当前位置:文档之家› 两路PCM时分复用实验

两路PCM时分复用实验

两路PCM时分复用实验
两路PCM时分复用实验

实验报告

课程名称通信原理

实验名称两路PCM时分复用实验

专业通信工程

班级

学号

姓名

指导教师彭祯

2011年12 月15 日

实验五两路PCM时分复用实验

实验名称两路PCM时分复用实验评分

实验日期2011 年12 月11 日指导教师彭祯

姓名专业班级通信工程学号

一、实验目的

1、掌握时分复用的概念。

2、了解时分复用系统的构成及工作原理。

3、了解时分复用的优点与缺点。

4、了解时分复用在整个通信系统中的作用。

二、实验内容

对两路模拟信号进行PCM编码,然后进行复用,观察复用后的信号并将其与复用前的编码信号比较。

三、实验器材

1、信号源模块一块

2、②号模块一块

3、⑧号模块一块

4、⑦号模块一块

5、20M 双踪示波器一台

6、连接线若干

四、实验原理

时分复用的原理框图如图6-3所示:

图6-3 时分复用原理框图

2、解复用原理

解复用是通过帧同步提取模块提取的帧同步信号和位时钟提取模块控制计数器产生帧同步信号TS0、TT1和TS_SEL。然后,再通过TS0、TS1、TS_SEL将复用的信号分离开。原理框图如图6-4所示:

图6-4 解复用原理框图

五、实验步骤

1、将信号源模块和模块

2、8固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触良

好。

2、将信号源模块上S4拨为“0100”,S5也拨为“0100”。

3、在电源关闭的状态下,按照下表完成实验连线:

* 检查连线是否正确,检查无误后打开电源

4、将模块8上的拨码开关S1,S2分别设置为0000 0100,用示波器观察模块8上“FJOUT

“处的输出波形,改变拨码开关为其它值,观察输出波形变化情况。

5、实验结束关闭电源。

六、实验结果

1、分析实验电路的工作原理,叙述其工作过程。

在数字通信中,PCM、ΔM、ADPCM 或者其它模拟信号的数字化,一般都采用时分复用方式来提高信道的传输效率。所谓复用就是多路信号(语音、数据或图像信号)利用同一信道进行独立的传输。如利用同一根同轴电缆传输 1920 路电话,且各路电话之间的传递是互独立的,互不干扰。

时分复用(TDM)的主要特点是利用不同时隙来传递各路不同信号,时分复用是建立在抽

样定理基础上的,因为抽样定理是连续(模拟)的基带信号有可能在被时间上离散出现的抽样脉冲所代替。。这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。TDM与 FDM(频分复用)

2、根据实验测试记录,在坐标纸上画出各测量点的波形图,并分析实验现象。(注意对

应相位关系)

PCM时分复用接线实物图

改变拨码开关时“FJOUT“处的输出波形

未改变拨码开关时“FJOUT“处的输出波形

3、写出对本次实验的改进建议。

可以在现有的技术支持下继续细分时间段或是选用其他的方法如码分复用来优化实验。

七、实验体会

总的来说经过两周的通信原理课程设计的学习让我受益菲浅。在通信原理实验课即将结束之时,我对在这两周来的学习进行了总结,总结这此实验的收获与不足使我进步了很多,我将努力改善,通过学习、实践等方式不断提高,克服那些不应成为学习、获得知识的障碍。使之在今后的学习、工作中有更大的收获,在不断地探索中、在无私的学习、奉献中实现自己的人身价值!

时分复用-解复用实验

固定及变速率时分复用、解复用实验 第一部分固定速率时分复用/解复用实验? 一、实验目得 1.掌握固定速率时分复用/解复用得同步复接/分接原理。 2.掌握帧同步码得识别原理。 3.掌握集中插入帧同步码时分复用信号得帧结构特点。 二、实验内容 1.搭建一个理想信道固定速率时分复用数字通信系统,使系统正常工作。 2.搭建一个理想信道固定速率时分解复用数字通信系统,使系统正常工作。 3.用示波器观察集群信号(FY_OUT)、位同步信号(BS)及帧同步信号(FS),熟悉它们得对应关 系。 4.观察信号源发光管与终端发光管得显示对应关系,直接观察时分复用与解复用得实验效果。 三、实验仪器 示波器,RC-GT-II型光纤通信实验系统。 四、基本原理 1.同步复接/分接原理 固定速率时分复用/解复用通常也称为同步复接/分接。在实际应用中,通常总就是把数字复接器与数字分接器装在一起做成一个设备,称为复接分接器(缩写为Muldex)。 图1、1 数字复接器得基本组成图1、2 数字分接器得基本组成图数字复接器得基本组成如图1、1所示。数字复接器得作用就是把两个或两个以上得支路数字信号按时分复接方式合并成为单一得合路数字信号。数字复接器由定时、调整与复接单元所组成。定时单元得作用就是为设备提供统一得基准时间信号,备有内部时钟,也可以由外部时钟推动。调整单元得作用就是对各输入支路数字信号进行必要得频率或相位调整,形成与本机定时信号完全同步得数

