当前位置:文档之家› [整理]GB-T4-液化天然气的一般特性.

[整理]GB-T4-液化天然气的一般特性.

[整理]GB-T4-液化天然气的一般特性.
[整理]GB-T4-液化天然气的一般特性.

GB-T 19204-2003 液化天然气的一般特性

前言

本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。

为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。

关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。

本标准的附录A、附录B为资料性附录。

本标准由中国海洋石油总公司提出。

本标准由全国天然气标准化技术委员会归口。

本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。

本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。

本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。

本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。

根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。

1 范围

本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。

本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。

本标准还可供设计和操作LNG设施的工作人员参考。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其岁后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

EN 1473液化天然气装置和设备,陆上装置设计

3 术语和定义

下列术语和定义适用于本标准

液化天然气liquefied natrual gas

一种在液态状况下的无色流体,主要由甲烷组成,组分可能含有少量乙烷,丙烷、氮或通常存在于天然气中的其他组分。

4 缩略语

本标准采用如下缩略语

——LNG liguefied naural gas,液化天然气

——RPT rapid phase tuansition 快速相变

——BLEVE boiling liquid exanding vapour explosion 沸腾液体膨胀蒸发爆炸

——SEP surface emissive pewer ,表面辐射功率。

5 LNG的一般特性

5. 1引言

所有与处理LBG有关的人员,不但应熟悉液态LNG的特性,而且应熟悉其产生气体的提醒。在处理LNG时潜在的危险主要来源于其3个重要性质。

a)LNG的温度极低。其沸点在大气压力下约为-160℃,并与其组分有关,在这一温度条件下,其蒸发气密度高于周围空气的密度(见表1中的实例)

b) 极少量的LNG液体可以转变为很大体积的气体。1个体积的LNG可以转变为约600个体积的气体(见表1中的实例);

c) 类似于其他气态烃类化合物,天然气是易燃的。在大气环境下,与空气混合时,其体积约占5%一15%的情况下就是可燃的。

5.2 LNG的性质

5.2.1 组成

LNG是以甲烷为主要组分的烃类混合物,其中含有通常存在于天然气中少量的乙烷、丙烷、氮等其他组分。

甲烷及其他天然气组分的物理学和热力学性质可以在有关的参考书(参见附录A)和热力学计算手册中查到。

本标准所涉及的LNG,甲烷的含量应高于75%,氮的含量应低于5%。

虽然LNG的主要组分是甲烷,但是不能以纯粹的甲烷去推断LNG的理化性质。

分析LNG的组分时,应该特别注意的是要采取有代表性的样品,避免因蒸馏效应产生不真实的分析结果。

最常用的分析方法是分析一小股连续蒸发的生成物,分析中使用一种专门设计的装置以便能提供未经分馏的液体的具有代表性的气态样品。另一种方法是在产生主要生成物的蒸馏器出口处提取样品。该样品可用常规的气相色谱法分析,如ISO 6568或ISO 6974中所述的那些方法。

5.2.2 密度

LNG的密度取决于其组分,通常在430 kg/m3—470 kg/m3之间,但是在某些情况下可高达520kg/m3。密度还是液体温度的函数,其变化梯度约为1.35 kg/m3.℃。密度可以直接测量,不过通常是用经过气相色谱法分析得到的组分通过计算求得。推荐使用ISO 6578中确定的计算方法。

注:该方法通常称为Klosek Mckinley法。

5.2.3 温度

LNG的沸腾温度取决于其组分,在大气压力下通常在一166℃到一157~C之间。沸腾温度随蒸气压力的变化梯度约为1.25×10-4℃/Pa。

LNG的温度通常用ISO 8310中确定的铜/铜镍热电偶或铂电阻温度计测量。

5.2.4 LNG的实例

表1列示出3种LNG典型实例,并显示出随组分不同的性质变化。

5.3 LNG的蒸发

5.3.1 蒸发气的物理性质

LNG作为一种沸腾液体大量的储存于绝热储罐中。任何传导至储罐中的热量都会导致一些液体蒸发为气体,这种气体称为蒸发气。其组分与液体的组分有关。一般情况下,蒸发气包括20%的氮,80%的甲烷和微量的乙烷。其含氮量是液体LNG中含氮量的20倍。当LNG蒸发时,氮和甲烷首先从液体中气化,剩余的液体中较高相对分子质量的烃类组分增大。

对于蒸发气体,不论是温度低于-113℃的纯甲烷,还是温度低于-85℃含20%氮的甲烷,它们都比周围的空气重。在标准条件下,这些蒸发气体的密度大约是空气密度的0.6倍。

5.3.2 闪蒸(flash)

如同任何一种液体,当LNG已有的压力降至其沸点压力以下时,例如经过阀门后,部分液体蒸发,而液体温度也将降到此时压力下的新沸点,此即为闪蒸。由于LNG为多组分的混合物,闪蒸气体的组分与剩余液体的组分不一样,其原因与上面5.3.1节中所述的原因类似。作为指导性数据,在压力为1×105Pa~2×105Pa时的沸腾温度条件下,压力每下降l×l03Pa,1 m3的液体产生大约0.4 kg的气体。较精确地计算闪蒸如LNG类多组分液体所产生的气体和剩余液体的数量及组分都是复杂的。应用有效的热力学或装置模拟的软件包,结合适当的数据库,可以在计算机上进行闪蒸计算。

5.4 LNG的溢出(spillage of LNG)

5.4.1 LNG溢出物的特征(characteristics of LNG spills)

当LNG倾倒至地面上时(例如事故溢出),最初会猛烈沸腾,然后蒸发速率将迅速衰减至一个固定值,该值取决于地面的热性质和周围空气供热情况。

如表2所示,如果溢出发生在热绝缘的表面,则这一速率将极大地降低。表中的数据是根据实验结果确定

的。

当溢出发生时,少量液体能产生大量气体,通常条件下1个体积的液体将产生600个体积的气体(见表1)。

当溢出发生在水上时,水中的对流非常强烈,足以使所涉及范围内的蒸发速率保持不变。LNG的溢出范围将不断扩展,直到气体的蒸发总量等于泄漏产生的液态气体总量。

5.4.2 气体云团的膨胀和扩散(expansion and dispersion of gas clouds)

最初,蒸发气体的温度几乎与LNG的温度一样,其密度比周围空气的密度大。这种气体首先沿地面上的一个层面流动,直到气体从大气中吸热升温后为止。当纯甲烷的温度上升到约-113℃,或LNG的温度

上升到约-80℃(与组分有关),其密度将比周围空气的密度小。然而,当气体与空气混合物的温度增加使得其密度比周围空气的密度小时,这种混合物将向上运动。溢出、蒸气云的膨胀和扩散是复杂的问题,通常用计算机模型来进行预测,只有在这方面有能力的机构才能进行这种预测。随着溢出,由于大气中的水蒸气的冷凝作用将产生“雾”云。当这种“雾”云可见时(在日间且没有自然界的雾),此种可见“雾”云可用来显示蒸发气体的运动,并且给出气体与空气混合物可燃性范围的保守指示。在压力容器或管道发生溢出时,LNG将以喷射流的方式洒到大气中,且同时发生节流(膨胀)和蒸发。这一过程与空气强烈混合同时发生。大部分LNG最初作为空气溶胶的形式被包容在气云之中。这种溶胶最终将与空气进一步混合而蒸发。

5.5 着火和爆炸(1gnition)

对于天然气/空气的云团,当天然气的体积浓度为5%-15%时就可以被引燃和引爆。

5.5. 1 池火(pool fires)

直径大于10m的着火LNG池,火焰的表面辐射功率(SEP)非常高,并且能够用测得的实际正向辐射通量及所确定的火焰面积来计算。SEP取决于火池的尺寸、烟的发散情况以及测量方法。SEP随着烟尘炭黑的增加而降低。附录A包括的参考文献可用于确定给定情况的SEP。

5.5.2 压力波的发展和后果(development and consequences of pressure waves)

没有约束的天然气云以低速燃烧时,在气体云团中产生小于5×103Pa的低超压。在拥挤的或受限制的区域(如密集的设备和建筑物),可以产生较高的压力

5.6 包容(containment)

天然气在常温下不能通过加压液化,实际上,必须将温度降低到约-80℃以下才能在任意压力下液化。这意味着包容任何数量的LNG,例如在两个阀门之间或无孔容器中,都有可能随着温度的提高使压力增加,直到导致包容系统遭到破坏。因此,成套装置和设备都应设计有适当尺寸的排放孔和。或泄压阀

5. 7其他物理现象

5. 7. 1翻滚(rollover)

