当前位置:文档之家› 最新随钻声波测井仪的技术性能与应用实例

最新随钻声波测井仪的技术性能与应用实例

最新随钻声波测井仪的技术性能与应用实例
最新随钻声波测井仪的技术性能与应用实例

Geolog-全波列声波测井中文手册-

Geolog软件技术手册Full Sonic Wave Processing -SWB 帕拉代姆公司北京代表处 2006年12月

1、综述................................................................................................................................................................................ - 1 - 1.1 预备知识..................................................................................................................................................................... - 1 - 1.2数据 ............................................................................................................................................................................... - 1 - 2、阵列声波全波形........................................................................................................................................................... - 2 - 2.1数据准备 ...................................................................................................................................................................... - 3 - 2.1.1查看/创建一个声波列阵工具模版.......................................................................................................... - 3 - 2.1.2 练习指导2-创建其他波形属性.............................................................................................................. - 5 - 2.1.3波形分解.......................................................................................................................................................... - 6 - 2.1.4深度转换.......................................................................................................................................................... - 7 - 2.2 处理 .............................................................................................................................................................................. - 8 - 2.2.1数据分析......................................................................................................................................................... - 8 - 2.2.2去噪................................................................................................................................................................ - 11 - 2.2.3 设计滤波器................................................................................................................................................. - 17 - 2.2.4 振幅恢复 ..................................................................................................................................................... - 19 - 2.3阵列声波处理.......................................................................................................................................................... - 20 - 2.3.1处理模块简介 ............................................................................................................................................. - 20 - 2.3.2偶极波形处理 ............................................................................................................................................. - 21 - 2.3.3 单极波形处理 ............................................................................................................................................ - 23 - 2.3.4 拾取标志波至 ............................................................................................................................................ - 26 - 2.4后期处理 (32) 2.4.1综述 (32) 2.4.2频散校正 (33) 2.4.3 传播时间叠加 (36) 2.4.4 相关性显示 (38) 2.4.5 阵列声波重处理 (39) 3、机械性质 (44) 3.1综述 (44) 3.2 计算动力学弹性性质 (44) 附录I-快速运行 (46) 附录II-频散校正讨论 (47)

声波测井技术在岩土工程勘察中应用

现代物业?新建设 2012年第11卷第9期 浅谈声波测井技术在岩土工程勘察中的应用 张建宏 (新疆新地勘岩土工程勘察设计有限公司,新疆 乌鲁木齐 830002)摘 要:伴随着不断发展的数字测井技术,在测井当中,声速测井已经成为重要的方式之一。对岩体工程勘察中声波测井技术的应用进行了分析。 关键词:岩土工程;勘察;声波测井 中图分类号:[P258] 文献标识码:A 文章编号:1671-8089(2012)09-0047-02 声波测井主要分为声幅测井与声波测井两大类。一般来说,我们说的声波测井指的是对地层当中声波传播速度进行测量。 1 声波测井 在不同的介质当中,声波传播会有明显的差别,岩石当中的裂缝、风化以及溶洞对声波速度都有影响,因此对岩层物性特征的了解可以通过声波测试来进行。而声速测井测的是地层中声波传播的时间。 声波测井一般是对纵波速度进行测量,声波耦合通过仪器发射晶体声波,然后通过仪器接收晶体声波。由于接收晶体与发射晶体之间存在一定距离,所以传播速度与所测得的声波传播时差成反比。根据实际需要,也可以将传播时差换算成声波速度,然后再与其余的物理参数进行结合,也能够将横波速度计算出来,从而对弹性参数以及岩性的划分进行计算,这样更有利于岩土工程勘察工作的进一步开展。 2 岩石中声波的传播 我们所研究的是不同地质年代在地壳中的矿物成分以及结构各异的岩石,并且在岩石当中还存在裂隙与孔隙,但是它们的分布、大小、形状并非固定,而这些因素对岩石的物理性质都有不同程度的影响。岩石的声速指的是在岩石当中声波的传播速度,理论支持与实践证明:随着岩石密度的不断增大,声波速度也会随着提升。 2.1 岩性 如果岩石的岩性不同,那么声波传播速度也会有明显的区别。岩性不同,岩石密度就存在差异,一般来说,岩石密度从大到小依次为:石灰岩→砂岩→泥岩,而声波速度也会随着密度的减少而降低。 2.2 岩石结构 如果岩石的胶结性较差、较为疏松,声波速度也会降低;反之,声波速度则会升高。对于声波速度来说,岩石当中存在的溶洞与裂隙等也会产生一定程度的影响。 2.3 岩石孔隙间的储集物 岩石声波速度也会受到岩石孔隙当中不同储集物的影响。 2.4 地质时代以及地层埋藏深度 声波在地层当中的传播会受到地层时代以及地层埋藏实际深度的影响。当地质时代与岩性相同,那么埋藏的深度越大,声波传播的速度也就越大;反之,埋藏的深度越小,那么声波速度也会随着减小。在岩性相同的情况下,相比新地层,老地层的声波传播速度更快,这主要是由于在漫长的地质年代中,老地层受到了覆盖岩层长期性压实产生的结果。此外,由于长期地壳运动,岩石骨架颗粒的排列也会越来越紧,其弹性与密度都会不同程度地增加。 3 声波测井的应用范围 3.1 钻孔岩性的划分 由于不同的岩层所具有的声波传播速度是不同的。所以,地层岩性可以通过声速测井来进行判断。在钻孔岩性的划分当中,也可以结合自然伽玛、电阻率等有关的参数。 3.2 岩层风化、氧化带的确定 由于受到了氧化与风化,岩石的胶结程度会受到不同程度的影响,甚至会出现破碎,从而导致强度减弱、密度减小、波速减小,将完整的岩石声波速度与所测得的声波速度进行比较就会发现。岩石的疏松与破碎的程度能够通过波速的减少量来判断,因此对岩层的氧化带、风化都能够加以确定。 Engineering Construction 工程施工 – 47 –