字信号。复接单元得作用就是对已同步得支路信号进行时间复接以形成合路数字信号。 数字分接器得基本组成如图1、2所示。数字分接器得作用就是把一个合路数字信号分解为原来支路得数字信号。数字分接器由同步、定时、分接与恢复单元所组成。定时单元得作用就是为分接与恢复单元提供基准时间信号,它只能由接收得时钟来推动。同步单元得作用就是为定时单元提供控制信号,使分接器得基准时间与复接器得基准时间信号保持正确得相位关系,即保持同步。分接单元与复接单元相对应,分接单元得作用就是把输入得合路数字信号(高次群)实施时间分离。分接器得恢复单元与复接器得调整单元相对应,恢复单元得作用就是把分离后得信号恢复成为原来得支路数字信号。 将低次群复接成高次群得方法有三种;逐比特复接;按码字复接:按帧复接。在本实验中,由于速率固定,信息流量不大,所以我们所应用得方式为按码字复接,下面我们把这种复接方式作简单介绍。 按码字复接:对本实验来说,速率固定,信息结构固定,每8位码代表一“码字”。这种复接方式就是按顺序每次复接1个信号得8位码,输入信息得码字轮流被复接。复接过程就是这样得:首先取第一路信息得第一组“码字”,接着取第二路信息得第一组“码字”,再取第三信息得第一组“码字”,轮流将3个支路得第一组“码字”取值一次后再进行第二组“码字”取值,方法仍然就是:首先取第一路信息得第二组码,接着取第二路信息得第二组码,再取第三路信息得第二组码,轮流将3个支路得第二组码取值一次后再进行第三组码取值,依此类推,一直循环下去,这样得到复接后得二次群序列(d)。这种方式由于就是按码字复接,循环周期较长,所需缓冲存储器得容量较大,目前应用得很少。 图1、3 按码字复接示意图 (a)第一路信息;(b)第二路信息;(c)第三路信息;(d)复接后2.本实验所用得同步复接模块得结构原理 本实验所用到得固定速率时分复用端得原理方框图如图1、4所示。这些模块产生三路信号时分复用后得FY_OUT信号,信号码速率约为128KB,帧结构如图1、5所示。帧长为24位,其中首位无定义,第2位到第8位就是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此FY_OUT信号为集中插入帧同步码时分复用信号。同时通过发光二极管来指示码型状态:发光二极管亮状态表示1码,熄状态表示0码。本实验中用到得电路,除并行码产生器与8选一电路就是由分立器件组成得外,其她电路全都在两片大规模集成电路XC95XL144TQ100-5(以下简称CPLD)

高速光时分复用系统的全光解复用技术

高速光时分复用系统的全光解复用技术 李利军,陈 明,范 戈 (上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200030) 摘要:作为高速光信号处理应用的一个分支,全光解复用技术涉及到半导体非线性光学多方面的问题,是实现高速光时分复 用(OT DM )系统的关键技术之一。文章对现有的OT DM 系统的全光解复用技术进行了综述,较为详细地描述了两类主流技术的工作原理,对两者的优缺点做了剖析。介绍了潜在的基于更高速全光开关的解复用新技术,并探讨了全光解复用技术的演进思路。 关键词:光时分复用系统;全光开关;解复用中图分类号:T N914 文献标识码:A 文章编号:1005-8788(2005)06-0027-04 A survey of a ll -opti ca l de m ulti plex i n g techn i ques for h i gh speed O TDM syste m s L IL i 2jun,CHEN M i n g,FAN Ge (Nati onal Laborat ory on Local Fiber 2Op tic Communicati on Net w orks,Shanghai J iaot ong University,Shanghai 200030,China )Abstract:A s a branch app licati on of high s peed op tical signal p r ocessing .The all 2op tical de multi p lexing technol ogy relates t o many as 2pects of se m iconduct or non 2linear op tics and is one of the key technol ogies t o realize the high 2s peed op tical ti m e 2dividi on multi p lexing (OT DM )syste m.This paper gave a survey of current all 2op tical de multi p lexing technol ogies,the p rinci p les of operati on of t w o p re 2dom inant technol ogies have been described in detail,their advantages and disadvantages were analyzed .The potential demulti p lexing technol ogy based on higher 2s peed op tical s witch was als o intr oduced and the evoluti on r oute of all 2op tical de multi p lexing technol ogy dis 2cussed in this paper . Key words:op tical ti m e -divisi on multi p lexing (OT DM )syste m s;all -op tical gate;de multi p lexing 光时分复用(OT DM )技术是一种能有效克服电子电路带宽“瓶颈”、充分利用低损耗带宽资源的扩容方案。与波分复用(WDM )系统相比,OT DM 系统只需单个光源,光放大时不受放大器增益带宽的限制,传输过程中也不存在四波混频等非线性参量过程引起的串扰,且具有便于用户接入、易于与现行的同步数字系列(S DH )及异步传输模式(AT M )兼容等优点。在多媒体时代,超高速(速率高于100Gbit/s )的OT DM 技术对超高速全光网络的实现具有重要意义,其中涉及的关键技术包括:超短光脉冲的产生、时分复用、同步/时钟提取和解复用。解复用可以由光开关来实现。适用于时分复用光信号的光开关有:机械光开关、热光开关、喷墨气泡光开关、液晶光开关和声光开关等。但这些窗口宽度从几百个ns 到几十个m s 的光开关并不适合于线路速率在100Gbit/s 以上的高速OT DM 系统,这是因为这些光开关在操作过程中引入了电的控制信号。基于光学非线性效应(如:光Kerr 效应、四波混频(F WM )效应和交叉相位调制(XP M )效应)的全光开关是实现高速OT DM 信号解复用技术的关键器件。 1 基于相移型全光开关的解复用技术 相移型光开关是一类干涉型光开关,这类光开 关的平衡状态对应器件的闭合状态,而它的非平衡状态是在非线性介质中用控制脉冲对被分割成两路的信号光的其中一路的相位进行半波调制,使得这两路信号光在光开关输出端干涉耦合的耦合量为最大值,从而使光开关导通。 相移型全光开关中的非线性介质可以是光纤也可以是半导体材料。光纤在非线性响应速度方面具有明显的优势(<10fs ),而且不存在载流子密度起伏和增益饱和等问题;然而由于半导体材料在集成度(有效长度低于1mm )、偏振稳定性、非线性强度(高于前者4个数量级)等方面具有更加明显的优势,因而在全光开关中得到了广泛的重视。 基于相移型全光开关的解复用技术是非常多的。基于光Kerr 效应的解复用最早报道于1987年[1] ,随后的非线性光环路镜(NOLM )、太赫兹光非对称解复用器(T OAD )和马赫-曾德尔干涉仪(MZI )则是基于XP M 效应的光开关。 半导体光放大器(S OA )的非线性效应很复杂,除了亚皮秒级的双光子吸收(TP A )、谱烧孔(SHB )和载流子加热(CH )外,还有p s 级的带间载流子起伏(I nterband Carrier Dyna m ics ),各种非线性机制的恢复时间也相差很大。尽管提高有源区载流子密度和添加辅助光可以把载流子寿命控制在几十个p s 收稿日期:2004-12-21 作者简介:李利军(1976-),男,山西寿阳人,博士,主要从事高速光通信技术研究。 7 22005年 第6期(总第132期) 光通信研究 ST UDY ON OPTI CAL COMMUN I CATI O NS 2005 (Sum.No .132)

