有了极小值层的β值,很容易发现若α?β时,

《人工智能基础》实验报告-实验名称:启发式搜索算法

实验名称:启发式搜索算法 1、实验环境 Visual C++ 6.0 2、实验目的和要求 (复述问题)使用启发式算法求解8数码问题 (1)编制程序实现求解8数码问题A*算法,采用估价函数 f(n)=d(n)+p(n) 其中:d(n)是搜索树中结点n的深度;w(n)为节点n的数据库中错放的旗子个数; p(n)为结点n的数据库中每个棋子与其目标位置之间的距离总和。 (2)分析上述(1)中两种估价函数求解8数码问题的效率差别,给出一个是p(n)的上界h(n)的定义,并测试该估价函数是否使算法失去可采纳性。 实验目的:熟练掌握启发式搜索A*算法及其可采纳性。 3、解题思路、代码 3.1解题思路 八数码问题的求解算法 (1)盲目搜索 宽度优先搜索算法、深度优先搜索算法 (2)启发式搜索 启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。 先定义下面几个函数的含义: f*(n)=g*(n)+h*(n) (1) 式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g的最短路径的耗散值。 评价函数的形式可定义如(2)式所示: f(n)=g(n)+h(n) (2) 其中n是被评价的当前节点。f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。 利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。在A算法中,如果对所有的x,h(x)<=h*(x) (3)成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。采用h*(x)的下界h(x)为启发函数的A算法,称为A*算法针对八数码问题启发函数设计如下: F(n)=d(n)+p(n) (4)

RFID中基于动态二进制的改进树型搜索算法及其实现

【摘要】rfid技术作为物联网应用的核心关键技术,已经普及到生产和生活的各个领域,而如何提高rfid系统防冲突能力,减少总识别时间已成为当前急需解决的关键。本文提出的基于动态二进制的改进树型搜索算法通过简化阅读器发送的指令和冲突检测过程,并利用栈来保存已经被阅读器接收到的标签epc数据,能最大化的降低阅读器与标签之间的通信量,有效的提高标签的识别速度。仿真结果表明,相比于常规的确定性标签防冲突算法,该算法显著提高了性能,尤其在待识别标签数量较大的情况下,具有良好的应用前景。 【关键词】rfid;物联网;防冲突;树型搜索;epc 引言 随着由物联网引领的第三次全球信息化产业浪潮的不断推进,rfid(射频识别)技术已成为制造全球化、贸易全球化和物流全球化的核心推动力。无线射频识别技术(radio frequency identification,rfid)是一种利用无线射频方式在阅读器和标签之间进行非接触双向数据传输,以达到目标识别和数据交换目的的技术[1]。由于其具有非接触识别、可识别高速运动物体、抗恶劣环境、保密性强、可同时识别多个识别对象等优点,射频识别技术已成为当今自动识别数据收集行业发展最快的一种技术,目前其在交通管理、仓储管理和生产线自动化管理等诸多领域得到了越来越广泛的应用。 在rfid系统中,当有多个电子标签进入一个或多个阅读器感应区域的时候,阅读器与多个电子标签的同时通信会使得无线通信信号互相干扰,以致阅读器无法接收到正确的信息,这种情况一般称之为“冲突”或“碰撞”等。为了避免冲突的影响,rfid系统定义了一系列当冲突发生时的操作,而基于这些操作的方法就是防冲突算法[2]。 一、典型防冲突算法 对于要求低复杂度、低功耗以及低成本的rfid系统,最为通用的防冲突机制是时分多址复用(tdma)。目前流行的两类标签防冲突算法,主要包括随机性算法中的纯aloha、时隙aloha、动态帧时隙aloha算法等,确定性算法中的二进制树型搜索算法、bbt算法、qt算法等[3]。随机性防冲突算法由于随机性大,当大量标签读取时,帧冲突严重,正确率难以达到100%。相比而言,确定性防冲突算法的识别精度和识别效率有较大提高,因此被广泛应用。本文主要研究和分析基于tdma的确定性防冲突算法,但是目前的二进制算法由于存在较大的通信量和识别延时,因此有进一步改进的空间,本文的动态二进制的改进树型搜索算法便是为此而改进设计的。 二、确定性标签防冲突算法 确定性标签防碰撞算法是以阅读器为主动控制器,进入射频场的所有标签同时由阅读器进行控制和检查。阅读器依据标签的id号首先向标签发射不同的询问信号或指令,阅读器根据冲突的信号,按照二叉树深度优先搜索的思想,逐步缩小搜索范围,搜索符合条件的标签,直到找到规定的射频标签。该方法杜绝了随机性算法中的标签“饿死”的情况,具有100%的高识别率[4]。最典型的是二进制树型搜索算法,在此基础上,又出现了逐位比较的二进制树搜索算法[5](bit-by-bit binary tree algorithm,bbt),问询树算法[6](query binary treealgorithm,qt)等。 1.二进制树型搜索算法 二进制树型搜索算法中为了能辨认出阅读器中数据碰撞的比特位的准确位置,采用的是manchester编码[1],该编码约定逻辑‘1’表示发送信号由1到0的转变即下降沿跳变,而逻辑‘0’表示发送信号由0到1的转变即上升沿跳变。若无状态跳变,视为非法数据,作为错误被识别。当两个或多个标签同时返回的某一数位有不同的值,则接收到的上升沿和下降沿相互抵消,以致出现“没有变化”的状态,阅读器由此可判断该位出现了碰撞。假设标签