翻滚是指大量气体在短时间内从LNG容器中释放的过程,除非采取预防措施或对容器进行特殊设计,翻滚将使容器受到超压。

在储存LNG的容器中可能存在两个稳定的分层或单元,这是由于新注入的LNG与密度不同的底部LNG混合不充分造成的。在每个单元内部遗体密度是均匀的,但是底部单元液体的密度不大于上部单元液体的密度

随后,由于热量输入到容器中而产生单元间的传热、传质及液体表面的蒸发,单元之间的密度将达到均衡并且最终混为一体。这种自发的混合称之为翻滚,而且与经常出现的情况一样,如果底部单元液体的温度过高(相对于容器蒸汽空间的压力而言),翻滚将伴随着蒸汽逸出的增加,有时这种增加速度快且量

大。在有些情况下,容器内部的压力增加到一定程度将引起泄压阀的开启

早期曾假设,当上层密度大于下层密度时,就会发生翻转,由此产生翻转的名称,较近期的研究表明,情况并非如此,而是如前所述出现快速混合。

潜在翻滚事故出现之前,通常有一个时期其气化速率远低于正常情况。因此应密切检测汽化速率以保证液体不是在积蓄热量。如果对此有怀疑,则应设法使液体循环一促进混合。

通过良好的储存管理,翻滚可以防止,最好将不同来源的组分不同的LNG分罐储存。如果做不到,在注入储罐时应保证充分混合。

用于调峰的LNG中,高含氮在储罐子逐日停止后不久也可能引起翻滚

经验表明,预防此类型翻滚的最好方法是保持LNG的含氮量低于1%,并且密切监测气体速率。

5.7. 2 快速相变(RPT)

当温度不同的两种液体在一定条件下接触时,可产生爆炸力。当LNG与水接触时,这种称为快速相变(RPT)的现象就会发生。尽管不发生燃烧,但是这种现象具有爆炸的所有其他特征。LNG洒到水面上而引发的RPT是罕见的,而且影响也有限。

与实验结果相符的通用理论可简述如下。当两种温差很大的液体直接接触时,如果较热液体的热力学(开氏)温度大于较冷液体沸点的1.1倍时,后者温度将迅速上升,其表层温度可能超过自发核化温度(当液体中产生气泡时)。在某些情况下,过热液体将通过复杂的链式反应机制在短时间内蒸发,而且以爆炸的速率产生蒸气。

例如,将LNG或液态氮置于水上的实验中,液体之间能够通过机械冲击产生密切接触并引发快速相变。

许多研究项目正在进行中,以便更好地理解RPT,量化此现象的烈度以及确定正确的预防措施。

5.7.3 沸腾液体膨胀蒸气爆炸(BLEVE)

任何液体处于或接近其沸腾温度,并且承受高于某一确定值的压力时,如果由于压力系统失效而突然获得释放,将以极高的速率蒸发。已经有记录如此猛烈的膨胀曾将整个破裂的容器抛出几百米。这种现象叫做沸腾液体膨胀蒸气爆炸(BLEVE)。

沸腾液体膨胀蒸气爆炸在LNG装置上发生的可能性极小。这或者是由于储存LNG的容器将在低压下发生破坏(参见附录A的A.5部分),而且蒸气产生的速率很低;或者是由于LNG是在绝热的压力容器和管道中储存和输送,这类容器和管道具有内在的防火保护能力。

6建筑材料

6.1 LNG工业中应用的材料

最常用的建筑材料暴露在极低温度条件下时,将因脆性断裂而失效。尤其是碳钢的抗断裂韧性在LNG 温度下(-160℃)是很低。因此用于LNG接触的材料应当验证其抵抗脆性断裂性能。

6. 1. 1直接接触LNG的材料(materials in direct contact)

与LNG直接接触而不会变脆的主要材料及其一般应用列于表3中,该表尚不完全。不锈钢及主要低温合金的化学成分和性质列于附录B中

6. 1. 2正常操作下不直接接触LNF的材料(materials not in dierctcontact under normal operation)

在正常操作用于低温状态但不与LNG直接接触的主要材料列于表4中,该表尚不完全。

表3用于直接接触LNG的主要材料其一般应用

表4在正常操作下用于低温状态但不与LNG直接接触的主要材料

6.1.3 其他

由于铜、黄铜和铝的熔点低且遇到溢出的LNG着火时将失效,因此倾向于使用不锈钢或含镍9%的钢材。铝材常用于换热器。液化装置的管式、板式换热器使用冷箱(钢制)加以保护。铝材还可用于内罐的吊顶。经过特别设计用于液态氧或液态氮的设备,通常也适用于LNG。

根据设计结果,能够在LNG处于较高的压力和温度条件下正常操作的设备,也应设计成能够承受降压情况下液体温度的下降。

6.2 热应力(thermal stresses)

用于LNG设施的大多数低温深冷装置将承受。从周围环境温度到LNG温度的快速冷却。在此冷却过程中产生的温度梯度将产生热应力,该热应力是瞬态的、周期性的,而且其值在与LNG直接接触的容器壁为最大。

这种应力随着材料厚度的增加而增加,当其厚度超过约10 mm时,应力值将很大。对于一些特殊的临界点,临界或冲击应力可以应用公认的方法进行计算,并用于脆性断裂的检验。

7 健康与安全

下面的推荐意见是为了给操作LNG设施的有关人员提供指导,而不是为了取代国家法规的要求。

7.1 置身子低温环境中(exposure to cold)

LNG造成的低温能对身体暴露的部分产生各种影响,如果对处于低温环境的人体未能适当地加以保护,则其反应和能力将受到不利的影响。

7.1.1 操作中的冷灼伤(handling,cold contact burns)

LNG接触到皮肤时,可造成与烧伤类似的起疱灼伤。从LNG中漏出的气体也非常冷,并且能致灼伤。如暴露于这种寒冷气体中,即使时间很短,不足以影响面部和手部的皮肤,但是,象眼睛一类脆弱的组织仍会受到伤害。人体未受保护的部分不允许接触装有LNG而未经隔离的管道和容器,这种极冷的金属会粘住皮肉而且拉开时将会将其撕裂。

7.1.2 冻伤(frostbite)

严重或长时间地暴露在寒冷的蒸气和气体中能引起冻伤。局部疼痛经常给出冻伤的警示,但有时会感觉不到疼痛。

7.1.3 寒冷对肺部的影响(effect of cold on the lungs)

较长时间在极冷的环境中呼吸能损伤肺部。短时间暴露可引起呼吸不适。

7.1.4 体温过低(hypothermia)

1O℃以下的低温都可以导致体温过低的伤害。对于明显地受到体温过低影响的人,应迅速地从寒冷地带移开并用热水洗浴使体温恢复,水温应在40℃至42℃之间。不应该用干热的方法提升体温。

7.1.5 推荐使用的防护服(recommended protective clothing)

当处理LNG时,如果预见到将暴露于LNG的环境之中,则应使用合适的面罩或安全护目镜以保护眼睛。

操作任何物品时,如其正在或已经与寒冷的液体或气体接触,则应一直戴上皮手套。应戴宽松的手套并在接触到溅落的液体时能够迅速脱去。即使戴上手套,也只应短时间握住设备。

防护服或者类似的服装应是紧身的,最好是没有口袋也没有卷起的部分。裤子也应穿在鞋或靴子的外面。

当防护服被寒冷的液体或蒸气附着后,穿用者在进入狭窄的空间或接近火源之前应对其做通风处理。

操作者应该明白,防护服只是在偶然出现LNG溅落时起保护作用,应避免与LNG接触。

7.2 置身于天然气环境中(exposuretogas)

7.2.1 毒性(toxicity)

LNG和天然气是无毒的。

7.2.2 窒息(asphyxia)

天然气是一种窒息剂。氧气通常占空气体积的20.9%。大气中的氧气含量低于18%时,会引起窒息。在空气中含高浓度天然气时由于缺氧会产生恶心和头晕。然而一旦从暴露环境中撤离,则症状会很快消失。在进入可能存在天然气的地方之前,应测量该处大气中氧气和烃类的含量。

注:即使氧气含量足够多,不会引起窒息,进入前也应进行可燃性检测,而且应使用专用于此目的仪器进行检测。

7.3 火灾的预防和保护

在处理I。NG失火时,推荐使用干粉(最好是碳酸钾)灭火器。与处理LNG有关的人员应经过对液体引发的火灾使用干粉灭火器的训练。高倍数泡沫材料或泡沫玻璃块可用于覆盖LNG池火并能极大地降低其辐射作用。必须保证水的供应以用于冷却目的,或在设备允许的情况下用于泡沫的产生。但是水不可用于灭此类火。