波分复用/解复用 知多少

波分复用/解复用器 知多少? 随着数据业务的飞速发展,现代生活对传输网的带宽需求越来越高,而光纤资源已经固定且再次铺设费用昂贵,这就需要设备制造商提供有保障、低成本的解决方案。鉴于城域网具有一定的传输距离、较多的业务种类等许多不同于骨干网的特点,波分复用(WDM,Wavelength Division Multiplexing)技术就十分适用于光纤扩容。 什么是光波分复用技术? 在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复用指光频率的粗分,光信道相隔较远,甚至处于光纤不同窗口。 什么是波分复用/解复用器? 我们知道波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 波分复用/解复用器的工作原理是什么? 在FDM系统中,波分复用器用于发射端将多个波长的信号复合在一起并注入传输光纤中,而波分解复用器则用于在接收端将多路复用的光信号按波长分开分别送到不同的接收器上,波分复用/解复用器可以分成两大类,即有源(主动)和无源(被动)型,我们这里只介绍被动型的器件,它按照工作原理可以分成三类,最简单的一种波分复用器是基于角度散射元件,例如棱镜和衍射光栅,另外两种波分复用器为光滤波器和波分复用定向耦合器。从原理上讲,一个波分解复用器反射过来用即为波分复用器,但应该注意的是在FDM系统中对它们的要求不一样,波分解复用器严格要求波长的选择性,而复用器不一定要求波长选择性,因为它的作用只是将多路信号复合在一起。

时分复用和频分复用

时分复用和频分复用

时分复用频分复用 简介 数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过 传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(MultiplexiI1g)。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大 大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。 举个例最简单的例子: 从A地到B地 坐公交2块。打车要20块 为什么坐公交便宜呢 这里所讲的就是“多路复用”的原理。 频分复用 (FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。①前群,又称3路群。它由3个话路经变频后组成。各话路变频的载频分别为12,16,20千赫。取上边带,得到频谱为12~24千赫的前群信号。②基群,又称12路群。它由4个前群经变频后组成。各前群变频的载频分别为84,96,108,120千赫。取下边带,得到频谱为 60~108千赫的基群信号。基群也可由12个话路经一次变频后组成。③超群, 又称60路群。它由5个基群经变频后组成。各基群变频的载频分别为420,468,516,564,612千赫。取下边带,得到频谱为312~552千赫的超群信号。④主群,又称300路群。它由5个超群经变频后组成。各超群变频的载频分别为1364,1612,1860,2108,2356千赫。取下边带,得到频谱为812~2044千赫的主群信号。3个主群可组成 900路的超主群。4个超主群可组

实验2脉冲编码调制PCM与时分复用实验(.)-

实验2脉冲编码调制PCM与时分复用实验(.)- 实验2脉冲编码调制和时分复用实验-实验目的 1。加深对脉码调制过程的理解; 2。熟悉PCM编解码专用集成电路的功能和用法;3.了解PCM系统的工作流程; 4。掌握时分复用的工作流程;用同步正弦波信号观察α律PCM八位编码 2,实验仪器 1。HD8621D实验盒1 2.20米双踪示波器1 3。铆钉孔线5 3,实验电路工作原理(PCM基本工作原理 脉冲调制是将模拟信号转换成数字信号,然后在通道中传输它脉码调制是模拟信号的过程所谓 采样,就是在采样脉冲到达的瞬间提取模拟信号,并及时将信号转换成信号所谓的 的量化意味着采样瞬时值的幅度,即一组指定的电平,被用来表示瞬时采样值在对模拟信号进行采样和量化之后,获得量化的脉冲幅度调制信号,该信号只是有限数量的值首先对

