当前位置:文档之家› 高分子物理作业[带答案]

高分子物理作业[带答案]

高分子物理作业[带答案]
高分子物理作业[带答案]

第一章

1.试讨论线形聚异戊二烯可能有哪些不同的构型,假定不考虑键接结构(画出结构示意图)。 解:聚异戊二烯可能有6种有规立构体,它们是:

常见错误分析:本题常见的错误如下:

(1)将1,2加成与3,4加成写反了。

按IUPAC 有机命名法中的最小原则,聚异戊二烯应写成

而不是

即CH 3在2位上,而不是在3位上。 (2)“顺1,4加成又分成全同和间同两种,反1,4加成也分成全同和间同两种。”顺1,4或反1,4结构中没有不对称碳原子,没有旋光异构体。甲基与双键成120°角,同在一个平面上。

2C C

CH 2CH 2CH 3H

C C C C C

C R

R R 33CH 3

H H

H

H H H (R =CH CH 2)C C C C C

C R

R R H H

H

H H H H H H (R =C(CH 3)CH 2)C C C C C C

R R 3CH 3CH 3

H H

H H H H (R =CH CH 2)C C C C C

C R R R H H H H H H H

H

H (R =C(CH 3)CH 2)

② 反1,4加成 ④ 3,4加成全同立构 ③ 1,2加成全同立构

⑤ 1,2加成间同立构 ⑥ 3,4加成间同立构 CH CH 3CH 2CH 2n 1234CH CH 3

CH 2CH 2n

1234

2.以聚丁二烯为例,说明一次结构(近程结构)对聚合物性能的影响?

解:单体丁二烯进行配位聚合,由于1,2加成与1,4加成的能量差不多,所以可得到两类聚合物。一类是聚1,2-丁二烯,通式是;另一类是聚1,4-丁二烯,通式是。每一类都可能存在立体异构,如

由于一次结构不同,导致聚集态结构不同,因此性能不同。其中顺式聚1,4-丁二烯规整性差,不易结晶,常温下是无定形的弹性体,可作橡胶用。其余三种,由于结构规整易结晶,使聚合物弹性变差或失去弹性,不易作橡胶用,其性能之差详见表1-1。

表1-1聚丁二烯的物理性质

异构高分

熔点(℃)密度

(g/cm3)

溶解性(烃类溶

剂)

一般物性(常

温)

回弹性

20℃90℃

全同聚

1,2-丁二

120~125 0.96 难硬,韧,结晶

45~55 90~92

间同聚

1,2-丁二

154~155 0.96 难硬,韧,结晶

顺式聚

1,4-丁二

4 1.01 易无定形

硬弹性

88~90 92~95

反式聚

1,4-丁二

135~148 1.02 难硬,韧,结晶

75~80 90~93

3.假定聚乙烯的聚合度为2000,键角为109.5°,求伸直链的长度L max 与自由旋转链的根均方末端距之比值。并由分子运动观点解释某些高分子材料在外力作用下可以产生很大变形的原因。

解:对于聚乙烯链

nl L 2

1max 32??

?

??=

()l n h r

f 2212,=

n =2×2000=4000(严格地说应为3999) 所以()

5.363

40003212,max ===n h

L r

f

可见高分子链在一般情况下是相当卷曲的,在外力作用下链段运动的结果是使分子趋

于伸展。于是某些高分子材料在外力作用下可以产生很大形变,理论上,聚合度2000的聚乙烯完全伸展可形变36.5倍。

注意:公式中的n 为键数,而不是聚合度,本题中n 为4000,而不是2000。

4.试比较下列高分子链.当键数分别为n=100和n=1000时的最大拉伸倍数; (1)无规线团高分子链(自由连接链); (2)键角为109.5°的自由旋转链;

解:(1)对无规线团,按自由连接链计算,2

2

,nl h j f =

∴最大伸长倍数=()

21212

1

2,max n l n nl h

L j

f =??

? ?= 当n =100时为10;

当n =1000时为31.6

注:因为自由结合链无键角限制,nl L =max

(2)对自由旋转链,2

2

,2nl h r f = ∴最大伸长倍数=()

()2

121

21

2

1

2

12,max 31232n l n nl h L r

f ??

? ??=??? ??=

当n =100时为5.77; 当n =1000时为18.3

5.试从下列高聚物的链节结构,定性判断分子链的柔性或刚性,并分析原因.

(1)CH

2C

CH3

CH3(2)CH

R

C N

H

O

(3)CH

2CH

CN (4)O C

CH3

CH3

O C

O

(5)

C C C C

解:(1)柔性。因为两个对称的侧甲基使主链间距离增大,链间作用力减弱,旋转位垒降低。

(2)刚性。因为分子间有强的氢键,分子间作用力大,旋转位垒高。

(3)刚性。因为侧基极性大,分子间作用力大,旋转位垒高。

(4)刚性。因为主链上有苯环,旋转较困难。

(5)刚性。因为侧基体积大,妨碍旋转,而且主链与侧链形成了大π键共轭体系,使链僵硬。

第二章

1.将下列三组聚合物的结晶难易程度排列成序: (1)PE ,PP ,PVC ,PS ,PAN ;

(2)聚对苯二甲酸乙二酯,聚间苯二甲酸乙二酯,聚己二酸乙二酯; (3)PA 66,PA 1010. 解:

结晶难易程度为:

(1)PE>PAN>PP>PVC>PS

(2)聚己二酸乙二酯>PET>聚间苯二甲酸乙二酯

由于聚己二酸乙二酯柔性好,而聚间苯二甲酸乙二酯对称性不好。 (3)尼龙66>尼龙1010

由于尼龙66分子中的氢键密度大于尼龙1010。

2.(1)将熔融态的聚乙烯(PE )、聚对苯二甲酸乙二醇酯(PET )和聚苯乙烯(PS )淬冷到室温,PE 是半透明的,而PET 和PS 是透明的。为什么?

