当前位置:文档之家› 公路工程沥青与沥青混合料试验规程完整

公路工程沥青与沥青混合料试验规程完整

公路工程沥青与沥青混合料试验规程完整
公路工程沥青与沥青混合料试验规程完整

公路工程沥青及沥青混合料试验规程

2 术语

2.1.1 沥青的密度

沥青在规定温度下单位体积所具有的质量,以g/cm3计。

2.1.2 沥青的相对密度

在同一温度下,沥青质量与同体积的水质量之比值,无量纲。

2.1.3 针人度

在规定鍵和时间内,附加一定质量的标准针垂直贯入沥的深度,以0.1mm计。

2.1.4 针人度指数

沥青结合料的温度感应性指标,反映针入度随温度而变化的程度,由不同温度的针入度按规定方法计算得到,无量纲。

2.1.5 延度

规定形态的沥青试样,在规定温度下以一定速度受拉伸至断开时的长度,以cm计。

2.1.6 软化点(环球法)

沥青试样在规定尺寸的金属环内,上置规定尺寸和质量的钢球,放于水或甘油中,以规定的速度加热,至钢球下沉达规定距离时的温度,以℃计。

2.1.7 沥青的溶解度

沥青试样在规定溶剂中可溶物的含量,以质量百分率表示。

2.1.8 蒸发损失

沥青试样在163℃温度条件下加热并保持5h后质量的损失,以百分率表示。

2.1.9 闪点

沥青试样在规定的盛样器内按规定的升温速度受热时所蒸发的气体以规定的方法与试焰接触,初次发生一瞬即灭的火焰时的温度,以℃计。盛样器对黏稠沥青是克利夫兰开口杯(简称COC),对液体沥青是泰格开口

杯(简称TOC)。

2.1.10 弗拉斯脆点

涂于金属片上的沥青薄膜在规定条件下,因冷却和弯曲而出现裂纹时的温度,以℃计。

2.1.11沥青的组分分析

按规定方法将沥青试样分离成若干个组成成分的化学分析方法。

2.1.12 沥青的黏度

沥青试样在规定条件下流动时形成的抵抗力或内部阻力的度量,也称黏滞度。

2.1.13 沥青、混合料的密度

压实沥青混合料常温条件下单位体积的干燥质量,以g/cm3计。

2.1.14枥青混合料的相对密度

同一温度条件下压实沥青混合料试件密度与水密度的比值,无量纲。

2.1.15浙青混合料的理大密度

假设压实沥青混合料试件全部为矿料(包括矿料自身内部的孔隙)及沥青所占有、空隙率为零的理想状态下的最大密度,以g/cm3计。

2.1.16沥青混合料的理论最大相对密度

同一温度条件下沥青混合料理论最大密度与水密度的比值,无量纲。

2.1.17沥青混合料的表观密度

沥青混合料单位体积(含混合料实体体积与不吸收水分的内部闭口孔隙体积之和)的干质量,又称视密度,由水中重法测定(仅适用于吸水率小于0.5%的沥青混合料试件),以g/cm3计。

2.1.18沥青混合料的表观相对密度

沥青混合料表观密度与同温度水密度的比值,无量纲:

2.1.19沥青混合料的毛体积密度

压实沥青混合料单位体积(含混合料的实体矿物成分及不吸收水分的闭口孔隙、能吸收水分的开口孔隙等颗粒表面轮廓线所包围的全部毛体积)的干质量,以g/cm3计。

2.1.20沥青混合料的毛体积相对密度

压实沥青混合料毛体积密度与同温度水密度的比值,无量纲。

2.1.21沥青混合料试件的空隙率

压实沥青混合料内矿料及沥青以外的空隙(不包括矿料自身内部已被沥青封闭的孔隙)的体积占混合料总体积的百分率,简称VV,以百分率表示。

2.1.22沥青混合料试件的沥青体积百分率

压实沥青混合料试件内沥青部分的体积占混合料总体积的百分率,简称VA,以百分率表示。

2.1.23沥青混合料试件的矿料间隙率

压实沥青混合料试件中矿料部分以外的体积占混合料总体积的百分率,简称VMA,以百分率表示。

2.1.24沥青混合料试件的沥青饱和度

沥青混合料试件内沥青部分的体积占矿料部分以外的体积(VMA)百分率,简称VFA,以百分率表示。沥青混合料内有效沥青部分(即扣除被集料吸收的沥青以外的沥青)的体积占矿料部分以外的体积(VMA)的百分率,称为有效沥青饱和度。