语音信号进行滤波、脉冲采样并转换成采样信号,然后将幅度连续的PAM信号通过舍入法量化成信号,再经过编码转换成信号对于语音电话通信,CCITT规定采样速率为8千赫。每个采样值都是编码的,即总共有量化值。因此,每个信道的脉码调制后的标准数字速率是每秒为了解决均匀量化时小信号量化误差大、音质差的问题,在实践中采用量化方法,即小信号量化特征密集分层,量化间隔小,大信号稀疏分层,大信号大 (2个PCM编解码器电路[PCM编解码器电路TP3067芯片)1。根据图4-4和4-5,解释了单通道PCM编解码器的工作原理。a: 定时,可实现编解码器的省电控制图4-5是短帧同步定时的波形图 4,实验内容 1。用同步正弦波信号观察模数转换八位编码的实验:2.脉码调制和系统实验; 3。PCM 8位编码时分复用输出波形观测实验:4.脉码调制时分复用定

实验6 时分复用 解复用TDM实验

实验6 时分复用/解复用(TDM)实验 一、实验目的 1.掌握时分多路复用的概念; 2.了解本实验中时分复用的组成结构。 二、实验仪器 1.复接/解复接、同步技术模块,位号:I 2.PCM/ADPCM编译码模块,位号:H 3.增量调制编译码模块,位号:D 4.时钟与基带数据发生模块,位号:G 5.20M双踪示波器1台 6.铆孔连接线9根 7.电话单机 1部 三、实验原理 在数字通信中,为扩大传输容量和提高传输效率,通常需要把若干低速的数据码流按一定格式合并为高速数据码流,以满足上述需要。数字复接就是依据时分复用基本原理完成数码合并的一种技术。在时分复用中,把时间划分为若干时隙,各路信号在时间上占有各自的时隙,即多路信号在不同的时间内被传送,各路信号在时域中互不重叠。 把两个或两个以上的支路数字信号按时分复用方式合并成单一的合路数字信号的过程称为数字复接,其实现设备称为数字复接器。在接收端把一路复合数字信号分离成各路信号的过程称为数字分接,其实现设备称为数字分接器。数字复接器、数字分接器和传输信道共同构成数字复接系统。本实验平台中,数据发送单元模块的39U01内集成了数字复接器,数据接收单元的39U01内集成了数字分接器,连接好光传输信道即构成了一个完整的数字复接系统。 数字复接的方法主要有按位复接、按字复接和按帧复接三种;按照复接时各路信号时钟的情况,复接方式可分为同步复接、异步复接与准同步复接三种。本实验中选择了按帧复接的方法和方式。下面介绍一下“按帧复接”方法和“准同步复接”方式的概念。 按帧复接是每次复接一个支路的一帧数据,复接以后的码顺序为:第1路的F0、第2路的F0、第3路的F0、第4路的F0、……,第1路的F1.第2路的F1.第3路的F1.第4路的F1.……,后面依次类推。也就是说,各路的第F0依次取过来,再循环取以后的各帧数据。这种复接方法的特点是:每次复接一支路信号的一帧,因此复接时不破坏原来各 个帧的结构,有利于交换。 同步复接指被复接的各个输入支路信号在时钟上必须是同步的,即各个支路的时钟频率完全相同的复接方式。为了接收端能够正确接收各支路信码及分接的需要,各支路在复接时,插入一定数量的帧同步码、告警码及信令等,PCM基群就是这样复接起来的。准同步复接是在同步复接分接的基础上发展起来的,相对于同步复接增加了码速调整和码速恢复环节。在复接前必须将各支路的码速都调整到规定值后才能复接。 本实验中数字复接系统方框图,如下图2-1: 帧同步

精选-东南大学信息学院_系统实验(通信组)_第二次实验

1.1.1 时分复用/解复用(TDM)实验 一、时分复接观测 (1).同步帧脉冲及复接时钟观测 帧脉冲宽度125us 一帧数据包含时钟数32 复接后时钟速率256k (2).复接后帧头观测 我们将帧头设置为01111110,帧头处于每帧的第一个时隙且帧同步的上升沿为帧的开始位置。观测结果如下: (3).复接后8bit数据观测 我们将帧头设置为00000000,8bit数据为01010101,位于帧的第三个时隙,观测如下:

二、时分解复接观测 (1).解复用同步帧脉冲观测 ●发送与接收端帧头一样时结果如下,此时可以实现同步。 ●拔掉复接数据结果如下,当不解复用信号时无法实现同步,因为没有输入信号。

两端帧头不同时结果如下,解复用端无法找到相对应的帧头,所以无法实现同步,它无法识别出与其不同的帧头。 (2).解复用后8bit数据观测 我们设置01010101,结果如下. 在不断修改原始信号的过程中,我们发现解复用的信号也随之同步变化 (3).解复用后PCM译码观测

(4).解复用后CVSD译码观测

1.1.2 帧同步实验 一、帧同步提取观测及分析 (1).假同步测试 当8bit数据与帧头相同时,由于多次重复完成复接信号输入与断开操作,导致解复用端时与真正的帧头实现同步,但也会与8bit实现同步,出现同步错误。(2).后方保护测量(捕捉态) 经过改变加错信号,我们测得后方保护计数个数为3. 后方保护可以防止误同步,经过连续几次检测到帧头才进入同步状态可以让同步更准确。 (3).前向保护测试(维持态) 经过改变加错信号,测得前向保护计数为2。 前向保护可以避免因一次传输错误而导致帧头出错而引起的同步出错。 当加错开关位置为“0001000100010001”时,帧提取情况如下: 信号恢复如下:

两路时分复用

两路时分复用电路的设计 摘要:本次课程设计的任务是完成简易的两路时分复用通信电路的设计,实现两路不同模拟信号的分时传输功能。要求我们在信号接收端能够完整还原出两路原始模拟信号。还要选用相应的编码传输方式与同步方式,进行滤波器设计。关键词:时分复用抽样解调滤波