声波测井技术发展现状与趋势

浅谈声波测井技术发展现状与趋势 摘要:以声波测井换能器技术的变化为主线,分析了声波测井技术的进展以及我国在该技术领域内取得的进步。单极子声波测井技术已经成为我国成熟的声波测井技术,包括非对称声源技术在内的多极子声波测井技术已经进入产业化进程。 关键词:声波测井;换能器;单极子声波测井;多极子声波测井; 从声学上讲,声波测井属于充液井孔中的波导问题。由声波测井测量的井孔中各种波动模式的声速、衰减是石油勘探、开发中的极其重要参数。岩石的纵、横波波速和密度等资料可用来计算岩石的弹性参数(杨氏模量、体积弹性模量、泊松比等);计算岩石的非弹性参数(单轴抗压强度、地层张力等);估算就地最大、最小主地层应力;估算孔隙压力、破裂压力和坍塌压力;计算地层孔隙度和进行储层评价和产能评估;估算地层孔隙内流体的弹性模量,从而形成独立于电学方法的、解释结果不依赖于矿化度的孔隙流体识别方法;与stoneley波波速、衰减资料相结合用以估算地层的渗透率;为地震勘探多波多分量问题、avo问题、合成地震记录问题等提供输人参数等等。经过半个多世纪的发展,声波测井已经成为一个融现代声学理论、最新电子技术、计算机技术和信息处理技术等最新科技为一体的现代测量技术,并且这种技术仍在迅速发展之中,声波测井在地层评价、石油工程、采油工程等领域发挥着越来越重要

的作用。与电法测井和放射性测井方法并列,声波测井是最重要的测井方法之一。 一、测井技术发展现状及趋势 声波测井技术的进步是多方面的。声波测井声波探头个数在不断增加以提高声波测量信息的冗余度、改善声波测量的可靠性;声波测井中探头的振动方式经历了单极子振动方式、偶极子振动方式、四极子振动方式和声波相控阵工作方式,逐步满足在任意地层井孔中测量地层的纵横波波速、评价地层的各向异性和三维声波测井的需求。声波探头的相邻间距不断减小,而发收探头之间的距离在不断增大,这一方面提高了声波测井在井轴方向的测量分辨率;另一方面也提高了声波测井的径向探测深度。声波测井的工作频率范围在逐步向低频和宽频带范围、数据采集时间在不断增大,为扩大声波测井的探测范围提供了保障。声波测井中应用的电子技术从模拟电路、数字电路技术逐步发展为大规模可编程电路和内嵌中央处理器技术,从而实现声波测井仪器的探头激励、数据采集、内部通讯、逻辑控制、数据传输等方面的智能化和集成化。可以预期,下一代声波测井仪器研制的关键技术之一是研制能够控制声束指向性的 基阵式换能器。应用相控阵换能器的最大优势就是增大空间某个方向的声辐射强度,使声波沿着预先设定好的方向辐射,从根本上增加有用信号的能量、提高信噪比和探测能力。显然,声波探头结构和振动模态性质的变化直接导致了声波测井技术的根本进步。

声波测井技术在岩土工程勘察中的应用

浅谈声波测井技术在岩土工程勘察中的应用摘要:本文首先论述了声速测井的测试原理,进而论述了影响岩石声波速度的主要因素,第三以工程实例,利用声波测井技术得到了评价岩土动力学特征的参数,既校正地解释岩性和岩层,还反映了岩土层的相对强度,为建筑设计提供一定的参考依据;最后,文章还阐述了当前声波测井技术在岩土工程勘察中存在的不足之处,以供参考。 关键词:声波测井技术;岩土工程勘察;应用 abstract: this paper first discusses the velocity measurement principles of well logging, and then discusses the influence of the main factors rock acoustic velocity, and the third by engineering example, the acoustic logging technology got the evaluation of the parameters of the dynamic characteristics of rock, both correction to explain the lithology and rocks, but also reflect the relative strength of geotechnical layer, for building design provides some reference basis; finally, the paper also expounds the current acoustic logging technology in geotechnical engineering investigation in existence deficiency, for reference. keywords: acoustic logging technology; geotechnical engineering; application 中图分类号:tu74文献标识码:a 文章编号:

最新随钻声波测井仪器的技术性能

最新随钻声波测井仪器的技术性能 近年来,声波测井技术已成功应用于随钻测量(MWD)和随钻测井(LWD)中。随钻声波测井技术为钻井施工和储层评价提供了全面的数据支持和测井解释。目前,国外三大公司分别推出了最新的随钻声波仪器,它们分别是贝克休斯公司的APX随钻声波测井仪,哈里波顿Sperry Drilling Service公司研制的双模式随钻声波测井仪器(BAT)和斯伦贝谢公司研制的新一代随钻声波仪器sonicVISION。下面我们对三种仪器的性能分别进行介绍和对比。 1.APX随钻声波测井仪 APX随钻声波测井仪由贝克休斯公司INTEQ公司生产,其结构简图见图1。该仪器声源以最佳频率向井眼周围地层发射声波,声波在沿井壁传播的过程中被接收器检测并接收。接收器采用了先进的嵌入技术,将接收到的声波模拟信号转换为数字信号,以获取地层声波时差(△t),而后将原始声波波形数据和预处理的声波波形数据存储在高速存储器内。 仪器的主要技术性能 ●计算机模型(FEA):该模型是为声学仪器的优化配置而设计,同时具备有助于 不同窗口模式的评价和解释。 ●全向发射器:与典型的LWD仪器等单向的有线测井仪不同,APX发射器使用 一组圆柱形压电晶体,对井眼和周围地层提供3600的覆盖范围,其声源能够在10~18,000Hz频率范围内调频,并可以单极子和偶极子发射。 ●全向接收器阵列:6×4接收器 阵列,间距228.6mm。这种全 向结构类似于XMAC电缆测井 系统,接收器阵列与声源排成 一条线,以实现径向多极子声 波激发。 ●接收器。该仪器的声源具有优 化发射频率功能,其接收器有 几个比仪器本身信号低很多的 波段,可以显著减少接收器及 钻柱连接的干扰。在关掉发射

随钻声波测井系统技术参数

INTEQ 先进的SoundTrak TM LWD 声波测井服务可以精确测量所有地层中纵波和横波传输时间,SoundTrak 是唯一能与电缆测井匹敌的随钻测井系统,且考虑到大多数旋转导向钻井应用的特殊环境。并行多重频率的声波可以在各种传播速度范围的地层和井眼尺寸下获得高质量的测量数据。 专利的Quadrupole(四极子)技术可以在极软地层中精确直接的测得横波速度,无须进行dipole(偶极子)LWD 工具的离散校正。地层的声学特性可直接测得。 SoundTrak 得益于它的一个高输出全方位多极声波发送器;一个能消除工具偏心影响的六级、24阵列接收器;和一个用来隔开发射极和接收极的声波绝缘体,来削弱直接耦合影响;在井眼扩径的情况下也可获得可靠声速数据。即便在很具挑战性的环境下,先进的井下处理系统和声波层叠技术也能够优化信噪比。纵波的传输速度参数和质量信息会被实时传输,原始波形数据可存储在高容高速的内存中以备后续操作。在单趟钻中就可获取所有数据。 服务应用服务应用:: 纵波和横波传输时间的应用: ■ 钻井——预测孔隙压力从而避免钻井中的不利因素 ■ 地球物理——表面地震波校正和深度基准点可确定井位 和优化油藏模型 ■ 岩石物理——孔隙度和油气确认 (AVO) 计算油藏储量 ■ 地质力学——岩石特性,出砂潜在性和井眼稳定性分析 钻井完井方案 服务优势服务优势:: ■ 在世界范围200多口井出色的成功表现 ■ 减少钻机时间,单趟钻即可获取多种模式的信息资料 ■ 运用纵波数据预测孔隙压力确保井下安全 ■ 在超慢地层中(200usec/ft) 用低频单极子可以获得纵波传 播速度 ■ 工具在泥面以下和大井眼尺寸中也能够直接获取纵波传 播时间差?t ■ 通过井下WAVEVAN 实时处理计算传播时间差?t c ■ 地层横波速度直接通过Quadrupole(四极子)模式测得 ■ 较长的接受发射极间距使得在扩径井眼和超慢地层中也可以获取到可靠的声波数据 ■ 补偿系统可以消除工具偏心影响 ■ 自带的大容量内存可以长时间的存储大量信息 ■ 现场LQ C显示和实时的工具监测 ■ 先进的多任务处理 技技 术 参 数 表 SoundTrak