(2)将上述的PET 透明试样,在接近玻璃化温度g T 下进行拉伸,发现试样外观由透明变为混浊,试从热力学观点来解释这一现象。 解:

(1)当光线通过物体时,若全部通过,则此物体是透明的。若光线全部被吸收,则此物体为黑色。对于高聚物的晶态结构总是晶区与非晶区共存,而晶区与非晶区的密度不同,物质的折光率又与密度有关,因此,高聚物的晶区与非晶区折光率不同。光线通过结晶高聚物时,在晶区界面上必然发生折射、反射和散射,不能直接通过,故两相并存的结晶高聚物通常呈乳白色,不透明或半透明,如聚乙烯、尼龙等。当结晶度减小时,透明度增加。对于完全非晶的高聚物,光线能通过,通常是透明的,如有机玻璃、聚苯乙烯等。另外结晶性高聚物要满足充要条件(化学结构的规整性和几何结构的规整性,温度和时间)才能结晶,否则是不可能的。PE 由于结晶能力特别强,用液氮(-193℃)将其熔体淬冷也得不到完全非晶体,总是晶区与非晶区共存,因而呈现半透明。PET 是结晶能力较弱的聚合物,将其熔体淬冷,由于无足够的时间使其链段排入晶格,结果得到的是非晶态而呈透明性。PS 没加任何说明都认为是无规立构的。无规立构的PS 在任何条件下都不能结晶,所以呈现透明性。

(2)PET 在接近g T 进行拉伸,由于拉伸使得大分子链或链段在外力的方向上取向而呈现一定的有序性,使之容易结晶。由于结晶,使之由透明变为混浊。拉伸有利于结晶,在热力学上是这样解释的:根据S T H G ?-?=?,已知结晶过程是放热和有序排列的过程,所以H ?<0,S ?<0。要使得结晶过程自发进行,势必要求G ?<0,即H ?>S T ?,也就是

说S ?越小越好,设未拉伸的非晶态的熵为a S ,结晶后的熵为c S ,拉伸后非晶态的熵为a S '。显然,拉伸的试样S '?=c S -a S ',未拉伸试样的S ?=c S -a S 。那么就有S ?>S '?(∵a S '>a S ),故拉伸有利于结晶。

3.区别晶态与取向态。

解:

小分子晶体结晶完全,称为晶相。高聚物由于相对分子质量大,体系黏度大,活动迟缓,虽然某些高聚物可以结晶,但结晶很不完善,总是晶区伴随着非晶区,这种晶区与非晶区共存的宏观聚集态叫晶态。高聚物在外力作用下大分子链或链段沿外力方向有序排列,这样的聚集态为取向态,通常为单轴取向和双轴取向。如纤维是单轴取向,薄膜一般为双轴取向。

结晶和取向不同。结晶是分子链紧密堆积、体系能量最低的热力学稳定体系,晶体中分子间排列为三维有序;取向是熵减少的非稳定体系,一般只有一维或二维有序。

4.列出下列单体所组成的高聚物熔点顺序,并说明理由.

CH3—CH=CH2; CH3—CH2—CH=CH2; CH2=CH2

CH3CH2CH2CH=CH2; CH3CH2CH2CH2CH2CH=CH2

解:

聚丙烯>聚乙烯>聚丁烯-1>聚戊烯-1>聚庚烯-1

聚丙烯由于侧甲基的空间阻碍,增加了刚性,从而ΔS较小,T m较PE高。另一方面从聚丁烯-1到聚庚烯-1,随着柔性侧基增长,起了类似增塑的作用,ΔS增大,从而T m较PE 低,侧基越长,T m越低。

5.解释下表中为什么PE和聚四氟乙烯的聚能相差不多,而熔点相差很大。PET和尼龙66的聚能相差很大,而熔点却基本相同。

(1)PE与PTFE都是非极性高分子,分子间作用力差不多,即ΔH差不多。但由于氟原子电负性很强,氟原子间的斥力很大,分子链的旋转很困难,分子刚性很大,从而ΔS很小,T m 很高。

(2)尼龙66的分子间作用力(由于氢键)大于PET,所以ΔH较大,另一方面尼龙66的分子链无苯环,旋转较容易,柔性大,ΔS较大。ΔH和ΔS的影响相互抵消,从而T m差不多。

第三章

1.简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢?

解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。

高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE )在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。

2.已知某聚合物的()

21

34.10cm cal P =δ,溶剂1的4.71=δ,溶剂2的9.112=δ。问将上述溶剂如何以最适合的比例混合,使该聚合物溶解。 解,P δδφδφδ=+221

1=混

4.109.114.721=+φφ ()4.1019.114.711=-+φφ 311=φ

∴2:1:21=φφ

3.现有一瓶苯乙烯的苯溶液与一瓶聚苯乙烯的苯溶液,两溶液中溶质的百分含量相同,试问哪一种溶液具有较高的(1)蒸气压;(2)凝固点;(3)渗透压;(4)粘度? 答:

根据依数性质

(1)蒸气压:单体溶液高; (2)凝固点:单体溶液低; (3)渗透压:单体溶液高;

(4)粘度为非依数性质,聚合物溶液高。

4.写出三种可判断溶剂优劣的热力学参数,并讨论它们分别为何值时,溶剂是聚合物的良溶剂、θ溶剂、非溶剂;高分子在上述三种溶液中的热力学特征以及形态是怎样的? 答:三个参数分别为Huggins 参数χ12、第二维利系数A 2、排斥体积u 。

高分子物理习题及答案

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动 B.链段运动 C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯 4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。 (1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是( ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠 B.剪切变稀 C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶 B.伸直链晶体 C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ 1 ( A )聚合物能溶解在所给定的溶剂中 A. χ 1<1/2 B. χ 1 >1/2 C. χ 1 =1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态;

何曼君第三版高分子物理答案(新版答案)