1 课题分析 在实际的通信系统中,为了提高通信系统的利用率,往往用多路通信的方式来传输信号。常见的有时分复用和频分复用,本次课设将对时分复用进行讨论并以及EWB仿真。 本次课设主要是使学生加深对通信原理的理解,熟悉各类编码方式及数字基带信号的传输方式,相关电路的构成,以及如何实现仿真,为以后的工程设计打下良好基础。 设计电路时,应以理论作为指导,构思设计方案;设计完成后应进行调试,仿真和分析;处理结果和分析结论应该一致,而且应符合理论;独立完成课程设计并按要求编写课程设计报告书。 完成一个简易的两路时分复用通信电路的设计,实现两路不同模拟信号的分时传输功能。在信号接收端能够完整还原出两路原始模拟信号。在EWB软件平台上实现仿真,并对结果进行分析。

2 设计原理分析 2.1 时分复用 在实际的通信系统中,为了提高通信系统的利用率,往往用多路通信的方式来传输信号。所谓多路通信,就是指把多个不同信源所发出的信号组合成一个群信号,并经由同一信道进行传输,在收端再将它分离并将它们相应接收。时分复用就是一种常用的多路通信方式。时分复用是建立在抽样定理基础上的,因为抽样定理使连续的基带信号有可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。图2-1表示的是两个基带信号在时间上交替出现。显然这种时间复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别得到恢复。这就是时分复用的概念。此外,时分复用通信系统有两个突出的优点,一是多路信号的汇合与分路都是数字电路,简单、可靠;二是时分复用通信系统对非线性失真的要求比较低。然而,时分复用系统对信道中时钟相位抖动及接收端与发送端的时钟同步问题提出了较高的要求。所谓同步是指接收端能正确地从数据流中识别各路序号。为此,必须在每帧内加上标志信号(即帧同步信号)。它可以是一组特定的码组,也可以是特定宽度的脉冲。在实际通信系统中还必须传递信令以建立通信连接,如传送电话通信中的占线、摘机与挂机信号以及振铃信号等信令。上述所有信号都是时间分割,按某种固定方式排列起来,称为帧结构。采用时分复用的数字通信系统,在国际上已逐步建立其标准。原则上是把一定路数电话语音复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术,汇合成更高速的数据信号,复接后的序列中按传输速率不同,分别成为一次群、二次群、三次群、四次群等等。

通信141-实验6 时分复用解复用TDM实验

信息工程学院实验报告 课程名称: 通信原理 实验项目名称:实验6 时分复用解复用(TDM )实验 实验时间: 班级: 姓名: 学号: 一、实验目的 1.掌握时分多路复用的概念; 2.了解本实验中时分复用的组成结构。 二、实验仪器 1.复接/解复接、同步技术模块,位号:I 2.PCM/ADPCM 编译码模块,位号:H 3.增量调制编译码模块,位号:D 4.时钟与基带数据发生模块,位号:G 5.20M 双踪示波器1台 6.铆孔连接线9根 7.电话单机 1部 三、实验步骤 1.插入有关实验模块 在关闭系统电源的情况下,按照下表放置实验模块: 对应位号可见底板右上角的“实验模块位置分布表”,注意模块插头与底板插座的防呆口一致。 2.信号线连接 使用专用导线按照下表格进行信号线连接:

3.实验设置 模块拨码开关设置值作用 时钟与基带数据发生模块4SW02 01111 使PCM编码、增量调制编码及8bit 基带数据工作在64K时钟; 复接/解复接、同步技术模块39SW01 1111 使解复用模块工作在时分解复用状态4.加电 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。 5.复用观测 6.解复用观测 7.关机拆线 实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。 四、实验观测及分析 1. 复用观测 用示波器分别观测复接前8bit基带数据,PCM编码数据,增量调制编码数据,结合前面实验获取的指示,判断编码数据是否正确。 图1 8bit基带数据

图2 语音信号与增量调制编码数据 图3 正弦信号的阶梯波与增量调制编码数据 分析:复接前8bit基带数据设置为:11110000,当阶梯波上升,对应增量调制编码器输出数据“1” 码;阶梯波下降,对应增量调制编码器输出数据“0”码,编码数据正确。 (2)断开39P01、39P02和39P03,用示波器观测复接后数据(39P05(I)),观测复接后的数据,并对应实验原理部分,理解复接后各个时隙的数据内容。

时分复用及帧同步

时分复用及帧同步 2.1.1 时分复用/解复用(TDM )实验 一、实验目的 1. 掌握时分多路复用的概念 2. 了解本实验中时分复用的组成结构 二、实验仪器 1. RZ9681实验平台 2. 实验模块: ? 主控模块 ? 基带数据产生与码型变换-A2 ? 信源编码与时分复用模块-A3 ? 信源译码与时分解复用模块-A6 3. 100M 双通道示波器 4. 信号连接线 5. PC 机(二次开发) 三、实验原理 时分复用是将整个信道传输信息的时间划分成不同时隙,利用不同的时隙来传输不同信号,以扩大传输容量和提高传输效率。 3.1 数字复接 数字复接技术是把两个或两个以上的低速信号按照时分复用的方式合并成一个高速信号。 按帧复接是指将每一路并行数据的每一帧按照信道的顺序循环逐一排列,得到一路的串行数据。按照按帧复接的方式,每次复接一路信号的一帧数据,因此复接时不会破坏原来各个帧的自身内部的顺序,有利于交换。 准同步复接指各并行信道使用各自的时钟,但各支路的时钟被限制在一定的容差范围内。 这种复接方式在复接前必须将各支路的码速都调整到统一的规定值后才能复接。在这种复接方式中需要进行码速调整。 本实验中数字复接系统方框图,如下图所示: 图1 时分复用解复用方框图 本实验中同步复接的帧结构如下图所示: 发定时 调 整 复 接 收定时 分 接 恢 复 同 步 PCM 8bit CVSD PCM 8bit CVSD