随钻声波测井技术综述

随钻声波测井技术综述 随钻测井的研究从20世纪30年代开始研究,在1978年研究出第一套具有商业价值的随钻测井仪器。在那以后,随钻测井在国外取得迅速发展并获得广泛应用,我国对随钻测井的重视达到了前所未有的程度。随钻声波测井也是如此。 1发展随钻测井的意义和随钻声波测井发展现状 随钻测井(LWD)是近年来迅速崛起的先进技术。它集钻井技术,测井技术和油藏描述等技术于一体,在钻井的同时完成测井作业,减少了钻机占用井场的时间,从钻井测井一体化中节省成本[1]。跟常规电缆测井相比,除了节省成本外,随钻测井有如下优势:(1)从测量信息上讲,随钻测井是在泥浆尚未侵入或者侵入不深时测量地层信息,泥饼和冲洗带尚未形成,所测得到的曲线更加准确,更能反映原始地层的真实信息,如声波时差等。(2)从对钻井的指导作用来讲,随钻测井可以提前检测到超压地层,以指导钻井泥浆的配制,提高钻井安全系数。它也可以根据测井信息,分析出有利的含油气方向,确定钻井方向,增强地质导向功能。(3)从适应环境上讲,在大斜度井,水平井或特殊地质环境(如膨胀粘土和高压地层),电缆测井困难或者风险大以致不能进行作业时,随钻测井可以取而代之。目前在海上,几乎所有钻井活动都采用随钻技术[2]。 正因为这些优点,作为随钻测井的重要组成部分的随钻声波测井近年来也获得了巨大的发展。总体而言,国外无论在随钻声波测井的基础理论研究方面还是在仪器研发方面都比较成熟,而国内近年来也对随钻声波测井的相关难题进行了大量的工作。 具体而言,从上世纪90年代起,贝克休斯、哈里伯顿、斯伦贝谢三大公司就率先开始了随钻声波测井的研究,并逐渐占领随钻测井的国际市场份额。APX随钻声波测井仪,CLSS随钻声波测井仪,sonicVISION随钻声波测井仪的相继出现,更加巩固了他们的垄断地位。在国内,鞠晓东,闫向宏[等人在随钻测井数据降噪[3],存储[4],压缩[5],传输特性[6]和电源设计[7]等方面做出了大量的工作。车小花[7],苏远大[8]等人对隔声体设计的隔声效果和机械强度分析进行了数值模拟和实验。此外,唐小明,乔文孝,王海澜等人在随钻声波测井基础理论研究方面做了许多有益的探索。 2随钻声波测井仪工作原理和技术性能 目前国际上主要的随钻声波测井仪有贝克休斯的APX,哈里伯顿的CLSS和斯伦贝谢的sonicVISION。以贝克休斯的APX测井仪为例,介绍一下仪器工作原理和结构。 APX测井仪的结构如下图1所示。从右到左由上部短节,声源电子线路部分,全向声源,声波隔离器,接收器阵列,接收器电子线路部分,下部短节等组成,全长9.82m (32.3ft),其中声波测量点到底部短节的距离为 2.83m(9.3ft),最短源距为 3.26m (10.7ft)。 其工作原理为:位于钻铤上部的声源发射器以最佳频率向井眼周围地层发射声能脉冲,在沿井壁及周围地层向下传播的过程中被阵列接收器接收到首播信号,接收信号后,系统首先用先进的嵌入式技术,将接收到的声波模拟信号转换成数字信号,并采用有限元等方法将数字信号转换为声波时差(data)值。最后将原始声波波形数据和预处理的声波波形数据存储在精心设计的高速存储器内或者以实时方式通过钻井液脉冲遥测技术传输到地面[9]。