基于动态二进制的二叉树搜索结构RFID反碰撞算法_李兴鹤

收稿日期:2005-10-26 基金项目:山东省自然科学基金(Y2004G05) 作者简介:李兴鹤( 1981-),男,硕士研究生,主要研究领域:自动识别技术,嵌入系统,物流系统。 文章编号:1002-4026(2006)02-0051-05 基于动态二进制的二叉树搜索结构RFID 反碰撞算法 李兴鹤1 ,胡咏梅1 ,王华莲2 ,付延安1 ,郭春花 1 (1.山东大学控制科学与工程学院,济南250061;2.山东劳动职业技术学院,山东济南250022) 摘要:针对RFID 系统中最常见的反碰撞问题,提出一种基于动态二进制的二叉树搜索结构RFID 反碰撞算法,并用反证法证明整个搜索过程符合满二叉排序树结构,然后对比二进制及动态二进制算法,证明本算法的优越性,仿真结果表明本算法比已有的动态二进制反碰撞算法更具优势,而且随着标签数目与标签EPC 位数的增多,优势更明显。 关键词:RFID 反碰撞;二进制搜索;二叉树中图分类号:TP301.6 文献标识码:A 射频识别技术(Radio Frequency Identification,RFID)是从20世纪90年代兴起并逐渐走向成熟的一项自动识别技术。它利用射频(Radio)方式进行非接触双向通信,以达到目标识别和数据交换目的。因为其自身优点,正被广泛应用于物流、跟踪、定位等领域。 1 RFID 系统的工作原理 RFID 系统的基本模型如图1所示。应答器又称标签,其中存储了需要识别、交互的数据;阅读器又称读头等。应答器与阅读器之间通过耦合实现射频信号的空间(无接触)耦合;在耦合通道内,根据时序关系,实现能量的传递和数据的交换。 2 RFID 系统反碰撞问题 在RFID 系统工作时,可能会有一个以上的标签处于阅读器的作用范围内,当它们同时向阅读器返回信息时,可能出现互相干扰,称为碰撞。解决碰撞的算法称为反碰撞算法。目前对于此问题有空分多址(SD MA)法、频分多址(FDMA)法、码分多址(C DMA)法、时分多址(TD MA)法,其中以TD MA 时分多址法最为常用,较成熟的ALOHA 、时隙ALOHA 法、动态时隙ALOHA 法、二进制搜索算法、动态二进制搜索算法等[1] 都属于TDMA 时分 多路法。 3 二叉树搜索结构算法 图1 RFID 系统的基本模型 3.1 算法约定 (1)阅读器对区域内所有标签处于未知状态,并且需要与所有标签进行通讯,阅读器作用范围内标签能在同一时刻开始传送其电子产品代码,以便准确地监测碰撞位的发生; 第19卷 第2期2006年4月 山东科学 S HANDONG SCIENCE Vol 119 No 12 Apr 12006