帧头PCM 8bit CVSD 一帧4路数据 图2 时分复用帧结构 在本实验中,一帧分为四个时隙,第一个时隙传输一个8bit 的帧头,用于同步以及确定每一帧的起始点;第二个时隙传输PCM 的8bit 的量化信号,第四个时隙传输CVSD 的量化信号,但由于采样值不是固定的,因此每一帧传送的PCM 和CVSD 的信号都是不同的;第三个时隙传输一个8bit 的自定的数据,可以通过解复用模块A6的8个LED 的亮灭来观察。一帧高速串行数据的传输速率为256Kb s ?,由于在一帧中有4个时隙,因此每一路低速并行数据的传输速率为256Kb s ?÷4=64Kb s ?。 3.2 数字分接(解复用) 数字分解是指将一路高速串行输入信号按照一定的顺序,将复接信号分离出多路低速并行同步输出信号。一般情况下,帧同步提取有时会出现漏同步和假同步现象。 四、实验框图及测量点说明 4.1 实验框图说明 图3 时分复用原理框图 框图说明: 本实验中需要用到以下功能单元: 由信源编码与复用模块(A3)完成时分复用功能;由信源译码与解复用模块 (A6)完成解复用功能。 时分复用时接入四路信号,分别是帧头、PCM 、8bit 设置数据、CVSD 数据,PCM 和CVSD 是信源编码数据,由模块A3的处理器和FPGA 分别对3P1和3P2输入的数据完成模数转换、PCM 和CVSD 编码,之后由FPGA 同时将帧头、PCM 数据、8位设置数据、CVSD 数据进行时

频分复用、时分复用系统MATLAB仿真

上海大学2013~2014学年冬季学期 “通信原理”课程项目报告 课程名称:《通信原理》课程编号:07275086 项目名称和内容:搭建一个在高斯信道中传输的时分(或频分或码分)复用频带传输系统,并测试其性能。(码速率、调制方式、时分复用路数、信号功率和噪声功率自定)。 要求: 1、搭建包括发送、信道、接收在内的完整系统。 2、系统性能用表格或曲线表达。 3、鼓励利用硬件完成。 4、撰写项目报告(含摘要、概述、内容、测试结果与分析、结论与感想)。 5、使用教学专用实验平台上交项目报告。 成绩: 任课教师: 评阅日期: 频分复用、时分复用系统MATLAB仿真 摘要:本文应用所学的通信原理的知识,在MATLAB上搭建了频分复用和时分复用这两个系统进行仿真实验,以期起到巩固知识点、加深原理理解、增强实践能力的效果。 1.频分复用 频分复用原理

频分复用(FDM)是信道复用按频率区分信号,即将信号资源划分为多个子频带,每个子频带占用不同的频率。然后把需要在同一信道上同时传输的多个信号的频谱调制到不同的频带上,合并在一起不会相互影响,并且能再接收端彼此分离开。 频分复用的关键技术是频谱搬移技术,该技术是用混频来实现的。混频的原理,如图所示。 图基带语音信号的频谱搬移 图双边带频谱结构 从图可以看出上、下边带所包含的信息相同,所以恢复原始数据信息只要上边带和下边带的其中之一即可。我们这里选择上边带。 频分复用系统仿真模型建立

图频分复用系统 如上图所示,我们为该系统做了GUI界面,各个阶段的波形与频谱可以很清楚地看到。该系统模拟了电话的传输,我们可以录入三段时间自定义的音频,然后这三段音频分别调制到4K、8K、12K频率上,通过带通滤波器发送至信道。我们这里用添加高斯白噪声的方法来模拟信道特性,信噪比可自定义。在接收端,先经过一个带通滤波器滤去噪声,然后相干解调,最后由低通滤波输出。 图音频原始频谱图音频接收频谱 2.时分复用

时分多路复用

摘要 数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往会超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(Multiplexing)。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Division Multiplexing)是两种最常用的多路复用技术。时分多路复用(TDM)是按传输信号的时间进行分割,它使不同的信号在不同的时间内传送,将整个传输时间分为许多时间间隔(Slot time,TS,又称为时隙),每个时间片被一路信号占用,适用于媒体数据速率容量超过要传输的几路数字信号总速率的情况。此次课程设计利用MATLAB/Simulink仿真软件实现对时分多路复用系统的模拟仿真,达到对输入信号实现复用和解复用的效果。 关键词:多路复用;解复用;系统仿真

目录 前言 (1) 一、基本原理 (2) 1.1多路复用技术 (2) 1.2时分多路复用技术概述 (2) 1.3TDM系统组成及工作原理 (3) 1.4时分复用中的同步技术原理 (3) 1.2.1位同步原理 (4) 1.2.2帧同步原理 (4) 1.2.3 载波同步原理 (4) 1.2.4网同步原理 (4) 二、模块简介 (6) 2.1设计思路 (6) 2.2 MATLAB概述 (6) 2.3 Simulink简介 (6) 2.4时分多路复用系统的基本原理 (7) 三、时分复用系统仿真模型 (10) 3.1 Simulink仿真框图搭建 (10) 3.2 Subsystem/Subsystem1结构框图 (10) 3.3参数设置 (11) 3.4仿真结果及分析 (13) 总结 (17) 致谢 (18) 参考文献 (19)