测井新技术进展综述

测井技术作为认识和识别油气层的重要手段,是石油十大学科之一。现代测井是当代石油工业中技术含量最多的产业部门之一,测井学是测井学科的理论基础,发展测井的前沿技术必须要有测井学科作指导。 二十一世纪,测井技术要在石油与天然气工业的三个领域寻求发展和提供服务:开发测井技术、海洋测井技术和天然气测井技术。目前,测井技术已经取得了“三个突破、两个进展”,测井技术的三个突破是:成像测井技术、核磁测井技术、随钻测井技术。测井技术的两个进展是:组件式地层动态测试器技术、测井解释工作站技术。“三个突破、两个进展”代表了目前世界测井技术的发展方向。为了赶超世界先进水平,我国也要开展“三个突破、两个进展” 的研究。 一、对测井技术的需求 目前我国油气资源发展对测井关键技术的需求主要有如下三个方面:复杂地质条件的需求、油气开采的需求、工程上的需求。 1)复杂地质条件的需求我国石油储量近90%来自陆相沉积为主的砂岩油藏,天然气储量大部分来自非砂岩气藏,地质条件十分复杂。油田总体规模小,储层条件差,类型多,岩性复杂,储层非均质性严重,物性变化大,薄层、薄互层及低孔低渗储层普遍存在。这些迫切需要深探测、高分辩率的测井仪器和方法,开发有针对性、适应性强的配套测井技术。 2)油气开采的需求目前国内注水开发的储量已占可采储量的90%以上,受注水影响的产量已占总产量的80%,综合含水85%以上。油田经多年注水后,地下油气层岩性、物性、含油(水)性、电声特性等都发生了较大的变化,识别水淹层、确定剩余油饱和度及其分布、多相流监测、计算剩余油(气)层产量等方面的要求十分迫切。 3)工程上的需求钻井地质导向、地层压力预测、地应力分析、固井质量检测、套管损坏检测、酸化压裂等增产激励措施效果检测等都需要新的测量方法。 二、测井技术现状 我国国内测井技术发展措施及道路主要有两条:一方面走引进、改造和仿制的路子;另一方面进行自主研究和开发。下面分别总结一下我国测井技术各个部分的现状: 1)勘探井测井技术现状测井装备以MAXIS-500、ECLIPS-5700及EXCELL-2000系统为主;常规探井测井以高度集成化的组合测井平台为主;数据采集主要以国产数控测井装备为主;测井数据的应用从油气勘探发展到油气藏综合描述。 2)套管井测井技术现状目前,套管和油管内所使用的测井方法主要有:微差井温、噪声测井、放射性示踪,连续转子流量计、集流式和水平转子流量计,流体识别、流体采样,井径测量、电磁测井、声测井径和套管电位,井眼声波电视、套管接箍、脉冲回声水泥结胶、径向微差井温、脉冲中子俘获、补偿中子,氯测井,伽马射线、自然伽马能谱、次生伽马能谱、声波、地层测试器等测井方法。测井结果的准确性取决于测井工艺水平、仪器的质量和科技人员对客观影响因素的校正。测井数据的应用发展到生产动态监测和工程问题整体描述与解决。 3)生产测井资料解释现状为了获得油藏描述和油藏动态监测准确的资料,许多公司都把生产测井资料和其它科学技术资料综合起来。不仅测得流体的流动剖面.而且要搞清流体流入特征,因此,生产测井资料将成为油藏描述和油藏动态监测最重要的基础。生产测井技术中一项最新的发展是产能测井,它建立了油藏分析与生产测井资料的关系。产能测井表明,生产流动剖面是评价完井效果的重要手段。产能测井曲线是裸眼井测井资料、地层压力数据、产液参数资料、射孔方案和井下套管设计方案的综合解释结果,其根本目的就是利用油层参数预测井眼流动剖面。生产测井流量剖面成为整个油层评价和动态监测的一个重要方法。 4)随钻测量及其地层评价的进展随钻测井(LWD)是随大斜度井、水平井以及海上钻井而发展起来的,在短短的十几年时间里,已成为日趋成熟的技术了。如今随钻测井已经拥有了

关于测井技术应用与发展探讨

关于测井技术应用与发展探讨 随着石油勘探开发的需要,测井技术发展已愈来愈迅速,高分辨阵列感应、三分量感应和正交偶极声波等新型成像测井仪为研究地层各向异性提供了强有力的手段;新的测井仪器,如电阻率、新型脉冲中子类测井仪、电缆地层测试及永久监测等现代测井技术可以在井中确定地层参数,精细描述油藏动态变化;随钻测井系列也不断增加。通过介绍测井技术的测量原理和部分仪器结构,寻求我国测井技术的差距和不足,这对于我国当前的科研和生产具有指导和借鉴作用。 标签:测井技术地质测试 根据地质和地球物理条件,合理地选用综合测井方法,可以详细研究钻孔地质剖面、探测有用矿产、详细提供计算储量所必需的数据,如油层的有效厚度、孔隙度、含油气饱和度和渗透率等,以及研究钻孔技术情况等任务。此外,井中磁测、井中激发激化、井中无线电波透视和重力测井等方法还可以发现和研究钻孔附近的盲矿体。测井方法在石油、煤、金属与非金属矿产及水文地质、工程地质的钻孔中,都得到广泛的应用。特别在油气田、煤田及水文地质勘探工作中,已成为不可缺少的勘探方法之一[1]。应用测井方法可以减少钻井取心工作量,提高勘探速度,降低勘探成本。在油田有时把测井称为矿场地球物理勘探、油矿地球物理或地球物理测井。按照传统的观点,测井技术在油气勘探与开发中,仅仅对油气层做些储层储集性能和含油气性能(孔隙度、渗透率、含油气饱和度和油水的可动性)定量或半定量的评价工作,这已远远跟不上油气工业迅猛发展的需要。而当今测井工作中评价油气藏的理论、方法技术有了长足的发展,解决地质问题的领域也在逐步扩大。 1电阻率测井技术 电阻率成像测井把由岩性、物性变化以及裂缝、孔洞、层理等引起的电阻率的变化转化为伪色度,直观看到地层的岩性及几何界面的变化,识别岩性、孔洞、裂缝等。电阻率成像有FMI、AIT及ARI等。斯伦贝谢的FMI有四个臂,每个臂上有一个主极板和一个折页极板,主极板与折页极板阵列电极间的垂直距离为5.7in,8个极板上共有192个传感器,都是由直径为0.16in的金属纽扣外加0.24in的绝缘环组成,有利于信号聚焦,使得钮扣电极的分辨率达0.2in,测量时极板被推靠在井壁岩石上,小电极主要反映井壁附近地层的微电阻率。斯伦贝谢或阿特拉斯的AIT是基于DOLL几何因子的电磁感应原理,通过对单一发射线圈供三种不同频率交流使其在周围的介质中产生电磁场,用共用一个发射线圈的8对接收线圈检测感应电流,从而可以求出介质的电导率。ARI是斯伦贝谢基于侧向测井技术推出的,可以有效的进行薄层、裂缝、储层饱和度等地层评价。长庆近年来均采用四米电阻率测井系。主要用于定性划分岩石类型和判定砂岩的含油、含水性能。 2声波测井技术