课后作业答案: 第一章 2、 W 1=250/(250+280+300+350+400+450+500+600)=250/3130=0.0799 W 2=0.0895 W 3=0.0958 W 4=0.1118 W5=0.1278 W6=0.1438 W7=0.1597 W8=0.1917 111 3910.07990.08950.09580.11180.12780.14380.15970.19170.002556 250280300350400450500600n i i M w M = ===+++++++∑424w i i M w M ==∑; 2 2 (1)12903w n n n M M M σ=-=; 22 (1)15173w w V M d =-= 4、粘度法测定分子量,得到的数据为不同浓度的溶液流经乌氏粘度计的两到标志线所需的时间。粘度一方面与聚合物的分子量有关,另一方面也与聚合物分子的结构、形态和在溶剂中的扩张程度有关。因此,粘度法测得的分子量为相对分子量。 渗透压法测定分子量,得到的数据为不同浓度的溶液对应的平衡渗透压,与溶液中溶剂和溶质的摩尔分数有关,因此测得的是数均分子量。 光散射法测定分子量,是将固定波长的光线通过不同浓度的溶液,而散射光的强度是由各种大小不同的分子所贡献的。因此测得的分子量为重均分子量。 5、如知道分子量的数量微分分布函数N (m )和质量微分分布函数W(m),则可通过下式求出n M 和w M . 01 ()()n M N m MdM W N dM M ∞ ∞= = ? ? ()w M W m MdM ∞ = ? 6、 2i i i i i i w i i i i i i i i n M W M M W M n M W = ==∑∑∑∑∑ 1 i i i i i n i i i i i i i i n M W M W W n M M = = = ∑∑∑∑∑ 1/( )i i i M W M αα η=∑ ; 以为α值在-1到1之间,因此n w M M M η≤≤ 7、今有一混合物,有1克聚合物A 和2 克同样类型的聚合物B 组成,A 的分 子量M A = 1×105 g .mol -1; B 的分子量M B = 2×105 g .mol -1。计算该混合物的

高分子物理习题 答案

高分子物理部分复习题 构象;由于单键(σ键)的内旋转,而产生的分子在空间的不同形态。它是不稳定的,分子热运动即能使其构象发生改变 构型;分子中由化学键所固定的原子在空间的排列。稳定的,要改变构型必需经化学键的断裂、重组 柔顺性;高聚物卷曲成无规的线团成团的特性 等同周期、高聚物分子中与主链中心轴平行的方向为晶胞的主轴,其重复的周期 假塑性流体、无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体 取向;高分子链在特定的情况下,沿特定方向的择优平行排列,聚合物呈各向异性特征。 熵弹性、聚合物(在Tg以上)处于高弹态时所表现出的独特的力学性质 粘弹性;外力作用,高分子变形行为有液体粘性和固体弹性的双重性质,力学质随时间变化的特性 玻尔兹曼叠加、认为聚合物在某一时刻的弛豫特性是其在该时刻之前已经历的所有弛豫过程所产生结果的线性加和的理论原理 球晶、球晶是由一个晶核开始,以相同的速度同时向空间各方向放射生长形成高温时,晶核少,球晶大 应力损坏(内耗)、聚合物在交变应力作用下产生滞后现象,而使机械能转变为热能的现象 应力松弛、恒温恒应变下,材料的内应变随时间的延长而衰减的现象。 蠕变、恒温、恒负荷下,高聚物材料的形变随时间的延长逐渐增加的现象 玻璃化转变温度Tg:玻璃态向高弹态转变的温度,链段开始运动或冻结的温度。挤出膨大现象、高分子熔体被强迫挤出口模时,挤出物尺寸大于口模尺寸,截面形状也发生变化的现象 时温等效原理、对于同一个松驰过程,既可以在低温下较长观察时间(外力作用时间)观察到,也可以在高温下较短观察时间(外力作用时间)观察出来。 杂链高分子、主链除碳原子以外,还有其他原子,如:氧、氮、硫等存在,同样以共价键相连接 元素有机高分子、主链含Si、P、Se、Al、Ti等,但不含碳原子的高分子 键接结构、结构单元在高分子链中的联结方式 旋光异构、具有四个不同取代基的C原子在空间有两种可能的互不重叠的排列方式,成为互为镜像的两种异构体,并表现出不同的旋光性 均相成核、处于无定型的高分子链由于热涨落而形成晶核的过程 异相成核、是指高分子链被吸附在固体杂质表面而形成晶核的过程。Weissenberg爬杆效应当插入其中的圆棒旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。 强迫高弹形变对于非晶聚合物,当环境温度处于Tb<T <Tg时,虽然材料处于 玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大变形 冷拉伸;环境温度低于熔点时虽然晶区尚未熔融,材料也发生了很大拉伸变形 溶度参数;单位体积的内聚能称为内聚物密度平方根 介电损耗;电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。 聚合物的极化:聚合物在一定条件下发生两极分化,性质偏离的现象 二、填空题

高分子物理与化学习题答案

第一章 绪论 1. P16: 名词解释: 单体:能够形成聚合物中结构单元的小分子化合物 结构单元:构成高分子链并决定高分子性质的最小原子组合 重复单元:聚合物中组成和结构相同的最小单位,又称为链节。 高分子: 聚合物:由结构单元通过共价键重复连接而成的大分子 聚合度:即高分子链中重复结构单元的重复次数,是衡量聚合物分子大小的指标。 3. P16写出下列单体的聚合反应式,以及单体/聚合物的名称 1). 2) 3) 4) 5) 6. P17: 写出下列混合物的数均分子量、重均分子量和分子量分布指数 (1)组分1:质量分数=0.5,分子量=1 x 104 (2)组分2:质量分数=0.4,分子量=1 x 105 (3)组分3:质量分数=0.1,分子量=1 x 106 解: 4 6 41085.11011054.0105.01 /1?=++== ==∑∑∑∑∑∑Mi Wi Wi Mi Wi Wi Ni NiMi M n 5 6541045.1101.0104.0105.0?=?+?+?==∑WiMi Mw 1045.15 ?Mw nCH 2 2CHF n 氟乙烯 聚氟乙烯 nCH 2C(CH 3)CH 2C(CH 3)2n 聚异丁烯 异丁烯 nHO (CH 2)5COOH H O(CH 2)5CO OH n 6-羟基己酸聚己内酯 n n CH 2CH 2CH 2O CH 2CH 2CH 2O 1,3-环丙烷 聚氧化丙撑 n n n H 2N(CH 2)6NH 2HOOC(CH 2)4COOH +2)6NHCO(CH 2)4CO 己二胺己二酸尼龙66

第三章 自由基聚合习题解答 4. P74 写出下列常用引发剂的分子式和分解反应式 (1) 偶氮二异丁腈【见教材P43】 H 3C C CH 3H 3C C CH 3 N N C CH 3 CH 3 2N 2 +(2) 偶氮二异庚腈 CH 2 C CH 3N N C CH 2CH 3 N 2 +CH HC H 3C CH 3 CH 3 CH 2 C CH 3HC CH 3CH 3 (3) 过氧化二苯甲酰【见教材P43】 (4)异丙苯过氧化氢【见教材P43】 (5)过硫酸铵体系【见教材P43】 5. P74 以偶氮异丁腈为例,写出氯乙烯自由基聚合的各基元反应 1.)链引发 (2)链增长: CH 3 C N CN C ·CH 3 CH 3 CH 3 N CH 3 CN C CH 32+N CH 2CHCl ·CH 3 CH 3 C ·+CH 2CH 3 C CH 3 O NH 4H 4N H 4N 2C O O C O O 2+CO C CH 3CH 3O OH C CH 3CH 3O HO +