实验八 时分复用与解复用实验

实验八时分复用与解复用实验 一、实验目的 1.掌握时分复用的概念。 2.了解时分复用与解复用系统的构成及工作原理。 3.了解时分复用这种复用方式的优点与缺点。 4.了解时分复用在整个通信系统中的作用。 二、实验内容 1.对两路模拟信号进行PCM编码,然后进行复用,观察复用后的信号并与复用前的编码信号比较。 2.将复用后的信号进行解复用,然后进行PCM解码,观察解复用后的两路解码信号与原两路模拟信号是否相同。 三、实验器材 1.信号源模块 2.时分复用模块 3.模拟信号数字化模块 4.20M双踪示波器一台 5.连接线若干 四、实验原理 在实际的通信系统中,为了提高通信系统的利用率,往往用多路通信的方式来传输信号。所谓多路通信,就是把多个不同信源所发出的信号组合成一个群信号,并经由同一信道进行传输,在收端再将它分离并被相应接收。时分复用(TDM,即Time-Division Multiplexing)就是一种常用的多路通信方式。时分复用是建立在抽样定理基础上的,因为抽样定理使连续(模拟)的基带信号由可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。图8-1表示的是两个基带信号在时间上交替出现。显然这种时间复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别得到恢复。这就是时分复用的概念。此外,时分复用通信系统有两个突出的优点,一是多路信号的汇合与分路都是数字电路,简单、可靠;二是时分复用通信系统对非线性失真的要求比较低。 然而,时分复用系统对信道中时钟相位抖动及接收端与发送端的时钟同步问题提出了较高的要求。所谓同步是指接收端能正确地从数据流中识别各路序号。为此,必须在每帧内加上标志信号(即帧同步信号)。它可以是一组特定的码组,也可以是特定宽度的脉冲。在实际通信系统中还必须传递信令以建立通信连接,如传送电话通信中的占线、摘机与挂机信号以及振铃信号等信令。上述所有信号都是时间分割,按某种固定方式排列起来,称为帧结构。采用时分复用的数字通信系统,在国际上已逐步建立其标准。原则上是把一定路数电话语音复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术,

实验十七 时分复用与解复用实验资料

实验十七时分复用与解复用实验 一、实验目的 1.掌握时分复用的概念。 2.了解时分复用与解复用系统的构成及工作原理。 3.了解时分复用这种复用方式的优点与缺点。 4.了解时分复用在整个通信系统中的作用。 二、实验内容 1.对两路模拟信号进行PCM编码,然后进行复用,观察复用后的信号并与复用前的编码信号比较。 2.将复用后的信号进行解复用,然后进行PCM解码,观察解复用后的两路解码信号与原两路模拟信号是否相同。 三、实验器材 1.信号源模块 2.时分复用模块 3.模拟信号数字化模块 4.20M双踪示波器一台 5.连接线若干 四、实验原理 在实际的通信系统中,为了提高通信系统的利用率,往往用多路通信的方式来传输信号。所谓多路通信,就是把多个不同信源所发出的信号组合成一个群信号,并经由同一信道进行传输,在收端再将它分离并被相应接收。时分复用(TDM,即Time-Division Multiplexing)就是一种常用的多路通信方式。时分复用是建立在抽样定理基础上的,因为抽样定理使连续(模拟)的基带信号由可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。图17-1表示的是两个基带信号在时间上交替出现。显然这种时间复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别得到恢复。这就是时分复用的概念。此外,时分复用通信系统有两个突出的优点,一是多路信号的汇合与分路都是数字电路,简单、可靠;二是时分复用通信系统对非线性失真的要求比较低。 然而,时分复用系统对信道中时钟相位抖动及接收端与发送端的时钟同步问题提出了较高的要求。所谓同步是指接收端能正确地从数据流中识别各路序号。为此,必须在每帧内加上标志信号(即帧同步信号)。它可以是一组特定的码组,也可以是特定宽度的脉冲。在实际通信系统中还必须传递信令以建立通信连接,如传送电话通信中的占线、摘机与挂机信号以及振铃信号等信令。上述所有信号都是时间分割,按某种固定方式排列起来,称为帧结构。采用时分复用的数字通信系统,在国际上已逐步建立其标准。原则上是把一定路数电话语音复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术,