2.1.25粗集料松装间隙率

干燥粗集料(通常指4.75mm以上的集料)在标准容量简中经捣实形成的粗集料部分以外的体积占粗集料总体积的百分率,简称VCA DRC,以百分率表示。

2.1.26沥青混合料试件的粗集料间隙率

沥青混合料试件内粗集料部分以外的体积占混合料试件总体积的百分率,简称VCA min,以百分率表示。

2.1.27马歇尔稳定度

按规定条件采用马歇尔试验仪测定的沥青混合料所能承受的最大荷载,以kN计。

2.1.28流值

沥青混合料在马歇尔试验时相应于最大荷载时试件的竖向变形,以mm计。

2.1.29动稳定度

按规定条件进行沥青混合料车辙试验时,混合料试件变形进入稳定期后,每产生1mm轮辙变形试验轮所行走的次数,以次/mm计。

2.1.30沥青材料的劲度模量

沥青或沥青混合料在温度和加载时间一定的条件下,应力与应变的比值,是温度和荷载作用时间的函数,以MPa计。

2.1.31 沥青含量

沥青混合料中沥青结合料质量与沥青混合料总质量的比值,以百分率表示。

2.1.32油石比

沥青混合料中沥青结合料质量与矿料总质量的比值,以百分率表示。

2.1.33有效沥青含量

沥青混合料中总的沥青含量减去被集料吸收入内部孔隙的部分后、有效填充矿料间隙的沥青质量与沥青混合料总质量之比,以百分率表示。

2.1.34稀浆混合料

乳化沥青或改性乳化沥青、粗细集料、填料、水、添加剂等按一定比例拌和所形成的浆状混合物。

2.1.35稀浆混合料可拌和时间

当稀浆混合料变稠,手感到有力时,表明混合料开始有破乳的迹象,记录此刻的时间,即为可拌和时间,以s计。

2.1.36稀浆混合料破乳时间

破乳时间是乳化沥青中的沥青和水分离,沥青微粒吸附到石料上而水析出所需要的时间,以min计。

2.1.37湿轮磨耗值

在成型后的稀浆混合料上用湿轮磨耗仪磨耗一定时间后,测定试件磨耗前后单位磨耗面积的质量差,以g/m2计。

2.1.38 负荷轮黏附砂量

在成型后的稀浆混合料上用负荷轮试验仪模拟车轮碾压,通过一定作用次数后,测定试件单位负荷面积的黏附砂量,以g/m2计,用于确定稀

浆混合料最大沥青用量。

沥青试验

T 0601—2011 沥青取样法

1目的与适用范围

1.1本方法适用于在生产厂、储存或交货验收地点为检査沥青产品质量而采集各种沥青材料的样品。

1.2 进行沥青性质常规检验的取样数量为:黏稠沥青或固体沥青不少于4.0kg;液体沥青不少于1L;沥青乳液不少于4L。

进行沥青性质非常规检验及沥青混合料性质试验所需的沥青数量,应根据实际需要确定。

2仪具与材料技术要求

2.1盛样器:根据沥青的品种选择。液体或黏稠沥青采用广口、密封带盖的金属容器(如锅、桶等);乳化沥青也可使用广口、带盖的聚氯乙烯塑料桶;固体沥青可用塑料袋,但需有外包装,以便携运。