高分子物理习题答案作业

共混型TPE在共混技术上经历哪些阶段及其特点。 答:以热塑性乙丙橡胶为例, 第一阶段:在PP中掺入未硫化的乙丙橡胶进行简单的机械共混制备TPE(称为TPO),PP含量一般在50份以下(以橡胶100份计)。 特点:密度小,抗冲击性特别是低温脆性好。可用于制造汽车保险杠。 第二阶段:在PP与乙丙橡胶共混时,借助交联剂和机械剪切应力作用使橡胶组分部分动态硫化,产生少量交联结构。 特点:该种材料强度、压缩永久形变、耐热、耐溶剂等性能都比TPO有很大提高,橡胶含量也高,但这两种TPE中,橡胶组分继续增加,共混物流动性大大降低。 第三阶段:制备完全硫化了的EPDM和PP共混物,该种TPE称作热塑性硫化胶(TPV)。 特点:由于橡胶组分已被充分交联,所以,材料的强度、弹性、抗压缩永久形变性能及耐热性均有很大提高。同时,耐疲劳、耐化学药品性及加工稳定性也明显改善,橡胶共混比可在较大范围内变化,材料性能具有更大的调节余地。 第6章橡胶弹性 1.高弹性有哪些特征?为什么聚合物具有高弹性?在什么情况下要求聚合物充分体现高弹性?什么情况下应设法避免高弹性? 答:特征:①弹性形变大,可高达1000%; ②弹性模量小。高弹模量约为105N/m2; ③弹性模量随绝对温度的升高正比地增加; ④形变时有明显的热效应。 聚合物的柔性、长链结构使其卷曲分子在外力作用下通过链段运动改变构象而舒展开来,除去外力又恢复到卷曲状态。橡胶的适度交联可以阻止分子链间质心发生位移的粘性流动,使其充分显示高弹性。 2.试述交联橡胶平衡态高弹形变热力学分折的依据和所得结果的物理意义。答:依据:热力学第一定律和第二定律 物理意义:橡胶变形后的张力可以看成是有熵的变化和内能的变化两部分组成。只有熵才能贡献的弹性叫熵弹性,橡胶拉伸时内能变化很小,主要是熵的变化。内能的变化是橡胶拉伸时放热的原因。 3. 简述橡胶弹性统计理论的研究现状与展望,说明橡胶弹性唯象理论的优缺点。 4.什么叫热塑性弹性体?举例说明其结构与性能关系。 答:热塑性弹性体兼有塑料和橡胶的特性,在常温下显示橡胶高弹性,高温下又能塑化成型。 苯乙烯—丁二烯—苯乙烯三嵌段共聚物:B:弹性,S:塑性 5.—交联橡胶试片,长2.8cm、宽1.0cm、厚0.2cm、重0.518g,于25℃时将其

高分子物理试卷 及答案

高分子物理试卷二答案 一、单项选择题(10分) 1.全同聚乙烯醇的分子链所采取的构象是( A )。 (A )平面锯齿链 (B )扭曲的锯齿链 (C )螺旋链 2.下列聚合物找那个,熔点最高的是( C )。 (A )聚乙烯 (B )聚对二甲苯撑 (C )聚苯撑 3.聚合物分子链的刚性增大,则黏流温度( B )。 (A )降低 (B )升高 (C )基本不变 4.增加聚合物分子的极性,则黏流温度将( C )。 (A )降低 (B )基本不变 (C )升高 5.可以用来解释聚合物的零切黏度与相对分子质量之间相互关系的理论是( B )。 (A )分子链取向 (B )分子链缠结 (C )链段协同运动 6.在下列情况下,交联聚合物在溶剂中的平衡溶胀比最大的是( C )。 (A )高度交联 (B )中度交联 (C )轻度交联 7.光散射的散射体积与θsin 成( B )。 (A )正比 (B )反比 (C )相等 (D )没关系 8.高分子的特性黏数随相对分子质量愈大而( A )。 (A )增大 (B )不变 (C )降低 (D )不确定 9.理想橡胶的泊松比为( C )。 (A )21 < (B )21 > (C ) 21 10.交联高聚物蠕变过程中的形变包括( B )。 (A )普弹形变、高弹形变和黏性流动 (B )普弹形变和高弹形变 (C )高弹形变和黏性流动 二、多项选择题(20分) 1.以下化合物,哪些是天然高分子( AC )。 (A )蛋白质 (B )酚醛树脂 (C )淀粉 (D )PS 2.柔顺性可以通过以下哪些参数定量表征( ABCD )。 (A )链段长度 (B )刚性因子 (C )无扰尺寸 (D )极限特征比 3.以下哪些方法可以测量晶体的生长速度( AB )。 (A )偏光显微镜 (B )小脚激光光散射 (C )光学解偏振法 (D )示差扫描量热法 4.有关聚合物的分子运动,下列描述正确的有( ACD )。 (A )运动单元具有多重性 (B )运动速度不受温度影响 (C )热运动是一个松弛过程 (D )整个分子链的运动称为布朗运动 (E )运动但愿的大小不同,但松弛时间一样 5.下列有关聚合物熔体流变性能的叙述,正确的有( ABDE )。 (A )大多数聚合物熔体在通常的剪切速率范围内表现为假塑性非牛顿流体 (B )在极低的剪切速率范围内,表现为牛顿流体 (C )在通常的剪切速率范围内,黏度随剪切速率升高而增大 (D )黏度随温度升高而下降 (E )在无穷大剪切速率下,在恒定温度下的黏度为常数 6.下面有关聚合物黏流活化能的描述,正确的是( AD )。