有关火灾的预防和保护的设计,应遵守EN 1473的规定。

7.4 气味

LNG蒸气是无气味的。

A.1 总论

(1) Safety tools for liNG risk evaluation: cloud dispersion and radiation, D. NEDELKA, B.WELSS,B. BAUER(Gaz de France) ,IGU H 12-91 ,Berlin(July 1991)

(2)Methodologu of Gaz de France concerning matters of LNG terminals ,D.NEDELKA,A.COY(Gaz de France ),Paper 1,Section Ⅲ,LNG 10,Kuala Lumpur (May 1992)

(3)Grundlagen sicherheitsechnischer Frfordernisse im Umgang mit Flussigerdgas(LNG),K.A.HOPFER,gwf Gas Erdgas 130(1989),S27-32

A. 2LNG着火

(1)Galculation of radiation effects,D.NEDELEKA(Gaz de France),EUROGAS Trondheim(MAY 1990)

(2)The MONTOIR 35m diameter LNG POOL FIRE experiments,D.NEDELKA,J

MOORHOUSE,R.F.TUCKER,(Gas de France,BRITISH Gas,shell RESERACI),Paper 3,Session

Ⅲ,LNG9.Nice(Nov1989)

(3)Fire safetu assessment for LNG storage

facilities,B.J.LOWESMTTH,J.MOORHOUSE,P.ROBERT,Paper 2,Session Ⅲ,Intern.Conference on LNG (LNG10),Kuala Lumpur 1992.

(4)Prediction of the heat radiation and safety distance of large fires ,with the model

OSRAMO,A.SCHONBUCHER etla,7th Int.Symp.On Loss Prevention and Safety Promotion in the process industries,68-1/68-16,Proceedings ,Taormina(1992)

(5)Das experimentell validierte

Ballen-Strlungsmodell OSRAMO,Teil 1:Theoretische Grundlagen ,A.SCHONBUCHER et al,Tu 33(1992),137/140

(6)Das experimentell validierte

Ballen-Stralungsmodell OSRAMO,Teil 2: Socjerjeotsecjmoscje

Amwemdung(Sicherheitsa-tande),A.SCHONBUCHER et al,Tu33(1992),219/223

(7) LNG fire:A thermal radiation model for LNG fires ,Topical report,June 29,1990,Gas Research

Instirute ,8600 West Bryn Mawr Avenue,Chicago ,Illionosi 60631

(8) Thermal rediation from LNG trench fires Volume Ⅲ,final report ,Sepetmber 1982-September 1984 ,Gas Research Instiut ,8600West Bryn Mawr Acenue ,Chicago,Illionois 60631

(9) Methods of the calculation of the physical effects of the escape of dangerous material,Chap-ter 6--Heat radiation,G. W. HOFTIJER,TNO Organization for Industrial Research--Divi-sion of Technology for Society,P. O. Box 342,7300 AH Apeldoom,Netherlands

(10) Large scale LNG and LPG pool fires in the assessment of major hazards,G. A. MIZNERand j. A. EYRE,Institution of Chemical Engineers Symposium,Series No. 71 (1982)

A.3快速相变

(1) Contribution to the study of the behaviour of loNG spilled onto the sea,A. SALVADORI,J.C. LEDIRAISON, D. NI~DELKA, (Gaz de France), Session III, LNG 7, Dj akarta (May 1983)Rapid phase transitions of cryogenic liquids boiling on water surface,J. D. SAINSON, C.BARADEL,

(2) M. ROULEAU,J. LEBLOND(Gaz de France,ESPCI,ENS),Paper 9,Session II,EurothermLouvian(May 1990)

(3) Propagation of vapor explosion in a stratified geometry. Experiments with liquid nitrogenand water,J. D. SAINSON, M. GABILLARD,T. WlLLIAMS(Gaz de France, Gas ResearchInstitute),CSNI--Fuel Coolant

Interaction--Santa Barbara(Jan. 1993)

A. 4翻滚

(1)LNG stratification and rollover,J.A.SARSTEN,Pipeline and Gas Journal,Vol.199,p.37(Sep 1972)

(2)Tests on LNG behaciour in large scale thank at Fos sur-Mer

terminal ,F.BELLUS,Y.REV-EILLARD,C.BONNAYRE,L.CHEVALIER (Gaz de France ),Paper 9 Session Ⅲ,LNG 5(MAY 1997)

(3)Management of LNGstorage tanks.Sruatification mixing and ageing of

LNG,O.MARCEL.A.GIRARD-LAOT .PLANGRY(Gaz de France ),Paper 4,Session

Ⅲ,LNG10,Kuala.Lumpur(MAY 1992)

(4)LNG thank filling:Operational procedures to prevent stuatificeation ,M.BAUDINO(SNAM),Paper H5,10th.Gas Coference,Munich(1987)

A. 5沸腾液体膨胀蒸气爆炸

(1)LNG and explosions of BLEVE TYPE,L.MONEGRO FORMIGUERA(Catalana de Gasy Electricidda),Gas Conference,Munich(1985)

A. 6LNG手册

(1)Encyclopedie de gaz-L’Air Liquids-Elsevier(1976)

(2)LNG material and fluids:A users manual of property data in graphic format ,National Bureau of Standarde ,Boulder,COLORADO ,USA,Dougals Man(1997)

A. 7LNG益出

(1)Boiling and spreading sperading rates of instantaneous spil of liquid menthane on water

D.J.CHATLOS ,R.C.REID,Gas Research Instute 81/0045(April 1982)

(2) Verein Dutscher Ingenieure ,Arbeitsblatt,VDI3783.Blatt1:Ausbretung von storfallbedingten Freisetzungen ,Sicherheiasanalyse.

(3) Verein Deutscher Ingenieure,Arbeitsblatt VDI 3 783. Blatt 2. Ausbreitung von st6rfallbed-ingten Freisetzungen schwerer Gase,Sicherheiasanalyse

A.8 标准

EN 485—2 铝和铝合金片、带和板材第2部分:材料特性

EN 515 铝和铝合金制成品热处理标示

EN 573—3 铝和铝合金化学成分和制成品样式第3部分:化学成分

EN 10028-4 用于压力装置的钢制扁平产品第4部分:具有指定低温性能的镍合金钢EN 1045—1 金属材料夏比冲击试验第1部分:试验方法

EN 1088—1 不锈钢第1部分:不锈钢明细表

EN 1088—2 不锈钢第2部分:一般用途片、带和板材的交货技术条件

EN 1088—3 不锈钢第3部分:一般用途半成品,条、杆和薄片的交货技术条件

EN 26501 镍铁合金交货条件和规格书(1SO 6501:1988)

EN 754—2 铝和铝合金冷拉条/杆和管材第2部分:机械性能

EN 755—2 铝和铝合金挤压条/杆,管材和型面第2部分:机械性能

EN 10222—6 用于压力装置的钢锻件第6部分:奥氏体,马氏体和铁—奥氏体不锈钢ISO 6208 镍和镍合金板材、片和带材

ISO 6568 天然气气相色谱法简易分析

ISO 6578 冷却的碳氢液体静态测量计算方法

ISO 6974 天然气中氢气,惰性气体和直C8烃的确定气相色谱法

ISO 8310 冷却的轻烃液体含液化气体容器中的温度测量电阻温度计和热电偶

ISO 9722 镍和镍合金成分和制成品样式

ISO 9723 镍和镍合金棒材

附录B (资料性附录)可用于同LNG接触的材料

本附录给出主要的可与LNG接触的材料的等级。

给出化学成分或力学性能的参考文献(欧洲或国际标准(或草案))列于表B.1一表B.6。表B.1给出一196℃时的冲击能量KV值(J)。

表B.1 不锈钢片/板和带材在低温下的冲击能量

表B.2用于环境和低温条件的不锈钢螺母和螺栓

表 B.3用于环境和低温条件的不锈钢棒材

表B.4用于环境和低温条件的不锈钢锻件

表B.5钢铁和镍合金

表B.6 铝合金

LNG组成与特性

液化天然气(LNG)的组成 1.1.1 液化天然气(LNG)的概念 液化天然气简单地说就是液化了的天然气,它是天然气经脱水、脱除酸性气体等净化处理后,经节流膨胀及外加冷源的方法逐级冷却,在约-1620C液化而得到。 液化天然气的英文为:liquefied natural gas,缩写为LNG。 1.1.2 液化天然气(LNG)的组成 液化天然气是一种液态状况下的无色流体,主要由甲烷组成,组分可能含有少量的乙烷、丙烷、氮或通常存在于天然气中的其他组分。 某些典型液化天然气(LNG)气源组分见表2-4、2-5。 表2-4 我国生产和进口的典型液化天然气组成 表2-5 世界主要基本负荷型LNG工厂产品组成(mol%)