2.2沥青取样器:金属制、带塞、塞上有金属长柄提手。

3方法与步骤

3.1准备工作

检查取样和盛样器是否干净、干燥,盖子是否配合严密。使用过的取样器或金属桶等盛样容器必须洗净、干燥后才可使用。对供质量仲裁用的沥青试样,应采用未使用过的新容器存放,且由供需双方人员共同取样,取样后双方在密封条上签字盖章。

3.2 试验步骤

3.2.1从储油罐中取样

1)无搅拌设备的储罐

⑴液体沥青或经加热已经变成流体的黏稠沥青取样时,应先关闭进油阀和出油阀,然后取样。

⑵用取样器按液面上、中、下位置(液面高各为1/3等分处,但距罐

底不得低于总液面髙度的1/6)各取1~4L样品。每层取样后,取样器应尽可能倒净。当储罐过深时,亦可在流出口按不同流出深度分3次取样。对静态存取的沥青,不得仅从罐顶用小桶取样,也不得仅从罐底阀门流出少量沥青取样。

⑶将取出的3个样品充分混合后取4㎏样品作为试样,样品也可分别进行检验。

2)有搅拌设备的储罐

将液体沥青或经加热已经变成流体的黏稠沥青充分搅拌后,用取样器从沥青层的中部取规定数量试样。

3.2.2 从槽车、罐车、沥青洒布车中取样

1)设有取样阀时,可旋开取样阀,待流出至少4kg或4L后再取样。

2)仅有放料阀时,待放出全部沥青的1/2时取样。

3)从顶盖处取样时,可用取样器从中部取样。

3.2.3在装料或卸料过程中取样

在装料或卸料过程中取样时,要按时间间隔均匀地取至少3个规定数量样品,然后将这些样品充分混合后取规定数量样品作为试样,样品也可分别进行检验。

3.2.4 从沥青储存池中取样

沥青储存池中的沥青应待加热熔化后,经管道或沥青泵流至沥青加热锅之后取样。分间隔每锅至少取3个样品,然后将这些样品充分混匀后再取4.0kg作为试样,样品也可分別进行检验。

3.2.5从沥青运输船中取样

沥青运输船到港后,应分别从每个沥青舱取样,每个舱从不同的部位取3个4kg的样品,混合在一起,将这些样品充分混合后再从中取出4㎏,作为一个舱的沥青样品供检验用。在卸油过程中取样时,应根据卸油量,大体均匀地分间隔3次从卸油口或管道途中的取样口取样,然后混合作为一个样品供检验用。

3.2.6从沥青桶中取样

1)当能确认是同一批生产的产品时,可随机取样。当不能确认是同一

批生产的产品时,应根据桶数按照表T0601规定或按总桶数的立方根数

2)将沥青桶加热使桶中沥青全部熔化成流体后,按罐车取样方法取样。每个样品的数量,以充分混合后能满足供检验用样品的规定数量不少于4.0kg要求为限。

3)当沥青桶不便加热熔化沥青时,可在桶高的中部将桶凿开取样,但样品应在距桶壁5cm以上的内部凿取,并采取措施防止样品散落地面沾有尘土。

3.2.7固体沥青取样

从桶、袋、箱装或散装整块中取样时,应在表面以下及容器侧面以内至少5cm处采取。如沥青能够打碎,可用一个干净的工具将沥青打碎后取中间部分试样;若沥青是软塑的,则用一个干净的热丁具切割取样。

当能确认是同一批生产的样品时,应随机取出一件按本条的规定取4kg供检验用。

3.2.8在验收地点取样

当沥青到达验收地点卸货时,应尽快取样。所取样品为两份:一份样品用于验收试验;另一份样品留存备査。

3.3 样品的保护与存放

3.3.1 除液体沥青、乳化沥青外,所有需加热的沥青试样必须存放在密封带盖的金属容器中,严禁灌入纸袋、塑料袋中存放。试样应存放在阴凉干净处,注意防止试样污染。装有试样的盛样器加盖、密封好并擦拭干净后,应在盛样器上(不得在盖上)标出识别标记,如试样来源、品种、取样日期、地点及取样人。