关于高分子物理习题答案

高分子物理习题答案 第一章高分子链的结构 3?高分子科学发展中有二位科学家在高分子物理领域作出了重大贡献并获得诺贝尔奖,他们是谁?请列举他们的主要贡献。 答:(1)H. Staudinger (德国):"论聚合”首次提出高分子长链结构模型,论证高分子由小分子以共价键结合。1953年获诺贝尔化学奖。 贡献:(1)大分子概念:线性链结构 (2)初探[]=KM关系 (3 )高分子多分散性 (4)创刊《die Makromol.Chemie》1943 年 (2)P. J. Flory(美国),1974年获诺贝尔化学奖 贡献:(1)缩聚和加聚反应机理 (2)高分子溶液理论 (3 )热力学和流体力学结合 (4 )非晶态结构模型 6?何谓高聚物的近程(一级)结构、远程(二级)结构和聚集态结构?试分别举例说明用什么方法表征这些结构和性能,并预计可得到哪些结构参数和性能指标。 答:高聚物的一级结构即高聚物的近程结构,属于化学结构,它主要包括链节、键接方式、构型、支化和交联结构等,其表征方法主要有:NMR, GC, MS, IR, EA, HPLC, UV 等。而高聚物的二级结构即高聚物的远程结构,主要包括高分子链的分子量、分子尺寸、分子形态、链的柔顺性及分子链在各种环境中所采取的构象,其表征方法主要有:静态、动态光散射、粘度法、膜渗透压、尺寸排除色谱、中子散射、端基分析、沸点升高、冰点降低法等。高聚物的聚集态结构主要指高分子链间相互作用使其堆积在一起形成晶态、非晶态、取向态等结构。其表征方法主要有:X-射线衍射、膨胀计法、光学解偏振法、偏光显微镜法、光学双折射法、声波传播法、扫描电镜、透射电镜、原子力显微镜、核磁共振,热分析、力学分析等。 &什么叫做高分子的构型?试讨论线型聚异戊二烯可能有哪些不同的构型。 答:由化学键所固定的原子或基团在空间的几何排布。 1 , 2:头-头,全同、间同、无规;头-尾,全同、间同、无规 3, 4:头-头,全同、间同、无规;头-尾,全同、间同、无规 1 , 4:头-头,顺、反;头-尾,顺、反 9?什么叫做高分子构象?假若聚丙烯的等规度不高,能不能用改变构象的办法提高其等规度?说明理由。答:由于单键内旋转而产生的分子在空间的不同形态(内旋转异构体)称为构象。不能用改变构象的办法提高其更规度。等规度是指高聚物中含有全同和间同异构体的总的百分数,涉及的是构型问题,要改变等规度,即要改变构型。而构型是由化学键所固定的原子或基团在空间的几何排布,改变构型必须通过化学键的断裂和重组。 11 ?假定聚丙烯主链上的键长为0.154纳米,键角为109.5,根据下表所列数据,求其等效自由结合链的 链段长度

高分子物理作业答案

第五章聚合物的转变与松弛 1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的5个区域.并讨论分子量对应力松弛模量—温度曲线的影响规律。 (1)玻璃态区类似玻璃,脆性,如:室温下的PS、PMMA。 温度不足以克服内旋转位垒,链段以上运动“冻结”,分子运动主要限于振动和短程的旋转运动 (2)玻璃—橡胶转变区远程、协同分子运动的开始。链段(约10—50个主链原子)获得了足够的热能开始以协同方式运动,不断改变构象 (3)橡胶-弹性平台区分子间存在物理缠结,聚合物呈现远程橡胶弹性(蜷曲链受力扩张,产生大形变外力除去后,自发地回复到蜷曲形态) (4) 粘弹转变区分子链发生解缠作用,导致由链段运动向整个分子滑移运动过渡。 (5) 粘流区聚合物容易流动,类似糖浆;热运动能量足以使分子链解缠蠕动,导致整链运 动。 2. 讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。 答:在轻度结晶的高聚物中,微晶体起着类似交联点的作用,这种试样仍然存在明显的玻璃化转变,随着结晶度的增加,相当于交联度的增加,非晶部分处在高弹态的结晶高聚物的硬度将逐渐增加,到结晶度大于40%后,微晶体彼此衔接,形成贯穿整个材料的连续晶相,宏观上不易察觉明显的玻璃化转变,其曲线在熔点以前不出现明显的转折。 交联聚合物,不存在(4)(5)区,因为交联阻止了滑移运动,在达到聚合物的分解温度之前,一直保持在③区状态。 结晶聚合物 1.处于晶态

a.轻度结晶 微晶体起着类似交联点的作用,存在明显的玻璃化转变, 形变小于非晶 b.结晶度大于40%时,无玻璃化转变,在熔点以前不出现明显的转折。 ?分子量不太大,T f T m熔融后→高弹态→粘流态 2.处于非晶态 类似于非晶态高聚物但有可能出现冷结晶现象。即T>Tg 后,链段排入晶格→结晶,使形变变小。 (图见讲义) 3. 写出四种测定聚合物玻璃化温度的方法,不同实验方法所得结果是否相同?为什么? 答:①膨胀计法②量热法(DSC法)③温度-形变法(热机械法)④核磁共振法(NMR) 4.聚合物的玻璃化转变是否是热力学相变?为什么? 答:玻璃化温度与测定过程的冷却速度有关,不是热力学的平衡过程,而是属于力学松弛过程。因为在玻璃化转变前后聚合物都是无规的,热力学上都属于液态。 5. 试用玻璃化转变的自由体积理论解释: 按自由体积理论(熔体降温为固体) 冷却速度过快,则链段来不及调整构象就被冻结,使自由体积高于平衡态时的Vf,这样,Tg以下体积-温度曲线向上平移,使依据两条曲线交点确定的Tg偏高。 按松弛理论(固体升温变为熔体) 因Tg是链段运动的松弛时间与观察时间匹配时的温度,升温速率越快,观察时间越短,相应的更短松弛时间的温度就越高,故测得的Tg就越高。 7. 聚合物晶体结构和结晶过程与小分子晶体结构和结晶过程有何差别?造成这些差别的原因是什么? 相似:都发生突变,有明显的转折,都属于热力学一级相转变过程 差异:小分子熔点0.2度高聚物是一5~10℃温度范围,熔限 原因:结晶高聚物中有完善程度不同的晶体(结晶时造成的),结晶比较完善的晶体在较高温度下才能熔融,而结晶不完善的晶体在较低温度就能熔融,如果熔化过程中升温速度比较缓慢,不完整晶体可以再结晶形成比较完善的晶体,熔限也相应变窄; 8. 测定聚合物结晶速度有哪些方法? 答:(1)膨胀计法、光学解偏振法和差示扫描量热法(Dsc) (2)偏光显微镜法和小角激光光散射法 9. 比较下列各组聚合物的Tg高低并说明理由; (1) 聚二甲基硅氧烷,顺式聚1,4—丁二烯; (2) 聚已二酸乙二醇酯,聚对苯二甲酸乙二醇酯 (3) 聚丙烯,聚4-甲基1-戊烯; (4) 聚氯乙烯,聚偏二氯乙烯。 解:(1)Tg:聚二甲基硅氧烷< 顺式聚1,4—丁二烯,聚二甲基硅氧烷主链为饱和单