资料来源:World LNG Outlook, 1999 Edition, Cedigaz. 1.1.3 甲烷的基本性质 作为液化天然气主要组分的甲烷,其分子式为CH4,分子结构是正四面体空间构型,是最简单的烷烃,常温常压下为无色无味的极难溶于水的可燃气体。 甲烷基本无毒,但浓度过高时,能使空气中的含氧量明显降低,使人窒息。当空气中甲烷含量达25%~30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心 跳加速,若不及时脱离,可致窒息死亡。 气态甲烷在不同温度压力下的密度、液态甲烷的密度、液态甲烷的气化潜热、液态甲烷的蒸气压分别见表2-6、2-7、2-8、2-9 [2]。 表2-6 气态甲烷在不同温度压力下的密度 表2-7 液态甲烷的密度 表2-8 液态甲烷的气化潜热

表2-9 液态甲烷的蒸气压 1.1.4 液化天然气(LNG)中常见组分的基本性质 液化天然气(LNG)中常见组分的某些基本性质,见表2-10。 表2-10 液化天然气常见组分的基本性质[273.15K、101325Pa]

常用塑胶材料特性大全

常用塑胶材料的特性及使用范围 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本 ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子模具设计 1.排气

为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。 圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 二、聚乙烯(PE) 优点: 1、柔软、无毒、透明易染色. 2、耐冲击、耐药品,绝缘性佳。 缺点: 1、不易押出、不易贴合 2、热膨胀系数高 4、耐温性差 用途: HDPE主要用于具有一定硬度和韧性的场合,如水管、燃气管,工业用化学容器、重包装袋和购物袋、洗发水瓶等。 LDP E绝缘体、胶管、胶布、胶膜、农用薄膜 最小壁厚0.5mm(LDPE),0.9mm(HDPE)(0.5-7.6mm一般1.6mm) 收缩率:HDPE 1.5%-3.5%取2% LDPE 1.5%-3%取1.5% 三、聚丙烯(PP) 优点: 1.半透明、刚硬有韧性.抗弯强度高,抗疲劳、抗应力开裂 2.质轻,无毒、无味,耐高温、绝缘性佳。(0.9G/cm3) 缺点 1、在0℃以下易变脆,不易接合;

液化石油气与液化天然气的特性

2 液化石油氣與液化 天然氣之特性 2-1 液化石油氣之組成 2-2 液化石油氣的一般性質 2-3 液化石油氣之燃燒性質 2-4 液化天然氣 2-5 液化天然氣之特性 C h a p t e r

油氣雙燃料車-LPG 引擎 2-2 所謂液化石油氣,其英文名稱為“Liquid Petroleum Gas ”仍石油氣液化後所得之產品,通常取英文名詞中之三個字首“LPG ”為簡稱。中文俗稱“液化瓦斯”,主要成分乃石油中所含的丙烷、丁烷之類比較容易液化的液化氣體製成的;對象由丙烷與丁烷等之碳氫化合物,俗稱為烴,而若其組成中碳原子數少於5者稱之為低級碳氫化合物或稱低烴類。 甲烷(CH 4)、乙烷(C 2H 6)、丙烷(C 3H 8)、丁烷(C 4H 10)等,其分子式概屬於2n 2n H C +型(n 為碳原子數目),稱為烷系碳氫化合物或石腊烴。 乙烯(C 2H 4)、丙烯(C 3H 6)、丁烯(C 4H 8)等,其分子式概屬於C n H 2n 型,稱為烯系碳氫化合物或稱烯烴。 液化石油氣(LPG)中所含之碳氫化合物以石腊烴為主,但仍含有少量之低級烯烴(碳原子量少於5的烯烴),因此液化石油氣可說是低級碳氫化合物的混合氣體。 一般高壓氣體依其狀態可概分為三種,即壓縮氣體、溶解氣體及液化氣體等。 1. 壓縮氣體是指將氣體壓縮,而壓縮後在常溫下仍為氣體,如氫氣、氧氣、氮氣等,其在容器內之壓力通常約為150kg/cm 2。 2. 溶解氣體是指在容器內先填入多孔性質的固體,再注入溶劑,最後才把氣體以高壓灌入溶解而成;如乙炔氣,因若單獨將乙炔氣加以壓縮,則有分解爆炸之危險,故通常以丙酮為溶劑,使成溶解氣體狀態存在容器內。 3. 液化氣體是指如丙烷、丁烷、丙烯、丁烯氯氣、二氧化碳等氣體,在常溫常壓下為氣體狀態,但經壓縮後則易變成液態,故能以液態保存在容器內,容器內之壓力則隨所裝氣體之種類及溫度條件而異。 目前台灣的液化石油氣(LPG),都為中國石油公司所供應,有的從苗栗、新竹一帶盛產的天然氣中分離而得,內含丙烷、丁烷各佔約50%;另外就是靠由高雄煉油廠在原油提煉過程中之油氣製成,其丙烷與丁烷之比例約為30%與70%,並滲有少量之其他烯烴或烷烴。 4. LPG 之分類 依據美國ASTM 的分類方法,可分為4大類: (1) 商用丙烷(Commercial propane) 供寒帶地區對燃料成分要求較嚴之地區,以及對燃料要求較嚴格之引擎使用。 (2) 商用混合丙丁烷(Commercial PB mixture) 為一般狀況所使用。

常用塑料基本性能和用途(经典)

工程塑料总概 热性质: 玻璃转移温度(Tg)及熔点(Tm);热变形温度(HDT)高;长期使用温度高(UL-746B);使用温度范围大;热膨胀系数小。 机械性质: 高强度,高机械模数,低潜变性,强耐磨损及耐疲劳性。其它耐化学药品性、抗电性、耐燃性、耐候性、尺寸安定性佳。 主要品种: 工程塑料是指一类可以作为结构材料,在较宽的温度范围内承受机械应力,在较为苛刻的化学物理环境中使用的高性能的高分子材料。一般指能承受一定的外力作用,并有良好的机械性能和尺寸稳定性,在高、低温下仍能保持其优良性能,可以作为工程结构件的塑料。如ABS、尼龙、聚矾等。 被当做通用性塑胶者包括聚碳酸酯(Polycarbonate, PC)、聚酰胺(尼龙, Polyamide, PA)、聚缩醛(Polyacetal, Polyoxy Methylene, POM)、变性聚苯醚(Poly Phenylene Oxide, 变性PPE)、聚酯(PETP,PBTP)、聚苯硫醚(Polyphenylene Sulfide, PPS)、聚芳基酯,而热硬化性塑胶则有不饱和聚酯、酚塑胶、环氧塑胶等。 拉伸强度均超过50MPa,抗拉强度在500kg/cm2以上,耐冲击性超过50J/m,弯曲弹性率在24000kg/cm2,负载挠曲温度超过100℃,其硬度、老化性优。聚丙烯若改善硬度及耐寒性,则亦可列入工程塑胶的范围。此外,较特殊者为强度弱、耐热、耐药品性优的氟素塑胶,耐热性优的矽溶融化合物、聚醯胺醯亚胺、聚醯亚胺、Polybismaleimide、Polysufone(PSF)、PES、丙烯塑胶、变性蜜胺塑胶、BT Resin、PEEK、PEI、液晶塑胶等。因为化学构造不同,故耐药品性、摩擦特性、电机特性等也有若干差异。且因成形性的不同,故有适用于任何成形方式者,亦有只能以某种成形方式加工者,造成应用上的受限。热硬化型的工程塑胶,其耐冲击性较差,因此大多添加玻璃纤维。工程塑胶除了聚碳酸酯等耐冲击性大者外,通常具有延伸率小、硬、脆的性质,但若添加20~30%的玻璃纤维,则可有所改善。

液化天然气的一般特性 Microsoft Word 文档

前言 本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。 为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。 关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。 本标准的附录A、附录B为资料性附录。 本标准由中国海洋石油总公司提出。 本标准由全国天然气标准化技术委员会归口。 本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。 本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。 本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natura l gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。 为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。 关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。 本标准的附录A、附录B为资料性附录。 本标准由中国海洋石油总公司提出。 本标准由全国天然气标准化技术委员会归口。 本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。 本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。 CEN前言 本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。 本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。 根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。 1 范围 本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。 本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。 本标准还可供设计和操作LNG设施的工作人员参考。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其岁后所有