3.3.2冬季乳化沥青试样应注意采取妥善防冻措施。

3.3.3除试样的一部分用于检验外,其余试样应妥善保存备用。

3.3.4试样需加热采取时,应一次取够一批试验所需的数量装入另一盛样器,其余试样密封保存,应尽量减少重复加热取样。用于质量仲裁检验的样品,重复加热的次数不得超过两次。

T 0602—2011沥青试样准备方法

1目的与适用范围

1.1本方法规定了按本规程T0601取样的沥青试样在试验前的试样准备方法。

1.2本方法适用于黏稠道路石油沥青、煤沥青、聚合物改性沥青等需要加热后才能进行试验的沥青试样,按此法准备的沥青供立即在试验室进行各项试验使用。

1.3本方法也适用于对乳化沥青试样进行各项性能测试。每个样品的数量根据需要决定,常规测定不宜少于600g。

2仪具与材料技术要求

2.1烘箱:200℃,装有温度控制调节器。

2.2加热炉具:电炉或燃气炉(丙烷石油气、天然气)。

2.3石棉垫:不小于炉具上面积。

2.4滤筛:筛孔孔径0.6mm。

2.5沥青盛样器皿:金属锅或瓷坩埚。

2.6 烧杯:1000mL。

2.7温度计:量程0~100℃及200℃,分度值0.1℃。

2.8天平:称量2000g,感量不大于1g;称量100g,感量不大于0.1g。

2.9其他:玻璃棒、溶剂、棉纱等。

3方法与步骤

3.1热沥青试样制备

3.1.1 将装有试样的盛样器带盖放人恒温烘箱中,当石油沥青试样中含有水分时,烘箱温度80℃左右,加热至沥青全部熔化后供脱水用。当

石油沥青中无水分时,烘箱温度宜为软化点温度以上90℃,通常为135℃左右。对取来的沥青试样不得直接采用电炉或燃气炉明火加热。

3.1.2当石油沥青试样中含有水分时,将盛样器皿放在可控温的砂浴、油浴、电热套上加热脱水,不得已采用电炉、燃气炉加热脱水时必须加放石棉垫。加热时间不超过30min,并用玻璃棒轻轻搅拌,防止局部过热。在沥青温度不超过100℃的条件下,仔细脱水至无泡沫为止,最后的加热温度不宜超过软化点以上100℃(石油沥青)或50℃(煤沥青)。

3.1.3将盛样器中的沥青通过0.6mm的滤筛过滤,不等冷却立即一次灌入各项试验的模具中。当温度下降太多时,宜适当加热再灌模。根据需要也可将试样分装入擦拭干净并干燥的一个或数个沥青盛样器皿中,数量应满足一批试验项目所需的沥青样品。

3.1.4 在沥青灌模过程中,如温度下降可放入烘箱中适当加热,试样冷却后反复加热的次数不得超过两次,以防沥青老化影响试验结果。为避免混进气泡,在沥青灌模时不得反复搅动沥青。

3.1.5灌模剩余的沥青应立即清洗干净,不得重复使用。

3.2乳化沥青试样制备

3.2.1将按本规程T0601取有乳化沥青的盛样器适当晃动,使试样上下均匀。试样数量较少时,宜将盛样器上下倒置数次,使上下均匀。

3.2.2将试样倒出要求数量,装人盛样器皿或烧杯中,供试验使用。

3.2.3当乳化沥青在试验室自行配制时,可按下列步骤进行:

1)按上述方法准备热沥青试样。

2)根据所需制备的沥青乳液质量及沥青、乳化剂、水的比例计箅各种材料的数量。

⑴沥青用量按式(T 0602-1)计算。

m b=m E ×P b

(T0602-1)

式中:m b——所需的沥青质量(g);

m E——乳液总质量(g);