声波测井技术发展现状与趋势

浅谈声波测井技术发展现状与趋势

摘要:以声波测井换能器技术的变化为主线,分析了声波测井技术的进展以及我国在该技术领域内取得的进步。单极子声波测井技术已经成为我国成熟的声波测井技术,包括非对称声源技术在内的多极子声波测井技术已经进入产业化进程。 关键词:声波测井;换能器;单极子声波测井;多极子声波测井; 从声学上讲,声波测井属于充液井孔中的波导问题。由声波测井测量的井孔中各种波动模式的声速、衰减是石油勘探、开发中的极其重要参数。岩石的纵、横波波速和密度等资料可用来计算岩石的弹性参数(杨氏模量、体积弹性模量、泊松比等);计算岩石的非弹性参数(单轴抗压强度、地层张力等);估算就地最大、最小主地层应力;估算孔隙压力、破裂压力和坍塌压力;计算地层孔隙度和进行储层评价和产能评估;估算地层孔隙内流体的弹性模量,从而形成独立于电学方法的、解释结果不依赖于矿化度的孔隙流体识别方法;与stoneley波波速、衰减资料相结合用以估算地层的渗透率;为地震勘探多波多分量问题、avo问题、合成地震记录问题等提供输人参数等等。经过半个多世纪的发展,声波测井已经成为一个融现代声学理论、最新电子技术、计算机技术和信息处理技术等最新科技为一体的现代测量技术,并且这种技术仍在迅速发展之中,声波测井在地层评价、石油工程、采油工程等领域发挥着越来越重要的作用。与电法测井和放射性测井方法并列,声波测井是最重要的测井方法之一。

一、测井技术发展现状及趋势 声波测井技术的进步是多方面的。声波测井声波探头个数在不断增加以提高声波测量信息的冗余度、改善声波测量的可靠性;声波测井中探头的振动方式经历了单极子振动方式、偶极子振动方式、四极子振动方式和声波相控阵工作方式,逐步满足在任意地层井孔中测量地层的纵横波波速、评价地层的各向异性和三维声波测井的需求。声波探头的相邻间距不断减小,而发收探头之间的距离在不断增大,这一方面提高了声波测井在井轴方向的测量分辨率;另一方面也提高了声波测井的径向探测深度。声波测井的工作频率范围在逐步向低频和宽频带范围、数据采集时间在不断增大,为扩大声波测井的探测范围提供了保障。声波测井中应用的电子技术从模拟电路、数字电路技术逐步发展为大规模可编程电路和内嵌中央处理器技术,从而实现声波测井仪器的探头激励、数据采集、内部通讯、逻辑控制、数据传输等方面的智能化和集成化。可以预期,下一代声波测井仪器研制的关键技术之一是研制能够控制声束指向性的 基阵式换能器。应用相控阵换能器的最大优势就是增大空间某个方向的声辐射强度,使声波沿着预先设定好的方向辐射,从根本上增加有用信号的能量、提高信噪比和探测能力。显然,声波探头结构和振动模态性质的变化直接导致了声波测井技术的根本进步。(一)单极子声波测井技术 声波测井仪器的声系一般由声波发射探头、隔声体和声波接收探头等部件构成。在井下采用单极子声源(对称声源)及单极子接收技

测井新技术

随钻声波测井技术综述 1.所调研专题的主题、意义、国内外研究和应用现状; 随钻测井(LWD)是在泥浆滤液侵入地层之前或侵入很浅时测得的,更真实地反映了原状地层的地质特征,可提高地层评价的准确性[1 ]。是近年来迅速崛起的先进测井技术[2 ],在某些大斜度井或特殊地质环境(如膨胀粘土或高压地层) 钻井时,电缆测井困难或风险加大以致于不能进行作业时,随钻测井是唯一可用的测井技术。随钻声波测井旨在节省钻井时间,利用测得的地震波速度模型与地震勘探数据相结合,实时确定地层界面的位置、估计地层孔隙压力等, 在这些方面的应用, 都可取代常规的电缆声波测井。随钻声波测井的任务是在钻井过程中确定地层的纵波和横波速度, 这两个弹性波速度更多被用于地层孔隙压力预测和地层模型修正。随钻声波测井最大的优势在于其实时性, 及时有效地获取地层信息, 为科学地制定下步施工措施提供依据。 在过去的近20 年里, 随钻测井技术快速发展, 目前已具备电缆测井的所有测井技术。全球随钻测井业务不断增长, 已成为油田工程技术服务的主体技术之一,其业务收入和工作量大幅增加。随着石油勘探开发向复杂储集层纵深发展, 随钻测井技术将更趋完善, 电缆测井市场份额将更多地被随钻测井所取代。 20 世纪40 年代和50 年代LWD 数据传输技术的发展非常缓慢,关键技术很难突破。在测井技术发展开始的50 年间的石油工业界许多人的眼里,LWD 是难以实现的理想化技术。钻井工业的需要推动了随钻测井技术快速发展;反之,随钻测井技术的发展保证了复杂钻井获得成功。20世纪80 年