常用塑料特性及加工工艺

常用塑料特性及加工工艺 PEI 聚乙醚 典型应用范围: 汽车工业(发动机配件如温度传感器、燃料和空气处理器等),电器及电子设备(电气联结器、 印刷电路板、芯片外壳、防爆盒等),产品包装,飞机内部设备,医药行业(外科器械、工具壳 体、非植入器械)。 注塑模工艺条件: 干燥处理:PEI具有吸湿特性并可导致材料降解。要求湿度值应小于0.02%。建议干燥条件为 150C、4小时的干燥处理。 熔化温度:普通类型材料为340~400C;增强类型材料为340~415C。 模具温度:107~175C,建议模具温度为140C。 注射压力:700~1500bar。 注射速度:使用尽可能高的注射速度。 化学和物理特性: PEI具有很强的高温稳定性,既使是非增强型的PEI,仍具有很好的韧性和强度。因此利用PEI 优越的热稳定性可用来制作高温耐热器件。 PEI还有良好的阻燃性、 抗化学反应以及电绝缘特性。 玻璃化转化温度很高,达215C。PEI还具有很低的收缩率及良好的等方向机械特性。 PE-LD 低密度聚乙烯 典型应用范围: 碗,箱柜,管道联接器 注塑模工艺条件: 干燥:一般不需要

熔化温度:180~280C 模具温度:20~40C 为了实现冷却均匀以及较为经济的去热,建议冷却腔道直径至少为8mm,并且从冷却腔道到 模具表面的距离不要超过冷却腔道直径的1.5倍。 注射压力:最大可到1500bar。 保压压力:最大可到750bar。 注射速度:建议使用快速注射速度。 流道和浇口: 可以使用各种类型的流道和浇口。PE-LD特别适合于使用热流道模具。 化学和物理特性: 商业用的PE-LD材料的密度为0.91~0.94 g/cm3。PE-LD对气体和水蒸汽具有渗透性。PE-LD 的热膨胀系数很高不适合于加工长期使用的制品。 如果PE-LD的密度在0.91~0.925 g/cm3之间,那么其收缩率在2%~5%之间;如果密度在 0.926~0.94 g/cm3之间,那么其收缩率在1.5%~4%之间。当前实际的收缩率还要取决于注塑工艺 参数。 PE-LD在室温下可以抵抗多种溶剂, 但是芳香烃和氯化烃溶剂可使其膨胀。 同PE-HD类似, PE-LD 容易发生环境应力开裂现象。 PE-HD 高密度聚乙烯 典型应用范围: 电冰箱容器、存储容器、家用厨具、密封盖等。 注塑模工艺条件:

液化气的物理特性

液化气的物理特性 表示液化气物理特性的项目有沸点、熔点、临界参数、密度、比容、相对密度、蒸气压、露点、蒸发潜热、粘度、溶解度。 1、沸点 液体沸腾时的温度称为沸点。沸点和蒸发虽同属于气化现象,但蒸发只是在液体表面上进行,且在任何温度下都有蒸发现象,只不过是蒸发有快慢而已,而沸腾则是在液体内部和表面都同时发生,但必须达到一定条件才会发生,这个条件就是液体内的饱和蒸气压和外界压力相等时,才会发生液体沸腾现象。 液化气的沸点与外界压力有关,外界压力增大,沸点升高,压力减小,沸点降低。我们通常所说的沸点是规定在101.33KPa(1atm)下的液体沸腾的温度。例如:丙烯在101.33KPa下沸点为-42.05℃,压力增大到0.8MPa时,沸点会上升到20℃。为了液化气储运安全使其沸点控制到常温以下,所以液化气工作压力多定为0.7MPa。 液化石油气各组分在101.33KPa下的沸点参数见表1。 2、气体、液体密度 密度是指单位体积的物质所具有的质量,用ρ表示,单位为Kg/m3。 气体密度是随温度和压力的不同而有很大变化。因此,表示气体密度时,必须规定温度和压力条件。通常以压力为101.33KPa、温度为0℃时的数值,作为标准状态下密度值。 液化气主要成分气体密度见表2

液体的密度受温度影响较大,温度升高时,体积膨胀,密度减小。但密度受压力影响却很小,可以不予考虑。表3列出了丙烷的密度与温度的关系,由表3可知液体丙烷受温度使其密度和体积变化情况。如在15℃时,丙烷体积为100%,当温度升高30℃时,体积膨胀到105%。即比原来增加了5%。 丙烷的密度与温度的关系表3 1、气体、液体相对密度 物质的密度与某一标准物质的密度之比称为该物质的相对密度,相对密度没有单位。 气体的相对密度是指在标准状态下,气体的密度与空气密度的比值,用S表示,即: S=ρ/ρ 空 式中S——某气体的相对密度; ρ——标准状态下某气体的密度,Kg/m3。 ——标准状态下空气的密度,其值为1.293Kg/m3。 ρ 空 另一种简单方法,是用液化石油气分子量与空气量即:S=M/M 空 式中M——液化石油气的分子量; ——空气分子量,其值为29。 M 空 液体的相对密度是液体的密度与同体积4℃纯水的密度之比,用d表示,没有单位。即: d=ρ/ρ 水 式中d——某液体相对密度; ρ——某液体的密度,g/cm 2 ——在101.33Kma和4℃下,纯水的密度,其值为1 g/cm2ρ 水 液态液化气的相对密度是以0℃的数值作为标准,但操作和实际中都是在常温下进行的。液态液化气相对密度在0.5~0.6之间,即比水轻得多。气态液化

常见的几种塑料及其特性

2.4.1gz烯(PE) 聚乙烯塑料的产量为塑料上、IL之冠,其巾以高乐聚乙烯的产量最大。聚乙烯树脂为无毒、无味,旱白色或乳白色,柔软、半透明的大理石状粒料,密度为o.9l—o.96R/cms,为 结吊型塑料。 聚乙烯按聚合时所采用体力的不同,可分为高乐、中压和低压聚乙烯。高压聚乙烯的分子结构不是单纯的线则,而是带有许多支链的树枝状分子,因此它的结晶度不高(结晶度仅60%一70%),密度较低,AVX钽电容相对分于质坦较小,常称为低密度聚乙烯。它的耐热性、硬度、机械强度等都较低,但是它的介电性能好,具有较好的柔软性、耐冲击性及透明性,成型加 工性能也较好。小、低压聚乙烯的分子结构是支链很少的线型分子,其相对分子质虽、结晶度较高(高达87%一95%),密度大,相对分子质量大,常称为高密度聚乙烯。它的耐热世、硬度、机械强度等较高,但柔软性、耐冲击性及透明件、成型加下性能较差。 低压聚乙烯可用于制造塑料管、塑料板、塑料绳以及承载不高的零件,如齿轮、轴承等;中压聚乙烯最适宜的成型方法有高速吹塑成型,Mr制造瓶类、包桨用的薄膜以及各种汗 射成型制品和旋转成型制品,也可用齐电线电缆上面;高爪聚乙烯常用于制作塑料薄膜(理想的包装材料)、软管、塑料瓶,以及电气11rk的绝缘零件和电缆外皮等。 成型,Ik缩中范围及收缩值大,方向性明显,容易变形、翘曲,应控制模温,保持冷却均 匀、稳定;流动性好且对历力变化敏感,宜用高压注射,料温均匀,填充速度应伙,保压充分;冷却速度慢,因此必须充分冷却.模具应没有冷却系统;质软易脱模,塑件有浅的侧凹槽时可强行脱模。 2.4.2聚丙烯4PP) 聚向烯无色、无味、无毒,外观似聚乙烯,但比聚乙烯更透明、更轻,密度仅为o.90— o.91g/cm3,不吸水,光泽好,易着色。 聚丙烯具有聚乙烯所有的优良性能,如电越的介电性能、耐水性、化学稳定性,育于成型加工等,还具有聚乙烯所没有的许多‘K能,如屈服强度、抗抓强度、抗压强度和硬度及弹 性比聚乙烯好。定闭t伸厉聚丙烯可制作铰链,有特别高的抗弯曲疲劳强度,如用聚丙烯注射戊型一体铰链(盖和本体合一的各种容器),经过70 ooo ooo次开闭弯折未产生损坏和断裂现象。聚丙烯熔点为164一170℃,耐热性好,能在100。c以上的温度下进行消毒灭菌。其低温使用温度达一15℃,低于一35℃时会脆裂。聚内烯的高频绝缘性能好,而且由于其不 吸水,绝缘性能不受湿度的影响,但在氧、热、光的作用下极易解聚、老化,所以必须加人防老化剂。 聚丙烯可用做各种机械零件如法兰、接头、泵Df轮、汽车零件和凯?车零件,可作为水、蒸汽、各种酸碱等的输送管道,化:[容器和其他设备的衬里、表面涂层,刘制造盖和本 体合一的箱犬、各种绝缘零件,并用于医药工业个。 成型收缩范围及收缩中大,易发个缩孔、凹疽、变形,方向性强,流动性极好,易十成型,热容量大,注射成型模具必须设汁能充分进行冷却的冷却回路,注意控制成型温度。料温低时方向性明显,尤其是低温、高压时更明显。聚丙烯成型的适宜模温为80℃左右,不