启发式搜索算法解决八数码问题(C语言)

1、程序源代码 #include #include struct node{ int a[3][3];//用二维数组存放8数码 int hx;//函数h(x)的值,表示与目标状态的差距 struct node *parent;//指向父结点的指针 struct node *next;//指向链表中下一个结点的指针 }; //------------------hx函数-------------------// int hx(int s[3][3]) {//函数说明:计算s与目标状态的差距值 int i,j; int hx=0; int sg[3][3]={1,2,3,8,0,4,7,6,5}; for(i=0;i<3;i++) for(j=0;j<3;j++) if(s[i][j]!=sg[i][j]) hx++; return hx; } //-------------hx函数end----------------------// //-------------extend扩展函数----------------// struct node *extend(node *ex) { //函数说明:扩展ex指向的结点,并将扩展所得结点组成一条//单链表,head指向该链表首结点,并且作为返回值 int i,j,m,n; //循环变量 int t; //临时替换变量 int flag=0; int x[3][3];//临时存放二维数组 struct node *p,*q,*head; head=(node *)malloc(sizeof(node));//head p=head; q=head; head->next=NULL;//初始化 for(i=0;i<3;i++)//找到二维数组中0的位置 { for(j=0;j<3;j++)

博弈树的启发式搜索

博弈树的启发式搜索问题 A方、B方必须是完备博弈,它有三个条件: 1、A,B双方轮流博弈。博弈的结果只有三种情况:A胜,B败;A败,B胜;A,B平手。 2、任一方都了解当前的棋局和历史的棋局。 3、任一方都分析当前的棋局,并能作出有利于自己,而不利于对方的策略。 我们描述博弈过程采用与/或树 1、博弈的初始棋局作为初始节点 2、‘或’节点与‘与’节点逐层交替出现。自己一方扩展节点之间是‘或’,对方扩展节 点之间是‘与’。双方轮流扩展。 3、所有能使自己获胜的终局都是本原问题,相应的节点是可解节点。 本问题其实是一个构造博弈树的问题。对给定的棋局,该棋局中A,B方的棋子数相等,并且轮到A方下。这样构成一个初始棋局,称一个状态。当A或B下一个棋子后,又形成一个新的状态。 任何一方都希望自己取得胜利,因此当某一方有多个方案可供选择时,他总是跳最有利于自己而最不利对方的方案。此时我们站在A的立场上看,可供A选择的方案之间是‘或’的关系,可供B的方案之间是‘与’的关系。因为主动权在A上,A必须考虑任何一个可能被B选中的方案。 极大极小分析方法的特点: 1、它是为其中一方寻找一个最优的行动方案的方法 2、为了当前最优的方案,需要对各个方案能产生的后果进行比较,具体地说就是考虑每个方案实施后,对方可能采取的行动,并计算可能的得分 4、为了计算得分,需要根据问题的特性定义一个估价函数,用来计算当前博弈树端节点的 得分,该得分也称静态估值 5、当端节点估值后,再推算父节点的得分,推算方法是对于‘或’节点,选择子节点中最 大的得分作为自己的得分,对于‘与’节点,选择子节点中最小的得分作为自己的得分,父节点得得分也称倒退值 6、若某一个行动方案能获得最大得倒退值,则它就是当前最好得方案 在本问题中,假设棋盘为4*4的矩阵,A方的棋子为1,B方的棋子为-1,空格为0。 我们定义估价函数为:在某一棋局状态,A方棋子可能占满的整行,整列,整斜线总和与B 方棋子可能占满的整行,整列,整斜线总和的差。这儿的可能是指棋局上留出的空格让A 方或B方全摆放它的棋子。显然如果A方的大。它的下棋选择的策略范围就大。 对某个棋局用极大极小分析后,得出A下一步的最佳策略,同时也给出B的最不利A 的策略,这样一直循环,直到棋局上无空格,如果棋局上A已经胜出了。那么就意味着B 如何采取对A最不利的策略,A也能胜出,表明A处于必胜状态。 程序说明: 编写语言:Matlab6.5 主函数:Chess.m