P b——乳液中沥青含量(%)。

(2)乳化剂用量按式(T 0602-2)计算。

m e=m E ×P

/P e

E

(T0602-2)

式中:m e——乳化剂用量(g);

P E——乳液中乳化剂的含量(g);

P e——乳化剂浓度(乳化剂中有效成分含量,%)。

(3)水的用量按式(T 0602-3)计算。

m w=m E -m E ×P b (T0602-2)式中:m w——配制乳液所需水的质量。

3)称取所需质量的乳化剂放入1000mL烧杯中。

4)向盛有乳化剂的烧杯中加人所需的水(扣除乳化剂中所含水的质量)。

5)将烧杯放到电炉上加热并不断搅拌,直到乳化剂完全溶解,当需调节pH值时可加人适量的外加剂,将溶液加热到40℃~60℃。

6)在容器中称取准备好的沥青并加热到120 ~150℃。

7)开动乳化机,用热水先把乳化机预热几分钟,然后把热水排净。

8)将预热的乳化剂倒入乳化机中,随即将预热的沥青徐徐倒人,待全部沥青乳液在机中循环1min后放出,进行各项试验或密封保存。

注:在倒人乳化沥青过程中,需随时观察乳化情况。如出现异常,应立即停止倒入乳化沥青,并把乳化机中的沥青乳化剂混合液放出。

T 0603—2011 沥青密度与相对密度试验

1目的与适用范围

本方法适用于使用比重瓶测定沥青材料的密度与相对密度。非特殊要求,本方法宜在试验温度25℃及15℃下测定沥青密度与相对密度。

注:对液体石油沥青,也可以采用适宜的液体比重计测定密度或相对密度。

2仪具与材料技术要求

2.1比重瓶:玻璃制,瓶塞下部与瓶口须经仔细研磨。瓶塞中间有一个垂直孔,其下部为凹形,以便由孔中排除空气。比重瓶的容积为20 ~30mL,质量不超过40g。

2.2恒温水槽:控温的准确度为0.1℃。

2.3烘箱:200℃,装有温度自动调节器。

2.4天平:感量不大于1mg。

2.5滤筛:0.6mm、2.36mm各1个。

2.6温度计:量程0~50℃,分度值0.1℃。

2.7 烧杯:600~800mL。

2.8真空干燥器。

2.9 洗液:玻璃仪器清洗液,三氯乙烯(分析纯)等。

2.10蒸馏水(或纯净水)。

2.11表面活性剂:洗衣粉(或洗涤灵)。

2.12其他:软布、滤纸等。

3 方法与步骤

3.1 准备工作

3.1.1 用洗液、水、蒸馏水先后仔细洗涤比重瓶,然后烘干称其质量(m1),准确至1mg。

3.1.2将盛有冷却蒸馏水的烧杯浸人恒温水槽中保温,在烧杯中插入温度计,水的深度必须超过比重瓶顶部40mm以上。

3.1.3使恒温水槽及烧杯中的蒸馏水达到规定的试验温度±0.1℃。

3.2比重瓶水值的测定步骤

3.2.1将比重瓶及瓶塞放人恒温水槽中的烧杯里,烧杯底浸没水中的深度应不少于100mm,烧杯口露出水面,并用夹具将其固牢。

3.2.2待烧杯中水温再次达到规定温度并保温30min后,将瓶塞塞人瓶口,使多余的水由瓶塞上的毛细孔中挤出。此时比重瓶内不得有气泡。

3.2.3将烧杯从水槽中取出,再从烧杯中取出比重瓶,立即用干净软布将瓶塞顶部擦拭一次,再迅速擦干比重瓶外面的水分,称其质量(m2),准确至1mg瓶塞顶部只能擦拭一次,即使由于膨胀瓶塞上有小水滴也不能再擦拭。