2020版液化天然气的低温特性

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版液化天然气的低温特性 Safety management is an important part of production management. Safety and production are in the implementation process

2020版液化天然气的低温特性 LNG的低温常压储存是在液化天然气的饱和蒸气压接近常压时的温度进行储存,也即是将LNG作为一种沸腾液体储存在绝热储罐中。常压下LNG的沸点在-162℃左右,因此LNG的储存、运输、利用都是在低温状态下进行的。低温特性除了表现在对LNG系统的设备、管道的材料要注意防止低温条件下的脆性断裂和冷收缩对设备和管路引起的危害外,也要解决系统保冷、蒸发气处理、泄漏扩散以及低温灼伤等方面的问题。 一、隔热保冷 LNG系统的保冷隔热材料应满足导热系数小、密度低、吸湿率和吸水率小、抗冻性强的要求,并在低温下不开裂、耐火性好、无气味、不易霉烂、对人体无害、机械强度高、经久耐用、价格低廉、方便施工等要求。 二、蒸发特性

LNG是作为沸腾液体储存在绝热储罐中。外界任何传入的热量都会引起一定量液体蒸发成为气体,这就是蒸发气(BOG)。蒸发气的组成与液体组成有关。标准状况下蒸发气密度是空气的60%。 当LNG压力降至沸点压力以下时,将有一定量的液体蒸发而成为气体,同时液体温度也随之降到其在该压力下的沸点,这就是LNG 的闪蒸。通过烃类气体的气液平衡计算,可得到闪蒸气的组成及气量。当压力在100~200kPa范围内时,1m3 处于沸点下的LNG每降低1kPa压力时,闪蒸出的气量约为0.4kg。当然,这与LNG的组成有关,以上数据可作估算参考。由于压力、温度变化引起的LNG蒸发产生的蒸发气的处理是液化天然气储存运输中经常遇到的问题。 三、泄漏特性 LNG倾倒在地面上时,起初迅速蒸发,然后当从地面和周围大气中吸收的热量与LNG蒸发所需的热量平衡时便降至某一固定的蒸发速度。该蒸发速度的大小取决于从周围环境吸收热量的多少。不同表面由实验测得的LNG蒸发速度如表2-4[2]

各种塑胶材质的特性(精)

各种塑膠材质的特性~~申请加精 一.ABS:丙烯睛—丁二烯—苯聚合物- t0 t e+ }5 Y& \ 1.三种成份的作用 1 O" ]+ X2 w- [$ q6 Z/ `/ N 丙烯晴(A)——使制品较高硬度,提高耐磨性耐热性。 丁二烯(B)——加强柔顺性,保持材料韧性、弹性及耐冲击强度。 苯乙烯(S)——保持良好成型性(流动性着色性)及保持材料刚性(注根据组分不同派生 出多种规格牌号)。: C9 U\9 E! g# }7 Y 2.ABS具有良好的电镀性,是所有塑料中电镀性最好的。 3.ABS较GPPS抗冲击强度显著提高。- U4 b* x( C4 O- a3 @- B8 P; g: 4.ABS原料浅黄色不透明,制品表面光洁度好。 5.ABS收缩率小,尺寸稳定。6 P}, {7 t/ \ 6.不耐有机溶剂:如溶于酮、醛、酯、及氧化烃而形成乳浊流(ABS胶浆)。 7.材料共混性能:1 Y- U6 I- O. e4 h- j# U ABS+PVC~~~提高韧性,耐燃性,抗老化。' x1 p L: K( k8 F7 ^. [ ABS+PC~~~提高抗冲击强度,耐热性。 ABS 的成型工艺 1.成型加工前需充分干燥,使含水率< 0.1%,干燥条件温度 85℃,时间3HRS以上。 2.ABS流动性较好,易产生啤塑披锋,注射压力在70~~100MPa,不可太大。9 z* C( Y/ a0 b8 b7 h( u 3.料筒温度不易超过250℃ 前料筒 160~~~210℃、中料筒170~~~190℃、后料筒 160~~~180℃过高温会引起 塑胶成份分解、使流动性降低。 4.模温40~~80℃,外观要求高,模温也要高。$ W) T6 T* |5 N% s 5.注射速度取中、低速为主。注射力80~~130MPa。 6.ABS内应力检验:以制品浸入煤油中2分钟不出现裂纹为准。 二.MBS—透明ABS、聚甲基丙烯酸酯—丁二烯—苯乙烯共聚物。 主要性质:透明、韧性好、耐酸碱、流动性好、易于成型着色、尺寸稳定。 三.SBS—K料(透明)。丁二烯与本乙烯聚合物(KR01、KR03)。 主要性质:透明、较好弹性、方便成型。! N$ F6 R- @% Z$ 四.PS料:聚苯乙烯(GPPS硬胶、HIPS改性聚本乙烯 GPPS—硬 HIPS——不碎。$ V! n% u/ F8 M" ~0 m6 }6 } A)在GPPS中加于适量(5~~20%)丁二烯橡胶改性、从而改善了硬胶的抗冲击性。3 |" F6 `4 r5 Y! }7 u' D B)颜色:GPPS--透明度高性碎,HIPS--不透明之乳白色或略显黄色。 C)HIPS与GPPS根据需要可混合啤塑,GPPS成份越多制品表面光泽越好、流动性& `9 |8 d* e U* A+ A. y+ j7 u& m 越好。HIPS:GPPS=7:3或8:2可保持足够强度及表面质量。3 m$ O' T" h0 Z) K- O *聚本乙烯的成型工艺

液化天然气的一般特性

液化天然气的一般特性 GB/T 19204-2003 前言 本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。 为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。 关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。 本标准的附录A、附录B为资料性附录。 本标准由中国海洋石油总公司提出。 本标准由全国天然气标准化技术委员会归口。 本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。 本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。 CEN前言 本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。 本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。

根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。 1 范围 本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。 本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。 本标准还可供设计和操作LNG设施的工作人员参考。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其岁后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 EN 1473 液化天然气装置和设备,陆上装置设计 3 术语和定义 下列术语和定义适用于本标准 液化天然气liquefied natrual gas 一种在液态状况下的无色流体,主要由甲烷组成,组分可能含有少量乙烷,丙烷、氮或通常存在于天然气中的其他组分