时分复用和频分复用

时分复用频分复用 简介 数据通信系统或计算机网络系统中, 传输媒体的带宽或容量往往超过传输单一信号的需求, 为了有效地利用通信线路, 希望一个信道同时传输多路信号, 这就是所谓的多路复用技术(MultiplexiI1g) 。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输, 在远距离传输时可大大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing) 和时分多路复用TDM (Time Di-vision MultiplexiIIg) 是两 种最常用的多路复用技术。 举个例最简单的例子: 从A地到B地 坐公交 2 块。打车要20 块为什么坐公交便宜呢这里所讲的就是“多路复用” 的原理。 频分复用 (FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。在频分复用系统中,发送端的各路信号m1(t) ,m2(t) ,,,mn(t) 经各自的低通滤波器分别对各路载波f1(t) ,f2(t) ,, ,fn(t) 进行调制, 再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t) ,f2(t) ,, ,fn(t) 相乘,实现相干解调, 便可恢复各路信号, 实现频分多路通信。为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。根据国际电报电话咨询委员会(CCITT) 建议, 基础群分为前群、基 群、超群和主群。①前群,又称3路群。它由3个话路经变频后组成。各 话路变频的载频分别为12,16,20千赫。取上边带,得到频谱为12?24 千赫的前群信号。②基群,又称12路群。它由4个前群经变频后组成。各 前群变频的载频分别为84,96,108,120 千赫。取下边带,得到频谱为60 ?108千赫的基群信号。基群也可由12个话路经一次变频后组成。③超群, 又称60 路群。它由 5 个基群经变频后组成。各基群变频的载频分别为420,468,516,564,612 千赫。取下边带, 得到频谱为312?552 千赫的超群信号。④主群,又称300路群。它由5个超群经变频后组成。各超群变频的载频分别为 1364,1612,1860 ,2108,2356 千赫。取下边带, 得到频谱为812?2044 千赫的主群信号。 3 个主群可组成900 路的超主群。 4 个超主群可组成3600 路的巨群。频分复用的优点是信道复用率高,允许复用路数多,分路也很方便。因此,频分复用已成为现代模拟通信中最主要的一种复用方式,在模拟式遥测、有线通信、微波接力

时分复用简述

时分复用简述 时分多路复用(TDM :Time Division Multiplexing )是按传输信号的时间进行分割的,它使不同的信号在不同的时间内传送,将整个传输时间分为多时间间隔(Slot time ,TS ,又称为时隙),每个时间片被一路信号占用。TDM 就是通过在时间上交叉发送每一路信号的一部分来实现一条电路传送多路信号的。电路上的每一短暂时刻只有一路信号存在。因数字信号是有限个离散值,所以TDM 技术广泛应用于包括计算机网络在内的数字通信系统,而模拟通信系统的传输一般采用FDM 。TDM 是以信道传输时间作为分割对象,通过多个信道分配互不重叠的时间片的方法来实现,因此时分多路复用更适用于数字信号的传输。它又分为同步时分多路复用和统计时分多路复用。采用基带传输的数字数据通信系统,如计算机网络系统、现代移动通信系统等。 由于基带传输系统采用串行传输的方法传输数字信号,不能在带宽上划分。TDM 技术在信道使用时间上进行划分,按一定原则把信道连续使用时间划分为一个个很小的时间间隔,称为时隙,每路信号占据其中的一个时隙来传送。由于时间片的划分一般较短暂,可以想象成把整个物理信道划分成了多个逻辑信道交给各个不同的通信过程来使用,相互之间没有任何影响,相邻时间片之间没有重叠,一般也无须隔离,信道利用率更高。如图是信道示意图: 通常采用的技术有:STDM 同步十分多利复用技术和ATDM 异步时分多路复用技术。同步时分复用采用固定时间片分配方式,即将传输信号的时间按特定长度连续地划分成特定的时间段(一个周期),再将每一时间段划分成等长度的多个时隙,每个时隙以固定的方式分配给各路数字信号,各路数字信号在每一时间段都顺序分配到一个时隙。如图: 可 用 频 段 频 时 A B C D A B C D A B C D A B C D 组成子信 时 分

实验2 脉冲编码调制PCM与时分复用实验-

实验2 脉冲编码调制PCM与时分复用实验 —、实验目的 1.加深对PCM编码过程的理解; 2.熟悉PCM编、译码专用集成芯片的功能和使用方法; 3.了解PCM系统的工作过程; 4.掌握时分多路复用的工作过程;用同步正弦波信号观察A律PCM八比特编码的实验。 二、实验仪器 1.HD8621D实验箱1台 2.20M双踪示波器1台 3.铆孔线5根 三、实验电路工作原理 (一)PCM基本工作原理 脉冲调制就是把一个的模拟信号变换成的数字信号后在信道中传输。脉冲编码调制就是对模拟信号的过程。 所谓抽样,就是在抽样脉冲来到的时刻提取对模拟信号在,抽样把时间上的信号变成时间上的信号。 所谓量化,就是把经过抽样得到的瞬时值将其幅度,即用一组规定的电平,把瞬时抽样值用来表示。一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。 话音信号先经滤波器,进行脉冲抽样,变成的抽样信号,然后将幅度连续的PAM信号用“四舍五入”办法量化为的信号,再经编码后转换成。对于语音电话通信,CCITT规定抽样率为8KHz,每抽样值编位码,即共有个量化值,因而每话路PCM编码后的标准数码率是 b/s。为解决均匀量化时小信号量化误差大、音质差的问题,在实际中采用量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大。 (二) PCM编译码电路【PCM编译码电路TP3067芯片】 1.根据图4-4和图4-5说明单路PCM编译码器的工作原理 答:

计时,可以实现对编译码器的降功耗控制。 图4-5是短帧同步定时波形图。 四、实验内容 1.用同步正弦波信号观察A律PCM八比特编码的实验; 2.脉冲编码调制(PCM)及系统实验; 3.PCM八比特编码时分复用输出波形观察测量实验; 4.PCM编码时分多路复用时序分析实验。 五、实验步骤及注意事项 本PCM编译码系统分为PCM(一)、PCM(二)两个分系统(见图4-9、图4-10电原理图)。芯片U501及外围电路构成PCM(一),芯片U502及外围电路构成PCM(二)。每个TP3067芯片U501含有一路PCM编码器和一路PCM译码器。本PCM编译码系统信号流程框图(如图4-6),PCM(一)上、PCM (二)下电原理图(如图4-9 )。

相关主题
文本预览
相关文档 最新文档