3.2.4以m2-m1作为试验温度时比重瓶的水值。

注:比重瓶的水值应经常校正,一般每年至少进行一次。

3.3液体沥青试样的试验步骤

3.3.1将试样过筛(0.6mm)后注入干燥比重瓶中至满,不得混入气泡。

3.3.2将盛有试样的比重瓶及瓶塞移入恒温水槽(测定温度±0.1℃)内盛有水的烧杯中,水面应在瓶口下约40mm。不得使水浸人瓶内。

3.3.3 待烧杯内的水温达到要求的温度后保温30min,然后将瓶塞塞上,使多余的试样由瓶塞的毛细孔中挤出。用蘸有三氯乙烯的棉花擦净孔口挤出的试样,并保持孔中充满试样。

3.3.4从水中取出比重瓶,立即用干净软布擦去瓶外的水分或黏附的试样(不得再擦孔口)后,称其质量(m3),准确至3位小数。

3.4黏稠沥青试样的试验步骤

3.4.1按本规程T0602方法准备沥青试样,沥青的加热温度宜不髙于估计软化点以上100℃(石油沥青或聚合物改性沥青),将沥青小心注入比重瓶中,约至2/3髙度。不得使试样黏附瓶口或上方瓶壁,并防止混人气泡。

3.4.2 取出盛有试样的比重瓶,移人干燥器中,在室温下冷却不少于1h、连同瓶塞称其质量(m4),准确至3位小数。

3.4.3将盛有蒸馏水的烧杯放入已达试验温度的恒温水槽中,然后将称量后盛有试样的比重瓶放入烧杯中(瓶塞也放进烧杯中),等烧杯中的水温达到规定试验温度后保温30min,使比重瓶中气泡上升到水面,待确认比重瓶巳经恒温且无气泡后,再将比重瓶的瓶塞塞紧,使多余的水从塞孔中溢出,此时应不得带入气泡。

3.4.4取出比重瓶,按前述方法迅速揩干瓶外水分后称其质量(m5),准确至3位小数。

3.5固体沥青试样的试验步骤

3.5.1试验前,如试样表面潮湿,可在干燥、洁净的环境下自然吹干,或置50℃烘箱中烘干。

3.5.2将50~100g试样打碎,过0.60mm及2.36mm筛。取0.6~2.36mm的粉碎试样不少于5g放入清洁、干燥的比重瓶中,塞紧瓶塞后称其质量(m6),准确至3位小数。

3.5.3取下瓶塞,将恒温水槽内烧杯中的蒸馏水注入比重瓶,水面高于试样约10mm,同时加入几滴表面活性剂溶液(如1%洗衣粉、洗涤灵),并摇动比重瓶使大部分试样沉入水底,必须使试样颗粒表面所吸附的气泡逸出。摇动时勿使试样摇出瓶外。

3.5.4取下瓶塞,将盛有试样和蒸馏水的比重瓶置真空干燥箱(器)中抽真空,逐渐达到真空度98kPa(735mmHg)不少于15min。当比重瓶试样表面仍有气泡时,可再加几滴表面活性剂溶液,摇动后再抽真空。必要时,可反复几次操作,直至无气泡为止。

注:抽真空不宜过快,以防止样品被带出比重瓶。

3.5.5 将保温烧杯中的蒸馏水再注入比重瓶中至满,轻轻塞好瓶塞,再将带塞的比重瓶放人盛有蒸馏水的烧杯中,并塞紧瓶塞。

3.5.6将装有比重瓶的盛水烧杯再置恒温水槽(试验温度士0.1℃)中保持至少30min后,取出比重瓶,迅速揩干瓶外水分后称其质量(m7),准确至3位小数。

4 计算

4.1试验温度下液体沥青试样的密度和相对密度按式(T0603-1)及式(T0603-2)计算.