基于有界k_d树的最近点搜索算法_刘宇

第36卷 第7期2008年 7月 华 中 科 技 大 学 学 报(自然科学版) J.H uazhong U niv.o f Sci.&T ech.(N atural Science Edition)Vo l.36N o.7 Jul. 2008 收稿日期:2007-04-05. 作者简介:刘 宇(1976-),男,博士研究生,E -ma il:headheat@163.co m. 基金项目:国家自然科学基金资助项目(5035020,50405032);国家重点基础研究发展计划资助项目 (2003CB716207). 基于有界k -d 树的最近点搜索算法 刘 宇 熊有伦 (华中科技大学机械科学与工程学院;数字制造装备与 技术国家重点实验室,湖北武汉430074) 摘要:提出了一种基于有界k -d 树的最近点搜索算法.算法的原理是:由根节点中的包围盒确定树中数据的空间范围,并在搜索过程中不断划分包围盒来缩小搜索范围,同时递归地计算查询点到包围盒的距离.结合优先级队列,基于有界k -d 树的最近点搜索算法拓展到搜索按距离远近排列的多个最近点.实测和仿真分析表明,本搜索算法的计算效率高于传统的搜索算法. 关 键 词:逆向工程;最近点搜索;有界k -d 树;包围盒 中图分类号:T P391 文献标识码:A 文章编号:1671-4512(2008)07-0073-04 Algorithm for searching nearest -neighbor based on the bounded k -d tree L iu Yu X iong Youlun (Colleg e of M echanical Science and Engineer ing;St ate Key Labor ator y o f Dig ital M anufacturing Equipment and T echno log y,H uazhong U niv ersity of Science and T echnolog y,W uhan 430074,China) Abstract :An alg orithm for searching nearest -neighbo r is proposed based on the bounded k -d tree of w hich the spatial range o f the data is restricted by the bounded box of the r oot node.The search area in the searching pr ocess is reduced by continually dividing bo unded bo xes.T he distance fr om a query point to a bounded bo x is also co mputed recursively.Co mbined w ith a pr io rity queue,the clo sest po int query alg orithm can be generalized to search mult-i nearest -neig hbor s o rdered by their distances to a query point.T he ex perim ents on bo th real and synthetic data sets show that the query alg orithm based on the bounded k -d tree is com putationally m ore efficient than some traditional alg orithm s.Key words :reverse engineering;nearest -neighbo r searching;bounded k -d tree;bounded box 在逆向工程中,基于离散坐标点的操作通常需要查询一点的相邻点[1,2].随着数据获取技术的飞速发展,需处理的数据点数目动辄数十万或上百万,提高相邻点查询算法的效率能有效提高逆向工程中数据处理的效率.k 维二叉搜索树(k -dimensional binary search trees ,简称k -d 树 [3] ), 是对k 维数据进行空间查询的有效数据结构,受到关注和研究[4~7],已在矢量量化、数据压缩、数据库匹配查询等方面得到了广泛应用. 本文将k -d 树与空间包围盒相结合,构造了有界k -d 树,提出了相应的最近点搜索算法. 1 有界k -d 树 与以往文献中不同的是,本文在有界k -d 树的内部节点中,定义了左右划分平面L l 和L r 来 表示对该节点中数据的划分(见图1),在整个树的根节点中还存储了一组主对角点的坐标来表示k -d 树中数据的包围盒.因此,有界k -d 树的内部节点由2个指向其他节点或者为空的指针、维数辨别量、2个划分值组成.有界k -d 树的叶节点则由指向该叶节点中所包含的数据点列的指针和表示该数据点列大小的值组成.