LNG运输船储罐的形式及特点

LNG运输船储罐的形式及特点 天然气的主要成份是甲烷,在常压下沸点为-160℃,液体比重(-160℃)0.43-0.48,气体比重(20℃)是空气的一半,气态与液态体积比600,在空气中可燃极限为5-15%,是一种低温、可压缩、易燃的气体,具有比重轻、无毒、不腐蚀等特性。 鉴于天然气的特性,对LNG运输的设计主要考虑的因素是:能适应低温介质的材料,对易挥发/易燃的处理,低比重的储存能力。按国际燃气规范,对适用-165℃的设计温度的货舱须选用9%的镍钢、奥氏体钢(不锈钢)、铝合金、奥氏体铁-镍合金(36%的镍钢),当LNG储罐(即货舱)泄漏时须保证物料15天内不外溢,需设置第二防漏隔层,因为LNG 运输距离不论有多远,不会超过15天,在此期间即可回船厂维修,故LNG储罐(即货舱)为双层壳体,以防LNG泄漏,保护船体;对易挥发/易燃的处理,利用LNG挥发气作船舶动力的燃料,在LNG的装载/卸货时,船与接收站之间用气相管和液相管连接成封闭系统,防止空气进入LNG储罐,确保系统的安全,并且LNG货舱的外壳须绝热,以控制LNG挥发速率及控制由温度变化而引起的热胀冷缩,保护船体构造不受储罐极低温的损害,同时以减少运输过程中LNG的蒸发,对绝热性能要求达到控制日蒸发率0.15%。 LNG的储罐是独立于船体的特殊构造,储罐的形式对LNG运输的设计影响很大。当今世界LNG运输船的储罐形式有自撑式和薄膜式两种。 自撑式有A型和B型,其中A型为棱形或称为IHI SPB,设置完整的二级防漏隔层,以防护全部货物泄漏,专利属于日本石川岛播磨重工公司;B型为球形,设置部分二级防漏隔层,以防护少量货物泄漏,专利属于KV ANERNER MOSS。球罐型的特点是:独立舱体不容易被伤害,可分开制造,造船周期短,质量检查容易;液面晃动效应少,不受装载限制,充装范围宽;保温材料(可用聚氨基甲酸酯塑料,聚苯乙烯,酚醛塑料树脂)用量少;由于储罐带压(2kg/cm2),操作灵活,增加安全性,紧急情况下,在装卸的任何阶段都可离港,或在货物泵失灵情况下,卸货的可能性也较好,并且卸完货时清舱简便,但船受风阻面积大。 薄膜式又可分为Technigaz和Gaz-Transport两种,前者货舱内壁为波纹型。其特点是:可加工许多预制件,缩短造船时间,由于保温层较薄,相应货物装载量要略微大些,但保温材料较贵,并且保温采用粘结方式,施工后不能改动,对质量控制要求严格。后者选用0.7mm 厚,500mm宽的平板INV AR钢(36%镍钢)货舱内壁为平板型。其特点是:不可预先加工许多部件,但易制造,制造时间较长;由于保温层较厚,相应货物装载量稍微小些;保温材料采用可渗透气体的珍珠岩,以添加更多的惰性气体,减少保温材料费用,并且被封闭在保温盒子内用螺栓固定,施工后可改动,质量控制相对不是很严。 以上两者均设置完整的二级防漏隔层,以防护全部货物泄漏,专利属于法国燃气公司的子公司--燃气海上运输及技术公司(GTT)。两者共同的特点是:船的主要尺寸较小、低温钢材用量少,低功率、燃料消耗低;船体可见度大,视觉宽,船体受风阻面积少;设置完整的第二防漏隔层,对高级计算要求少,不需要复杂的应力计算;船厂投资少,但劳动强度,不能对保温层检查;液面易晃动,为避免晃动的危险,装载受限制,并且由此薄膜货舱尺寸也有所改进。 建造LNG船要比建造油船需要更大量的劳动力和更高的技术工艺,具有极其严格的质量控制,是船舶制造业中要求最为严格的一种,尤其是建造密封系统需要特殊的设备和装置以及熟练技术劳力,须有密封系统的制造许可证。因此全世界LNG船的建造能力受到限制。据了解,当今建造LNG船的厂家中。制造自撑式球罐形的有日本(三菱重工,川崎重工,三井造船)和芬兰(KV ANERNER MOSS);制造自撑式IHI SPB(棱形)是日本石川岛播磨重工;制造Gaz Transport(平板形)薄膜式有法国大西洋船厂,意大利FINCANTIERI,韩国现代和大宇,三菱重工和三井已签合同准备建造该船型。制造Technigaz(波纹形)薄膜式有日本钢管厂(NKK)和韩国三星。

液化气的物理特性

液化石油气的物理特性 液化石油气气体的密度其单位是以kg/m3表示,它随着温度和压力的不同而发生变化。因此,在表示液化石油气气体的密度时,必须规定温度和压力的条件。一些碳氢化合物在不同温度及相应饱和蒸气压下的密度见表2-5。 表1-1 一些碳氢化合物在不同温度及相应饱和蒸气压力下的密码(kg/m3) 从表1-1中可以看出,气态液化石油气的密谋随着温度及相应饱和蒸气压的升高而增加。在压力不变的情况下,气态物质的密度随温度的升高而减少,在101.3kPa下一些气态碳氢化合物的密度见表1-2。 表1-2 一些气态碳氢化合物在101.3kPa下的密度/( kg/m3) 液化石油气液体的密度以单位体积的质量表示,即kg/m3。它的密度受温度影响较大,温度上升密度变小,同时体积膨胀。由于液体压缩性很小,因此压力对密度的影响也很小,可以忽略不计。由表1-2可以看出,液化石油气液态的密度随温度升高而减少。 表1-3 液化石油气液态的密度(kg/m3)

相对密度由于在液化石油气的生产/储存和使用中,同时存在气态和液态两种状态,所以应该了解它的液态相对密度和气态的相对密度。 液化石油气的气态相对密度,是指在同一温度和同一压力的条件下,同体积的液化石油气气体与空气的质量比。求液化石油气气体各组分相对密度的简便方法,是用各组分相对密度的简便方法,是用各组分的相对分子质量与空气平均相对分子质量之比求得,因为在标准状态下1mol气体的体积是相同的。液化石油气气态的相对密度见表1-4。 表1-4 液化石油气气态的相对密度(0℃,101.3kpa) 从表1-4中可以看出液化石油气气态比空气重1.5~2.5倍。由于液化石油气比空气重,因此,一旦液化石油气从容器或管道中泄漏出来,不像相对密度小的可燃气体那样容易挥发与扩散,而是像水一样往低处流动和滞存,很容易达到爆炸浓度。因此,用户在安全使用中必须充分注意,厨房不应过于狭窄,通风换气要良好。液化石油气储存场所不应留有井\坑\穴等.对设计的水沟\水井\管沟必须密封,以防聚积,引起火灾。 液化石油气的液态相对密度,指在规定温度下液体的密度与规定温度下水的密度的比值。它一般以20℃或15℃时的密度与4℃与15℃时纯水密度的比值来表示。 液化石油气的液态相对密度,随着温度的上升而变小,见表1-5。 表1-5液化石油气液态各组分相对密度 从表1-5中可看出,在常温下(20℃左右),液化石油气液态各组分的相对密度约为0.5~0.59之间,接近为水的一半。当液化石油气中含有水分时,水汾就沉积在容器的底部,并随着液化石油气一部输送到用户,这样,既增加了用户的经济负担,又会引起容器底部腐蚀,缩短容器的使用期限。因此,液化石油气中的水分要经常从储罐底部的排污阀放出。 体积膨胀系数绝大多数物质都具有热胀冷缩的性质,液化石油气也不例外,受热受膨胀,温度越高,膨胀越厉害。

常用塑料材料的特性简介

常用塑料材料的特性简介 一、聚乙烯类塑料 聚乙烯是指由乙烯单体自由基聚合而成的聚合物,英文名简称PE。PE的合成原料来自石油,自1965年以来一直高居世界塑料树脂产量第一位。目前,聚乙烯的主要品种有: 低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),线性低密度聚乙烯(LLDPE),(超)高分子量聚乙烯(UHMWPE),茂金属聚乙烯(m-PE) 还有其改性品种: 乙烯—乙酸乙烯酯(EVA)氯化聚乙烯(CPE)。 1、聚乙烯类塑料的结构性能 PE为线性聚合物,属于高分子长链脂肪烃;分子对称无极性,分子间作用力小,力学性能不高、电绝缘性好、熔点低、印刷性缓谩 E的结构规整,线性度高,因而易于结晶。结晶度从高到低排序:HDPE,LLDPE,LDPE。随结晶度的提高,PE制品的密度、刚性、硬度和强度等性能提高,但冲击性能下降。 (1)一般性能 PE树脂为无味、无毒的白色粉末或颗粒,外观呈乳白色,有似腊的手感;吸水率低,小于0.01%。PE膜透明,透明度随结晶度提高而下降。PE 膜的透水率低但透气性较大,不适于保鲜包装而适于防潮包装。PE易燃,氧指数仅为17?4,燃烧时低烟,有少量熔融滴落,火焰上黄下蓝,有石蜡气味。PE的耐水性较好。制品表面无极性,难以粘合和印刷,须经表面处理才可改善。 (2)力学性能 PE的力学性能一般,其拉伸强度较低,抗蠕变性不好,耐冲击性能较好。PE的耐环境应力开裂性不好,但随分子量增大而改善。PE的耐穿刺性好,并以LLDPE最好。 (3)热学性能 PE的耐热性不高,随分子量和结晶度的提高而改善。PE的耐低温性好,脆化温度一般可达-50℃以下;随分子量的增大,最低可达-140℃。PE 的线膨胀系数大,在塑料中属较大者。PE的热导率属塑料中较高者。 (4)电学性能 PE无极性,因此电性能十分优异。介电损耗很低,且随温度和频率变化极小。PE是少数耐电晕性好的塑料品种,介电强度又高,因而可用做高压绝缘材料。 (5)环境性能 PE具有良好的化学稳定性。在常温下可耐酸、碱、盐类水溶液的腐蚀,具体有稀硫酸、稀硝酸、任何浓度的盐酸、氢氟酸、磷酸、甲酸及乙酸等,但不耐强氧化剂如发烟硫酸、、浓硫酸和铬酸等。PE在60℃以下不溶于一般溶剂,但与脂肪烃、芳香烃、卤代烃等长期接触会溶胀或龟裂。温度超过60℃后,可少量溶于甲苯、乙酸戊酯、三氯乙烯、松节油、矿物油及石蜡中;温度超过100℃后,可溶于四氢化萘。 PE耐候性不好,日晒、雨淋都会引起老化,需加入抗氧剂和光稳定剂改善。2、聚乙烯类塑料的应用范围 (1)薄膜类制品 薄膜类制品是PE的最主要用途。LDPE树脂用于膜类制品可占50%以上,可用于食品、日用品、蔬菜、收缩、自粘、垃圾袋等轻质包装膜及农业用地膜、棚膜等。HDPE树脂用于膜类制品可占10%以上。因其薄膜强度高,主要用于重包装膜、撕裂膜及背心