《高分子物理与化学》试卷A重修(带答案)

高分子化学及物理学》试卷A-2 (本试卷共 1 页) 一、名词解释(20分) 单体 热固性聚合物 阻聚作用 聚合物的嵌段反应 高分子化合物 二、问答题:(60分) 1 比较逐步聚合和链式聚合的异同点。(20分) 2 什么叫做凝胶点?怎样计算?(10分) 要解释(10分) 4 下列各组单体对,预期生成什么类型的聚合物?(10分) 1) r 1=1 , r 2=1; 2) r 1=0 , r 2=0 3) r 1?1 , r 2=1; 4) r 1=0.6 , r 2=0.04 5 为什么说平衡缩聚反应一般只能得到中等程度分子量的聚合物(10分) 6 橡胶制品常填充碳黑,试说明其道理(10分) 三、计算题(10分) 以等当量的己二酸与己二胺合成聚合度为100的尼龙66,试通过计算说 明怎样控制体系中的水含量?(K 酰胺化=432) 答案一、名词解释(20分) 单体—合成聚合物的起始原料 热固性聚合物――体型结构的聚合物 阻聚作用――能阻止单体聚合的作用 聚合物的嵌段反应――反应可在聚合物之间进行,也可在聚合物和单体之间进行,反应结果形成嵌段聚合物的反应 高分子化合物――分子量很高的一类化合物,其分子量高达的程度,应该在物理机械性能方面与小分子

物质有显著差别 二、问答题:(60分)(每小题10分) 1比较逐步聚合和链式聚合的异同点。 逐步聚合:1)通过活性中心进行链增长 2)分子量在很短时间内达到很大 3)活性中心浓度低 4)单体转化率逐步增大 链式聚合:1)通过功能基加反应进行链增长2)分子量逐步增大 3)功能基的反应活性相同 4)单体转化率在很短时间内达到很大 2 什么叫做凝胶点?怎样计算? 出现凝胶时的反应程度。Pc=2/平均官能度 3在推导自由基聚合反应动力学方程时,都做了那些假设?并简要解释 a)长链假设,链引发消耗单体数远小于链增长消耗单体数 b)等活性加热。链增长的活性与链长无关 c)稳态假设。体系中自由基浓度不变 4 下列各组单体对,预期生成什么类型的聚合物? 1)r1=1 , r2=1; 恒比共聚物 2)r1=0 , r2=0;交替共聚物 3)r1?1 , r2=1; 嵌段共聚物 4)r1=0.6 , r2=0.04;无规共聚物 5 橡胶制品常填充碳黑,试说明其道理 碳黑加入的目的一方面是补强,另一方面是光屏蔽剂,挡住光对聚合物的照射,保护其分子链不发生光氧老化和降解。 三、计算题(10分) 以等当量的己二酸与己二胺合成聚合度为100的尼龙66,试通过计算说明怎样控制体系中的水含量?(K酰胺化=432) 解:N水=432/(100×100)=4.32×10-2

高分子物理课后习题答案(详解)

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维; (2)无规立构聚丙烯与等规立构聚丙烯; (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。 (4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 (1)线性高分子梯形高分子 (2 非晶高分子结晶性高分子 (3)柔性 (4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链C 原子中约含15~35 个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。 7.比较下列四组高分子链的柔顺性并简要加以解释。 解:

高分子物理作业解答

高分子物理作业-2-答案 聚合物的力学状态及转变 1. 解释名词: (1)聚合物的力学状态及转变 由于高分子链之间的作用力大于主链的价键力,所以聚合物只具有固态和液态力学状态。随着温度的升高,分子热运动能量逐渐增加,当达到某一温度时,即可发生两相间的转变。 (2)松弛过程与松弛时间 松弛过程:在一定温度和外场(力场、电场、磁场等)作用下,聚合物由一种平衡态通过分子运动过渡到另一种与外界条件相适应的、新的平衡态,这个过程是一个速度过程。 松弛时间τ是用来描述松弛快慢的物理理。在高聚物的松弛曲线上,?x t ()变到等于?x o 的1/e 倍时所需要的时间,即松弛时间。 (3)自由体积与等自由体积状态 分子中未被占据的体积为自由体积; 在玻璃态下,由于链段运动被冻结晶,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。因此,对任何高聚物,玻璃温度就是自由体积达到某一临界值的温度,在这临界值以下,已经没有足够的窨进行分子链的构象调整了。因而高聚物的玻璃态可视为等自由体积状态。 (4)玻璃态与皮革态 当非晶态高聚物在较低的温度下受到外力时,由于链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,高聚物受力变形是很小的,形变与受力和大小成正比,当外力除去后形变能立刻回复。这种力学性质称为普弹性,非晶态高聚物处于具有普弹性的状态,称为玻璃态; 部分结晶聚合物,存在玻璃化转变与高弹态,但由于晶区链段不能运动,此时玻璃化转变不再具有很大弹性的高弹态,而表现为具有一定高弹性、韧而硬的皮革态,即皮革态。 2. 试定性地绘出下列聚合物的形变—温度曲线(画在一张图上) 1) 低分子玻璃态物质 2) 线性非晶态聚合物(1M ) 3) 线性非晶态聚合物(212,M M M ?212,M M M ?>1 M ) 4) 晶态聚合物(1M )