启发式搜索算法在N数码问题中的应用

编号 南京航空航天大学毕业论文 题目启发式搜索算法在N数码问 题中的应用 学生姓名 学号 学院 专业 班级 指导教师 二〇一三年六月

南京航空航天大学 本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:启发式搜索算法在N数码问题中的应用)是本人在导师的指导下独立进行研究所取得的成果。尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。 作者签名:年月日 (学号):

启发式搜索算法在N数码问题中的应用 摘要 N数码问题是人工智能领域中的经典问题,N数码可以有效的判断一个搜索算法的优劣。在低阶数码问题中,使用简单的宽搜或深搜就可以解决问题,但在高阶数码中,由于其巨大的搜索规模,我们必须采用更加智能的算法才能解决问题。与传统搜索相比,启发式搜索当前搜索过程中的信息,选择最为可行的状态进行拓展,从而大大提高了搜索的质量和效率。 本文通过建立N数码问题的存储机制和移动规则,使得N数码问题转化为了一个标准的搜索问题。并着重分析了A*算法和遗传算法在N数码中的应用,在A*算法中使用了两种不同的估价函数,目的是比较不同估价函数在N数码问题中的表现。在最后,本文进行了大量实验,综合分析了A*算法和遗传算法在不同规模数据下的优劣。 关键词:启发式搜索,数码问题,A*算法,遗传算法

The Application of Heuristic Search Algorithm on N-Puzzle Problem Abstract N-puzzle problem is a classic problem in artificial intelligence. N-puzzle problem can effectively judge the merits of a search algorithm. In the low order puzzle problem, using a Depth-First-Search or Breadth-First-Search can solve the problem, but in the higher order digital, because of the huge search space area,we must adopt a more intelligent https://www.doczj.com/doc/e81266072.html,pared with the traditional search method, heuristic search uses the information in the search process, and it will choose the most feasible state, thus greatly improves the search quality and efficiency. This paper designs the storage mechanism and movement rules of N-puzzle problem, making the N-puzzle problem transforms to a standard search problem. This paper focuses on the application of A* algorithm and genetic algorithm in N-puzzle problem, and two different evaluation function used in A* algorithm. The objective is to compare the performance of different valuation function in N digital problem. In the end, this paper carries out a large number of experiments, a comprehensive analysis of the A* algorithm and genetic algorithm in different scale of data. Key Words:Heuristic Search;N-puzzle Problem;A* algorithm; Genetic algorithm

博弈树

博弈树 实现计算机与人对弈,诸如象棋、围棋等双方对垒的游戏,是一件饶有趣味的事情。在这里,我们将讨论实现这种人机完备信息博弈时常用的树型结构及其基本算法。所谓人机完备信息博弈,是指人机对垒,依次轮流走步,而且双方的走步信息完全公开。 为了引起对弈者的兴趣,计算机一方必须尽可能多地知道对方己经走过的棋步和将可能走的棋步。对于编程者来说,要使得计算机能懂得比赛规则并记住当前格局,就得建立恰当的数据结构;要使得计算机能在对弈中选择最可能致胜的走步,就得为之设计一个“聪明”的算法。 博弈树适应了这两个需要,它将对垒的初始格局作为根结点,把所有由初始格局经过合法一步得到的新格局作为其子结点,然后以新格局为根,由此新格局产生的格局为其子结点,依次类推,得到一棵包罗对垒中各种可能格局变化的树,并通过对这棵树的遍历,分析确定计算机的走步。这棵树就是这里所说的博弈树。 [例1]井字棋游戏 问题描述: 从一个空的3*3的棋盘开始,甲乙二人轮流放置棋子到棋盘上未被占据的方格中。如果甲第一个放,他把棋子放在中央方格里;然后轮到乙放,他把棋子放在第一行中间的方格里;于是又轮到甲放,……,如此进行下去,判定胜负的方法是:若某一游戏者若有3枚棋子占据了一横线或一竖线,或一对角线,则该游戏者获胜;若至整个棋盘被占满还没有一方获胜,则为平局。 算法分析: 我们让计算机模拟甲方,称为max选手,与计算机对手的乙方称min选手,上述博弈由这两位选手对垒,双方依次轮流走步。 博弈树以棋盘状态作为结点。开始时空棋盘作为树根,max先放。max选择某个空格放置棋子后的棋盘所有可能状态,都作为根的子结点出现在树的第一层。第二层的结点是min 方走完后的可能棋盘状态,min方从第一层的某个结点出发,选择某个空格放置棋子后的所有可能棋盘状态都作为该结点的子结点出现在第二层。下图的树称作博弈树,树根并不是空棋盘,这棵树的第二层并不是游戏终止时的棋盘状态,我们还可以画出第三层、第四层、……的结点,但在一般情况下,由于计算机存储器大小和运算速度的限制,不能把博弈树构造到游戏终止时的棋盘状态,而只能构造到某一特定的深度。