常用燃气特性

一 LPG物性 LPG是一种低碳数的烃类混合物,其主要成分为丙烷、正丁烷、异丁烷、丙烯等碳三和碳四烃,在常温常压下为气体。LPG无色透明,具有烃类的特殊气味。 LPG的密度一般在500 Kg/m3~580 Kg/m3之间。 LPG 0℃时的动力粘度一般在139×10-6~169×10-6Pa.s的范围内。 丙烷50℃时的饱和蒸汽压为1.744MPa(绝压)。 呼和浩特石化公司LPG组成见表5-1,密度为580kg/m3,其各组分物化常数见表5-2。 二天然气组份 北京市目前的主要天然气气源是陕甘宁长庆气田。

由以上组份计算得出: 表2-3 陕甘宁天然气性质表 北京市目前的天然气输配系统设计压力分为5级: 表2-4 城镇燃气设计压力(表压)分级 城镇燃气管道应按燃气设计压力(P)分为7 级,并应符合表6.1.6 的要求。 表6.1.6 城镇燃气设计压力(表压)分级

三液化天然气特性 液化天然气(LNG)一种在液态状况下的无色流体,主要由甲烷组成,组分可能含有少量乙烷,丙烷、氮或通常存在于天然气中的其他组分。LNG是以甲烷为主的液态混合物,储存温度约为-146℃。泄漏后由于地面和空气的加热,会生成白色蒸气云。当气体温度继续被空气加热直到高于-107 ℃时,由于此时天然气比空气轻,会在空气中快速扩散。液体密度约是标准状态下气体的570倍,天然气与空气混合后,体积分数在一定的范围内就会产生爆炸,其爆炸下限为4.6%,上限为14.57%。天然气的燃烧速度相对于其它可燃气体较慢(大约是0.3m/s)。天然气的燃点为650℃,比汽柴油、 LPG的燃点高,点火性能也高于汽柴油、LPG。 天然气的爆炸极限为4.6~14.57%,且密度很低,只有空气的一半左右,稍有泄漏即挥发扩散;而LPG的爆炸极限为2.4~9.5%,燃点为466℃,且气化后密度大于空气,泄漏后不易挥发;汽油爆炸极限为1.0~7.6%,燃点为427℃;柴油爆炸极限为0.5~4.1%,燃点为260℃。由此可见,在某种意义上天然气比LPG、汽油、柴油更安全。 由于LNG在压力0.35MPa的条件下,储存温度约为-146℃,泄漏后的初始阶段会吸收地面和周围空气中的热量迅速气化。但到一定的时间后,地面被冻结,周围的空气温度在无对流的情况下也会迅速下降,此时气化速度减慢,甚至会发生部分液体来不及气化而被防护堤拦蓄。LNG泄漏后的冷蒸气云或者来不及气化的液体都会对人体产生低温灼烧、冻伤等危害。 LNG将天然气在110K的低温下液化,液化过程中首先进行净化处理,除去H2O、CO2、H2S以及有机硫化物等杂质。因而,LNG的着火点

各种塑料的特性介绍

一、聚乙烯类塑料 聚乙烯是指由乙烯单体自由基聚合而成的聚合物,英文名简称PE。PE的合成原料来自石油,自1965年以来一直高居世界塑料树脂产量第一位。目前,聚乙烯的主要品种有: 低密度聚乙烯(LDPE), 高密度聚乙烯(HDPE), 线性低密度聚乙烯(LLDPE), (超)高分子量聚乙烯(UHMWPE), 茂金属聚乙烯(m-PE) 还有其改性品种:乙烯—乙酸乙烯酯(EVA)?氯化聚乙烯(CPE)。?1、聚乙烯类塑料的结构性能 PE为线性聚合物,属于高分子长链脂肪烃;分子对称无极性,分子间作用力小,力学性能不高、电绝缘性好、熔点低、印刷性不好。PE的结构规整,线性度高,因而易于结晶。结晶度从高到低排序:HDPE,LLDPE,LDPE。随结晶度的提高,PE制品的密度、刚性、硬度和强度等性能提高,但冲击性能下降。 (1)一般性能 PE树脂为无味、无毒的白色粉末或颗粒,外观呈乳白色,有似腊的手感;吸水率低,小于0?01%。PE膜透明,透明度随结晶度提高而下降。PE膜的透水率低但透气性较大,不适于保鲜包装而适于防潮包装。PE易燃,氧指数仅为17?4,燃烧时低烟,有少量熔融滴落,火焰上黄下蓝,有石蜡气味。PE的耐水性较好。制品表面无极性,难以粘合和印刷,须经表面处理才可改善。 (2)力学性能 PE的力学性能一般,其拉伸强度较低,抗蠕变性不好,耐冲击性能较好。PE的耐环境应力开裂性不好,但随分子量增大而改善。PE的耐穿刺性好,并以LLDPE最好。?(3)热学性能 PE的耐热性不高,随分子量和结晶度的提高而改善。PE的耐低温性好,脆化温度一般可达-50℃以下;随分子量的增大,最低可达-140℃。PE的线膨胀系数大,在塑料中属较大者。PE的热导率属塑料中较高者。 (4)电学性能 PE无极性,因此电性能十分优异。介电损耗很低,且随温度和频率变化极小。PE是少数耐电晕性好的塑料品种,介电强度又高,因而可用做高压绝缘材料。 (5)环境性能 PE具有良好的化学稳定性。在常温下可耐酸、碱、盐类水溶液的腐蚀,具体有稀硫酸、稀硝酸、任何浓度的盐酸、氢氟酸、磷酸、甲酸及乙酸等,但不耐强氧化剂如发烟硫酸、、浓硫酸和铬酸等。PE在60℃以下不溶于一般溶剂,但与脂肪烃、芳香烃、卤代烃等长期接触会溶胀或龟裂。温度超过60℃后,可少量溶于甲苯、乙酸戊酯、三氯乙烯、松节油、矿物油及石蜡中;温度超过100℃后,可溶于四氢化萘。?PE耐候性不好,日晒、雨淋都会引起老化,需加入抗氧剂和光稳定剂改善。?2、聚乙烯类塑料的应用范围 (1)薄膜类制品 薄膜类制品是PE的最主要用途。LDPE树脂用于膜类制品可占50%以上,可用于食品、日用品、蔬菜、收缩、自粘、垃圾袋等轻质包装膜及农业用地膜、棚膜等。HDPE树脂用于膜类制品可占10%以上。因其薄膜强度高,主要用于重包装膜、撕裂膜及背心袋等。LLDPE树脂用于膜类制品的比重比L DPE还要大,可占树脂的70%以上。LLDPE膜具有延伸性好、较高的拉伸强度、耐穿刺、耐环境应力开裂及低温冲击性好、可制成超薄膜等优点,主要用于包装膜、垃圾袋、保鲜膜、自粘膜及超薄地膜等。?(2)注塑制品 PE因加工性好而广泛用于注塑制品,其中HDPE占30%以上,LDPE和LLDPE各占10%以上。主要生产:日用品如盆、桶、盒、暖瓶壳、杯、玩具等,周转箱、瓦楞箱。 (3)中空制品 以HDPE树脂为主,可占树脂用量的20%。其制品具有耐应力开裂性好、耐油性好、耐低温冲击性好等优点,可用于食品油、酒类、汽油及化学制剂等液体的包装。此外还有中空玩具等。?(4)管材类制品 以HDPE树脂为主,主要用于生活给水、燃气输送、农业排灌、电缆穿线管、液体吸管及圆珠笔芯等。LDPE管还可用于化妆品、药品、牙膏、鞋油等的包装。? (5)丝类制品 圆丝用HDPE为原料,主要用于编织渔网、缆绳、工业滤网及民用纱窗网等。扁丝以HDPE和LLDP E为原料,主要用于编织袋、编织布及撕裂膜等。 (6)电缆制品 PE广泛用于中、高压电缆的绝缘和护套材料,其中以LDPE为主,最高耐压可达220kV。 (7)其它制品

相关主题
文本预览
相关文档 最新文档