代中期,大斜度井、水平井和小直径多分枝井钻井已成为油气开发的一种常规方法。在这样的井中,常规电缆测井仪器很难下到目标层,通常借助于挠性管传送和钻杆传送,这些作业方法费用高,操作困难。过去20 多年里,在油公司的需要和钻井技术发展的推动下,各种随钻测井仪器相继研制成功。现场服役的随钻声波测井仪器使用的声源有单极子、偶极子和四极子,如贝克休斯INTEQ 公司的APX既使用单极子也使用四极子声源,斯伦贝谢公司的Son2 icVision使用单极子声源,哈里伯顿Sperry 公司的BAT是偶极子仪器。这些仪器可测量软/ 硬地层纵/ 横波速度和幅度,测量数据一般保存在井下存储器内,起钻后回放使用[3 ,4 ]。随钻声波测井仪器的发展见表1.

声波测井技术的应用探析

声波测井技术的应用探析 近年来,随着国家科技水平的不断进步以及经济实力的不断提升,石油勘探和石油开采都进入到了一个新的发展阶段。其中声波测井技术作为一种新的技术手段,在石油勘探项目中的应用越来越广泛。声波测井技术是指利用声波在岩层中的传播规律和传播特点来识别和分析地下的地质情况,为石油开采做必要的技术准备。本文基于声波探测的基本原理,探讨声波测井技术在相关技术领域中的应用,并简要介绍声波测井技术的发展前景。 标签:声波测井石油勘探应用探析 声波测井技术最先在20世纪50年代出现,历经了一系列的技术革新和技术发展,目前已经成为比较重要的测井方法之一。声波测井的技术基础是利用声波在地下不同介质中传播规律的不同特点,来研究地下岩石的分布和地质条件,进而识别地下的地层特性,并进行相关的计算工作。近些年,声波测井技术的发展速度比较快,同时也推动了其他测井技术的研究进展,提高了工程的施工进度和施工质量,给企业带来了经济效益的提升。 1声波测井的基本原理 在物理上,声波是由于物体的机械振动产生的,是一种常见的运动形式,这也决定了声波的传播状态受到介质的相关参数的影响。由于声波在固体中传播具有速度快、能量小等特点,所以声波可以在固体岩石探测中使用,固体岩石本身就是一种弹性介质,不同岩石的组合分布、不同种类的岩石中的声波传播具有不同的特点,所以可以用来研究地质情况。在声波测井技术中所利用的仪器主要是声波测井仪,通过该装置发出一定频率的声波,然后收集声波的传播数据来探测地下岩层的分布情况,进而研究地质性质。 声波测井仪主要有地面装置、井下换能器和数据记录分析设备组成,记录分析设备是用来记录换能器收集声波时产生的时间差,这种方法有一定的测量精度。此外,声波测井装置还引入了信号网络,利用网络信号的传输过程,实现井下地质情况的精确探测。 2声波测井技术的应用情况 近年来,声波测井技术得到了不断的发展,经历了一系列的技术演变,由最初的声速测井和声幅测井到长距声波测井再到包含多个技术系统的超声波测井和多极子阵列声波测井技术,在这个技术发展历程中我们可以看出声波测井已经摆脱了单纯的声波应用,在这个技术基础之上又不断融合了声学理论、信号传播技术、计算机网络技术等现代最新的科技成果,其工作的效率、质量、精确程度不断得到提升。目前声波测井技术的应用主要有以下几个方面。 2.1声波测井用来划分地层