实验一 启发式搜索算法

实验一启发式搜索算法 学号:2220103430 班级:计科二班 姓名:刘俊峰

一、实验内容: 使用启发式搜索算法求解8数码问题。 1、编制程序实现求解8数码问题A *算法,采用估价函数 ()()()()w n f n d n p n ??=+??? , 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 2、 分析上述⑴中两种估价函数求解8数码问题的效率差别,给出一个是()p n 的上界 的()h n 的定义,并测试使用该估价函数是否使算法失去可采纳性。 二、实验目的: 熟练掌握启发式搜索A * 算法及其可采纳性。 三、实验原理: (一)问题描述 在一个3*3的方棋盘上放置着1,2,3,4,5,6,7,8八个数码,每个数码占一格,且有一个空格。这些数码可以在棋盘上移动,其移动规则是:与空格相邻的数码方格可以移入空格。现在的问题是:对于指定的初始棋局和目标棋局,给出数码的移动序列。该问题称八数码难题或者重排九宫问题。 (二)问题分析 八数码问题是个典型的状态图搜索问题。搜索方式有两种基本的方式,即树式搜索和线式搜索。搜索策略大体有盲目搜索和启发式搜索两大类。盲目搜索就是无“向导”的搜索,启发式搜索就是有“向导”的搜索。 启发式搜索:由于时间和空间资源的限制,穷举法只能解决一些状态空间很小的简单问题,而对于那些大状态空间的问题,穷举法就不能胜任,往往会导致“组合爆炸”。所以引入启发式搜索策略。启发式搜索就是利用启发性信息进行制导的搜索。它有利于快速找到问题的解。 由八数码问题的部分状态图可以看出,从初始节点开始,在通向目标节点的路径上,各节点的数码格局同目标节点相比较,其数码不同的位置个数在逐渐减少,最后为零。所以,这个

利用α-β搜索过程的博弈树搜索算法编写一字棋游戏

南京信息工程大学 研究生实验报告 课程名称人工智能与专家系统 实验名称利用α-β搜索过程的博弈树搜索算法编写一字棋游戏学生姓名王灿田 学号 20111221332 院系信息与控制学院 专业系统分析与集成 任课教师梅平 2012年6月10日