高分子物理期末考试试卷及答案

一.名词解释(15 分) 1、链段:高分子链上能独立运动(或自由取向)最小单元。 2、溶胀:高聚物溶解前吸收溶剂而体积增大的现象。

3、蠕变:在应力和温度均一定的条件下,高聚物的形变随时间而增大的现象。 4、介电损耗:在交变电场的作用下,电介质由于极化而消耗的电能。、构象5:由于内旋转而产生的高分子链在空间的排列。 二.选择题(20 分)(B).1高聚物玻璃化转变实质是:B、松弛过程,C、熔融过程。相变过程,、A(B、C、D)下列方法中可测得数均分子量的方法有:2.C、膜渗透压,D、GPC法,E、光散射法。、沸点升高,B粘度法,A、(A、B、D)下列高聚物中,在室温下可以溶解的有:3.A、B 、PET,C、LDPE,D、聚乙酸乙烯酯,E、聚乙烯醇。,-66尼龙4.(C)结晶高聚物熔点高低与熔限宽窄取决于: A、D、相变热,E、结晶温度,、液压大小。 B、结晶速度,C退火时间,(C).5橡胶产生弹性的原因是拉伸过程中:A、体积变化,B、内能变化, C、熵变。 6.欲获得介电损耗小的PS产品,应选择:(A) A、本体聚合物,B 、乳液聚合物,C 、定向聚合物,D、加有增塑剂的聚合物。 7.下列参数中可作为选择溶剂依据的有:)、D、E(B、C

A、均方末端距, B、溶解度参数δ, C、高聚物-溶剂相互作参数,A,E、特性粘数[ η] 。、第二维利系数D2 8.加工聚碳酸酯时,欲获提高流动性最有效的措施是:(E) A、增加切应力, B、增加分子量, C、采用分子量分布窄的产品, D、降低温度, E、增加温度。(B).9高聚物的结晶度增加,则:、透明性增加。DB、拉伸强度增加,C、取向度增加,A、抗冲击强度增加,10.在室温下,加一固定重量的物体于橡皮并保持这一恒定张力,当橡皮受热时,重物的位置将: (B) A、下降,B 、上升,C、基本不变,D、无法预测。 三. 根据题意,比较大小分)<”排列)(21(用“”或“> 1.比较玻璃化转变温度Tg 的高低:(B>C>A) A、聚己二酸乙二醇酯, B、聚碳酸酯, C、聚氯乙烯。.较抗蠕变性的大小:2)A>C>B( A、酚醛塑料, B、聚丙烯, C、聚苯乙烯。 .比较熔点:3(B>C>A) A、聚乙烯, B、聚四氟烯, C、聚甲醛。

高分子物理课后答案(何曼君)

1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: CH CH CH CH CH 3 COOCH 3n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 氧化,可得到丙酮和乙酸。由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH OH CH 2 CH OH CH 2 CH OH CH 2 CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH 4 CH 3C OH O + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 氧化处理时,也得不到丙酮: CH 2 CH CH OH CH 2 CH 2 CH OH OH CH O CH O 2 CH CH 2 CH 2 CH OH CH 2 CH CH OH CH 2CH 2 CH OH OH 4 CH 3C OH O + OH C O CH 2CH 2C OH O 可见聚乙烯醇高分子链中,单体主要为头- 尾键接方式。 3 氯乙烯(CH 2CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物 有: ,Cl ,Cl Cl ,Cl Cl Cl 等,其比例大致为10:1:1:10(重量), 由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元): CH 2 CH Cl CH 2 C Cl Cl + (V) (D)

高分子物理课后习题

第1章高分子的链结构 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子)σ,实测的无扰均方末端距与自由旋转链的均方末端距之比,σ值愈大,内旋转阻碍越大,柔顺性愈差; (2)特征比Cn,无扰链与自由连接链均方末端距的比值,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 7.比较下列四组高分子链的柔顺性并简要加以解释。 解:(1)聚乙烯>聚氯乙烯>聚丙烯腈,取代基极性越大,高聚物柔顺性越差; (2)聚甲醛>聚苯醚>聚苯,主链刚性基团比例越大,柔顺性越差,苯环柔顺性比亚甲基差; (3)聚丁二烯>聚氯丁二烯>聚氯乙烯;孤立双键的柔顺性较单键主链好,极性取代基是的聚合物柔顺性变差; (4)聚偏二氟乙烯>聚氟乙烯>聚二氟乙烯,对称取代的柔顺性优于单取代,取代基比例越大,柔顺性越差;

第2章聚合物的凝聚态结构 3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么? 答:(1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体; (2)形态特征:单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm 左右;树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状;球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环;纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度;串晶:在电子显微镜下,串晶形如串珠;柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状;伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。 4.测定聚合物的结晶度的方法有哪几种?简述其基本原理。不同方法测得的结晶度是否相同?为什么? 答:(1)密度法,X射线衍射法,量热法; (2)密度法的依据:分子链在晶区规整堆砌,故晶区密度大于非晶区密度;X射线衍射法的依据:总的相干散射强度等于晶区和非晶区相干散射强度之和;量热法的依据:根据聚合物熔融过程中的热效应来测定结晶度的方法。 (3)不同,因为结晶度的概念缺乏明确的物理意义,晶区和非晶区的界限很不明确,无法准确测定结晶部分的量,所以其数值随测定方法不同而不同。 11.某一聚合物完全结晶时的密度为0.936g/cm3,完全非晶态的密度为 0.854g/cm3,现知该聚合物的实际密度为0.900g/cm3,试问其体积结晶度应为多少? 答:根据体积结晶度计算公式 带入ρ=0.900g/cm3,ρa=0.854g/cm3,ρc=0.936g/cm3 得=0.561

高分子物理课后答案

第9章聚合物的流变性 1.什么是假塑性流体绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现 假塑性流体的性质试用缠结理论加以解释。 答:(1)流动指数n<1的流体称为假塑性流体; (2)略 2.聚合物的粘性流动有何特点为什么 3.为什么聚合物的粘流活化能与分子量无关 答:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象的说,这种流动的类似于蚯蚓的蠕动。因而其流动 活化能与分子的长短无关。,由实验结果可知当碳链不长时,随碳数的增加而增加,但当碳数大于30时,不再增大,因此聚合物超过一定数值后,与相对分子质量无关。 4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。 答:低切变速率下,当时,略依赖于聚合物化学结构和温度,当 时,与聚合物化学结构,分子量分布及温度无关;增大切变速率,链缠结结构破坏程度增加,分子量对体系粘度影响减小。 聚合物熔体非牛顿流动时的切变速率随分子量加大向低切变速率移动,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。 5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。 答:a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链越刚硬,或分子间作用力越大,则流动活化能越高,这类聚合物是温