试分析声波测井技术在岩土工程勘察中的应用

试分析声波测井技术在岩土工程勘察中的应用 发表时间:2018-09-17T10:49:45.890Z 来源:《基层建设》2018年第20期作者:竺新强 [导读] 摘要:在本文中首先阐述了声波测井技术的概念,而后就声波测井的技术分类与特点进行了研究,进而就声波测井技术在岩土勘察中应用的情况进行了分析,最后探究了在岩土工程勘察中进行技术管理的策略。 江苏省地质工程有限公司江苏南京 210000 摘要:在本文中首先阐述了声波测井技术的概念,而后就声波测井的技术分类与特点进行了研究,进而就声波测井技术在岩土勘察中应用的情况进行了分析,最后探究了在岩土工程勘察中进行技术管理的策略。 关键词:声波测井技术;岩土工程勘察;应用 引言 现如今工程项目施工条件的复杂化,传统的勘察技术已经难以解决当前岩土工程勘察工作中的技术难题,唯有不断更新岩土工程勘察技术,充分结合施工现场实际情况,组建强大的技术队伍,才能够保证岩土工程勘察工作的顺利开展,使工程项目取得良好的经济效益与社会效益。声波测井就是当前在岩土勘察工作中应用的较为新型的勘察技术。 1 现代声波测井技术概述 声波速度测井是通过测量井下岩层的声波传播速度(实际中记录的是声波时差值),研究井外地层的岩性、物性,估算地层孔隙度的一种测井方法。在应用的过程中充分利用声波进行孔内信息的获得,然后能够有效的进行井孔的判断,例如岩石的密度、风化程度及地层的划分等方面。随着科学技术的不断发展,声波测井的技术也得到进一步发展,其主要体现在以下几个方面:一是源探测模式朝组合化模式发展,声波测井的发展会从传统单一的方式逐渐的朝向多级声波测井,其主要是对传统的方式进行改进和优化;二是探测器数目朝阵列化朝发展,这样的发展能够有效的保证整体的分辨效率;三是逐渐的朝向可控化方向发展,从而能够对各个声波进行发射,同时有效的对其进行控制;四是不断地朝向数字化方向,使得信息采集效率能够进一步提高。就目前的情况来看,我国的声波特点技术可分为3种,即单极子声波测井技术、多极子声波测井技术及相控声波测井技术。 2 目前几种主要的声波测井技术 2.1 单极子声波测井技术 单极子声波测井技术最主要的部分是单极子声源及接收技术。单极子声源属于圆管状的压电振子,当具有很大的辐射声波时,压电振子尺度也就充当了脉动球源的作用。通过单极子声源能够逐渐地朝向各个方向进行能量的发射,从而能够对各个信息进行综合。 2.2 多极子声波测井技术 最早进行多级子声波测定技术的研究是因为单级子声波不能够有效地进行滑行横波波速的测定,因此在应用基础上进行优化。多极子声源中主要包括两类声源,即偶极子声源和四极子声。目前主要是应用在充液井孔中,能够进一步激发更多的子波,当曲波是偶极子波的时候,螺旋波就会分为四极子波,其速度比地层横波波速小一些。从研究中可以知道通过使用多极子声波进行测井测试能够得到更多的测得地层横波,同时准确率非常高。目前我国也研发出了多极子阵列声波测井仪,其能够进行测井控制,从而能够确保综合信息的获取。 2.3 相控声波测井技术 随着科学技术的不断发展,我国加大了对声波测井的研究,方位声波测井属于最新的测井技术,其在很多方面都具有很多优势,能够进行地层评价、裂缝评价等。相控声波测井技术是方位声波测井的主要技术,其声波辐射器主要是通过多个振动元件构成,并且能够进行任意的分布,在应用都过程中需要通过信号的控制能够进行声波辐射器控制。目前对于该项技术也是属于声波测定技术的最新研究,因此也是得到了高度的重视。 3 声波测井在岩土勘察工程实例当中的应用 3.1 钻孔岩性的划分 通过分析某市综合楼ZK6勘察钻孔的综合测井资料,可以看出不同地层例如粘土、砂岩以及泥岩等各地层的声波波速的差异。 岩土名称深度范围/m 波速Vp/m 黏土 2.3~8.0 460 粉砂 8.0~12.5 750 粉质黏土 12.5~16.0 620 从实际的情况来看砂层具有很高的纵波速度,而在黏土及粉质黏土的纵波速度方面是比较低的,对其进行分析后可以进行钻孔岩性的划分,同时能够得到更好的分层效果。 3.2 岩层风化带及破碎带确定 3.2.1 通过对某行政办公楼ZK04号勘察钻孔进行声波测试,结果表明在石英砂岩段深度范围内,波速随深度而变化,而在这个过程中会存在一个分界点,即垂直深度控制在17.2m。当其深度小于了这个分界点,其纵波速度为3300m/s;当其超过了分界点的时候纵波的平均值达到了6500m/s。而产生这些情况的主要原因是因为浅部的岩层受到了风化影响,17.2m以浅为强风化花岗岩,以深为中等风化花岗岩,因此随着基岩风化程度加大,波速将得到进一步降低。 3.2.2 从ZK10号勘察钻孔中可以知道:40m以深为中等风化花岗岩,声波测试结果表明,中等风化花岗岩声速在6300m/s~7500m/s之间。当深度为45.2m~49.5m的时候,纵波速度曲线降低至5450/s~6100m/s,因此就能够进一步确定出基岩破碎带为46.20m。 3.3 解释裂隙和软弱夹层 在岩土工程建设的时候会存在很多问题,主要是软弱夹层和裂隙方面的问题,其需要引起我们的高度重视。从煤矿开采工程ZK05号中可以看出:通过使用钻孔方法能够进一步揭露处来的岩层也是花岗岩,其中纵波速度曲线在以下几个段有所降低,即:21.50m~22.00m,33.80m~34.40m,40.10m~40.90m,同时对于这些孔深阶段电阻率曲线也是出现异常,通过分析可以知道这段主要为为岩层裂隙或破碎带,而钻探结果表明上述3段岩芯破碎、裂隙发育,其钻探、声波测试及电阻率测试结果相吻合。 3.4 弹性参数的确定 通过进行测井计算得到的岩土力学性质,然后将其和实验室所得到的数据进行分析对比,从而能够分析出其中的相关性和可比性,因

相关主题
文本预览
相关文档 最新文档