利用α-β搜索过程的博弈树搜索算法编写一字棋游戏 1.α-β搜索过程 在极小极大搜索方法中,由于要先生成指定深度以内的所有节点,其节点数将随着搜索深度的增加承指数增长。这极大地限制了极小极大搜索方法的使用。能否在搜索深度不变的情况下,利用已有的搜索信息减少生成的节点数呢? 设某博弈问题如下图所示,应用极小极大方法进行搜索。假设搜索的顺序为从下到上,从左到右。当计算完a的值为0后,由于b是极大节点,马上就可以知道b的值大于等于0。接下来求c的值。由于c是极小节点,由d的值为-3,知道c的值小于等于-3。而a和c都是b的子节点,所以即便不扩展节点e,也可以知道b的值一定为0了。所以在这种情况下,没有生成节点e的必要。同样,在知道b的值为0后,由于k是极小节点,所以立即知道k的值要小于等于0。而通过节点f、g,知道h的值至少为3。这样即便不扩展A所包围的那些节点,也能知道k的值一定为0。所以A包围的那些节点也没有生成的必要,不管这些节点取值如何,都不影响k的值。如果在搜索的过程中,充分利用这些信息,不就可以少生成很多节点,从而提高搜索的空间利用率吗?α-β过程正是这样一种搜索方法。 图1 MINIMAX过程是把搜索树的生成和格局估值这两个过程分开来进行,即先生成全部搜索树,然后再进行端节点静态估值和倒推值计算,这显然会导致低效率。如图1中,其中一个MIN节点要全部生成A、B、C、D四个节点,然后还要逐个计算其静态估值,最后在求倒推值阶段,才赋给这个MIN节点的倒推值-∞。其实,如果生成节点A后,马上进行静态估值,得知f(A)=-∞之后,就可以断定再生成其余节点及进行静态计算是多余的,可以马上对MIN节点赋倒推值-∞,而丝毫不会影响MAX的最好优先走步的选择。这是一种极端的情况,实际上把生成和倒推估值结合起来进行,再根据一定的条件判定,有可能尽早修剪掉一些无用的分枝,同样可获得类似的效果,这就是α-β过程的基本思想。

查找一个图中所有树算法

思路: 1.使用堆栈列出所有可能的支路,因为树中支路个数为n-1。 2.判断支路是否包含所有节点,包含则为树。 核心函数: /** * 功能:获得图的所有树 * 参数:图的关联矩阵 * 返回:所有树的数组(以节点形式存放) */ Matrix GetAllTrees(const Matrix& m) { Matrix AllTrees; vector Branchs; int BranchNum= m[0].size(); //初始化可选支路堆栈 for(int i=0;i #include #include #include

#include #include using namespace std; typedef vector > Matrix; Matrix GetAssociatedMatrix() { int NoteNum,BranchNum; cout<<"节点个数:"; cin>>NoteNum; cout<<"支路个数:"; cin>>BranchNum; Matrix M(NoteNum); for(Matrix::iterator it= M.begin();it!= M.end() ; ++it) (*it).resize(BranchNum); int NoteBegin,NoteEnd; for(int j=0;j= 0 && NoteEnd>= 0);//check M[NoteBegin-1][j] = M[NoteEnd-1][j] = 1; //fill } return M; } void PrintAssociatedMatrix(const Matrix& m) { cout<

启发式搜索A星算法

启发式搜索——初识A*算法

A*在游戏中有它很典型的用法,是人工智能在游戏中的代表。 A*算法在人工智能中是一种典型的启发式搜索算法,为了说清楚A*算法,先说说何谓启发式算法。 一、何谓启发式搜索算法 在说它之前先提提状态空间搜索。状态空间搜索,如果按专业点的说法,就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。通俗点说,就是在解一个问题时,找到一个解题的过程,应用这个过程可以从求解的开始得到问题的结果。由于求解问题的过程中分支有很多,主要是求解过程中求解条件的不确定性、不完备性造成的,使得求解的路径很多,这样就构成了一个图,我们说这个图就是状态空间。问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。这个寻找的过程就是状态空间搜索。常用的状态空间搜索有深度优先和广度优先。广度优先是从初始状态一层一层向下找,直到找到目标为止。

深度优先是按照一定的顺序,先查找完一个分支,再查找另一个分支,直至找到目标为止。这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释。 前面说的广度和深度优先搜索有一个很大的缺陷就是:他们都是在一个给定的状态空间中穷举。这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不可预测的情况下就不可取了。他们的效率实在太低,甚至不可完成。在这里就要用到启发式搜索了。 启发式搜索就是在状态空间中搜索时,对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直至找到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。我们先看看估价是如何表示的。 启发中的估价是用估价函数表示的,如: f(n) = g(n) + h(n) 其中f(n)是节点n的估价函数,g(n)是在状态空间中从初始节点到n节点的实际代价,h(n)是从n节点到目标节点最佳路径的估计代价。在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。