敏性的;当温度处于一定范围即Tg

《高分子物理与化学》试卷B(带答案)

《 高分子化学及物理学》试卷B 一、名词解释(20分) 聚合物 本体聚合 负离子聚合 SBS 热塑性弹性体 解聚反应 二、问答题:(60分)(每小题10分) 1 自由基聚合时转化率、分子量随时间变 化有什么特征? 3 简要叙述缩聚反应的等活性理论,并说明其在处理问题过程中的 优点。 4 将下列单体和引发剂进行匹配。 单体:聚苯乙烯、聚丙烯腈 聚乙烯基醚 聚异丁烯 聚乙烯 引发剂: 过氧化二苯甲酰、BF 3+H 2O, 金属钠 5 讨论竟聚率r 1, r 2在什么情况下得到交替共聚物和嵌段共聚物? 6 高分子化学反应的特征是什么?并举例说明 三、计算题( 10分) 等当量的己二酸与等当量的己二胺进行缩聚反应,试计算其凝胶点,并分析能否形成体型缩聚物?为什么? 三、写出利用聚苯乙烯的氯甲基化反应制备阴离子交换 树脂反应方程式(10分) 答案 一、名词解释(20分) 聚合物――分子量很高的一类化合物,其分子量高达的程度应该在物理机械性能 方面与小分子物质有显著差别 本体聚合――只有单体本身在引发剂或光等作用下的聚合反应

负离子聚合――聚合反应中,形成的活性中心是碳正离子的一类聚合反应 SBS热塑性弹性体――苯乙烯和丁二烯形成的嵌段共聚物,具有可塑性和弹性。解聚反应――链的断裂发生在末端基上,结果形成单体的聚合物降解反应 二、问答题:(60分)(每小题10分) 1 自由基聚合时转化率、分子量随时间变化有什么特征? 分子量在很短时间内达到很大,单体转化率逐步增大 2按主链结构聚合物分为哪三类?并各举一例 1)碳链聚合物,如聚乙烯 2)杂链聚合物如尼龙66 3)元素聚合物如聚二甲基硅氧烷 3简要叙述缩聚反应的等活性理论,并说明其在处理问题过程中的优点。 缩聚反应中所有功能基具有相同的活性,与链长无关。使问题简化。 4 将下列单体和引发剂进行匹配。 聚苯乙烯,聚丙烯腈可用金属钠 聚苯乙烯,聚乙烯基醚,聚异丁烯可用 BF 3+H 2 O 聚苯乙烯,聚乙烯可用过氧化二苯甲酰 5讨论竟聚率r 1, r 2 在什么情况下得到交替共聚物和嵌段共聚物? r 1= r 2 =1得到交替共聚物,r 1 >1, r 2 >1,或r 1 ?1 , r 2 =1得到嵌段共聚物 6 高分子化学反应的特征是什么?并举例说明 不均匀性和复杂性。例如聚乙烯醇缩甲醛,缩醛化可能发生在分子链内部,也 可能发生在分子链之间,且每根分子链山参加缩醛化反应的羟基数不等。 三、计算题(10分) 等当量的己二酸与等当量的己二胺进行缩聚反应,试计算其凝胶点,并分析能否形成体型缩聚物?为什么? 解:平均官能度=(2×1+2×1)/(2+2)=2 凝胶点=2/2=1,说明在反应程度达到1时才形成体型结构聚合物,而实际上根据缩聚反应理论不可能达到1,所以不能形成体型结构聚合物。 四、写出利用聚苯乙烯的氯甲基化反应制备阴离子交换树脂的反应方程式(10分) ZnCl2 ClCH2OCH3NR3 CH2Cl CH23

最新高分子物理试卷三答案

高分子物理试卷三答案 一、单项选择题(10分) (下面每个小题只有一个答案是正确的,请将正确答案的编号填在右边的括号里。选对者得1分,不选、选错多选均不得分。) 1.如果不考虑键接顺序,线形聚异戊二烯的异构种类数为(C )。 (A)6 (B)7 (C)8 2. 全同聚乙烯醇的分子链所采取的构象是(A )。 (A)平面锯齿链(B)扭曲的锯齿链(C)螺旋链 3.下列聚合物中,不存在旋光异构体的是(B )。 (A)PP (B)PIB (C)聚异戊二烯 4. 高聚物的黏流温度随相对分子质量的增大而(B )。 (A)保持不变(B)上升(C)下降(D)先上升然后保持不变5.在聚合物的黏流温度以下,描述高聚物的表观黏度与温度之间关系的方程式是(B )。(A)Arrhenius方程(B)WLF方程(C)Avrami方程 6.高聚物的流动模式是(B )。 (A)分子链的整体迁移(B)链段的跃迁 (C)端基的运动 7.同一聚合物的下列三种不同的黏度,最大的是(A )。 (A)零剪切黏度(B)表观黏度(C)无穷剪切黏度 8.两试样的凝胶渗透色谱的淋出体积相等,则它们的下列参数相等的是( D )。 (A)相对分子质量(B)特性黏数(C)Huggins参数(D)流体力学体积 9.下列实验方法,可以测量聚合物损耗模量的是(B )。 (A)DSC (B)DMA (C)拉伸实验 10. Maxwell模型可以用来描述(C )。 (A)蠕变过程(B)交联高聚物的应力松弛过程 (C)线形高聚物的应力松弛 二、多项选择题(20分) (下面每个小题至少有一个答案是正确的,请将所有正确答案的编号填写在括号里。全选对者得2分,每错一个扣1分,每少选一个扣0.5分,但不做选择或所选答案全错者不得分。)1.下面能作为塑料使用的聚二丁烯有(ABD )。 (A)全同1,2-丁二烯(B)间同聚1,2-丁二烯 (C)顺式聚1,4-丁二烯(D)反式聚1,4-丁二烯 2.高分子的二级结构包括(AC )。 (A)构象(B)晶态结构 (C)相对分子质量及其分布(D)键接方式 3.高分子的三级结构包括(ABD )。 (A)晶态结构(B)取向结构(C)多相结构(D)液晶态结构 4.凝聚态结构可以采用哪些方法进行表征(BCD )。 (A)广角X射线衍射(B)红外光谱 (C)电子显微镜(D)小角X射线衍射 5.下列实验方法,可以用来测定玻璃化转变温度的是(ABC )。

相关主题
文本预览
相关文档 最新文档