RFID二进制树防碰撞算法的研究与实现修改123

南阳理工学院本科生毕业设计(论文) 学院(系):计算机与信息工程学院 专业:通信工程 学生:乔军惠 指导教师:路新华 完成日期 2012 年 4 月

南阳理工学院本科毕业设计(论文)RFID二进制树防碰撞算法设计 学院(系):计算机与信息工程学院 专业:通信工程 学生姓名:乔军惠 学号:104060820064 指导教师(职称):路新华(讲师) 评阅教师: 完成日期:2012年4月 南阳理工学院 Nanyang Institute of Technology

RFID二进制树防碰撞算法设计 【摘要】射频识别技术RFID是目前正快速发展的一项新技术,它通过射频信号进行非接触式的双向数据通信,从而达到自动识别的目的。随着RFID技术的发展,如何实现同时与多个目标之间的正确的数据交换,即解决RFID系统中多个读写器和应答器之间的数据碰撞,成为了限制RFID技术发展的难题,采用合理的算法来有效的解决该问题,称为RFID系统的防碰撞算法。在各种算法当中,二进制树算法因为它识别应答器的确定性,成为了应用最广泛的一种,多个国际标准均对其进行了规定,这推动了防碰撞算法的发展,但是也带来了解决思路不统一的矛盾。在传统思路中,一般是通过单片机来进行算法处理,随着RFID技术的发展,未来的一个重要方向是现场可编程门阵列FPGA,做为一种现场可编程的专用集成电路,FPGA拥有高速度,可编程等多个适应于算法处理的优点,从而为RFID防碰撞算法问题开辟了新的有效途径根据上述分析,全文针对RFID 系统二进制树防碰撞算法,进行了理论与实践方面的探讨,主要分为三个方面,首先是二进制树算法的理论研究,将现有的二进制树算法进行了归纳,汇总为基本算法,动态算法,退避式算法三类,阐述了各个算法的思路,对其进行了性能评价;其次,在现有的三类防碰撞算法的基础上,提出了一种新的改进型二进制树算法,该算法识别速度快,执行效率高,极大的改进了识别效果。 【关键词】:射频识别;防碰撞算法;读写器;应答器;现场可编程门阵列 Abstract RFID is anewly developedtechnologywhich communicates through the—contact RF signal,so asto achieve objective automatic identification.Along with the development of RFID technology,how to realize Data Exchange accurately amongMultiple Targets at the same time becomes the key problem of RFID technology.RFID anti-collision algorithm is the solution to the above mentioned problems.In all the algorithms,binary algorithm is most widely used as an international standard fbr its exactness ofidentincation.International standards have put forward manyregulations on binary algorithm.It not onlypromotes the development of anti.coUision algorithm,but also b“ngs the conflict to a unilFied solution.Traditionalideas in general are handled byMCU.Along with the development ofRFID technology,an imponant direction in the f.uture is the field programmable gates arrayFPGA.As kindof integrated circuitsthatcanbe programmed in the field,FPGA is fast and programmable.All these adVantagesopenup anewef active way ofRFIDanti.collisionarithmetic.In viewof the above problems,this paperprobes into the RFID systembinary prevent collisionf.rom the perspectives ofboth theory and practice.It canbediVided into three aspects:6rstly,theoretical researchon binary algorithm.It sums up all thebinary algorithms in being and gather to three categorys suchas Basic algorithm,Dynamic algorithm and Backoff algorithm.MoreoVer,it Expounds the idea of the various algorithms and evalues their perf6rmance;secondary,it introduces an improved version of algorithm onthe basis of specinc standard.This algorithm has f.ast recognition,high efnciency and greatly improved the identification results. Key Words:RFID;Anticollision;Read/Write DeVices;Transponders;FPGA

相关主题
文本预览
相关文档 最新文档