ρb= m3–m1

×ρw(T0603-1) m2–m1

γb = m3–m1

(T0603-2) m2–m1

式中:ρb——试样在试验温度下的密度(g/cm3);

γb——试样在试验温度下的相对密度;

m1——比重瓶质量(g);

m2——比重瓶与所盛满水的合计质量(g);

m3——比重瓶与所盛满试样的合计质量(g);

ρw——试验温度下水的密度(g/cm3),15℃水的密度为0.9991g/ cm3,25℃水的密度为0.9971 g/ cm3。

4.2试验温度下黏稠沥青试样的密度和相对密度按式(T0603-3)

及式(T0603-4)计算。

ρb=

m4–m1

×ρw(T0603-3) (m2–m1)–(m5–m4

)

γb =

m4–m1

(T0603-4) (m2–m1)–(m5–m4

)

式中:m4——比重瓶与沥青试样合计质量(g);

m5——比重瓶与试样和水合计质量(g)。

4.3 试验温度下固体沥青试样的密度和相对密度按式(T0603-5)及式(0603-6) 计算。

ρb=

m6–m1

×ρw(T0603-5) (m2–m1)–(m7–m6

)

γb =

m6–m1

(T0603-6) (m2–m1)–(m7–m6

)

式中:m6——比重瓶与沥青试样合计质量(g);

m7——比重瓶与试样和水合计质量(g)。

5报告

同一试样应平行试验两次,当两次试验结果的差值符合重复性试验的允许误差要求时,以平均值作为沥青的密度试验结果,并准确至3位小数,试验报告应注明试验温度。

6允许误差

6.1 对黏稠石油沥青及液体沥青的密度,重复性试验的允许误差为0.003g/cm3,再现性试验的允许误差为0.007g/ cm3。

6.2对固体沥青,重复性试验的允许误差为0.01g/cm3,再现性试验

的允许误差为0.02 g/ cm3。

6.3相对密度的允许误差要求与密度相同(无单位)。

T 0604—2011 沥青针入度试验

1目的与适用范围

本方法适用于测定道路石油沥青、聚合物改性沥青针入度以及液体石油沥青蒸馏或乳化沥青蒸发后残留物的针入度,以0.1mm计。其标准试验条件为25℃。荷重100g,贯入时间5s。

针入度指数PI用以描述沥青的温度敏感性,宜在15℃、25℃、30℃等3个或3个以上温度条件下测定针入度后按规定的方法计算得到,若30℃时的针入度值过大,可采用5℃代替。当量软化点T800是相当于沥青针入度为800时的温度,用以评价沥青的高温稳定性。当量脆点T1.2是相当于沥青针入度为1.2时的温度,用以评价沥青的低温抗裂性能。

2 仪具与材料

2.1针入度仪:为提高测试精度,针入度试验宜采用能够自动计时的针入度仪进行测定,要求针和针连杆必须在无明显摩擦下垂直运动,针的贯入深度必须准确至0.1mm。针和针连杆组合件总质量为50g ± 0.05g,另附50g ± 0. 05g砝码一只,试验时总质量为100g ± 0.05g。仪器应有放置平底玻璃保温皿的平台,并有调节水平的装置,针连杆应与平台相垂直。应有针连杆制动按钮,使针连杆可自由下落。针连杆应易于装拆,以便检查其质量。仪器还设有可自由转动与调节距离的悬臂,其端部有一面小镜或聚光灯泡,借以观察针尖与试样表面接触情况。且应对自动装置的准确性经常校验。当采用其它试验条件时,应在试验结果中注明。2.2标准针:由硬化回火的不锈钢制成,洛氏硬度HRC54~60,表面粗糙度Ra0.2~0.3μm,针及针杆总质量2.5g ± 0.05g。针杆上应打印有号码标志。针应设有固定用装置盒(筒),以免碰撞针尖,每根针必须附有计量部门的检验单,并定期进行检验.

2.3盛样皿:金属制,圆柱形平底。小盛样皿的内径55mm,深35mm(适用于针人度小于200);大盛样皿内径70mm,深45mm(适用于针入度

为200~350的试样);对针入度大于350的试样需使用特殊盛样皿,其深度不小于60mm ,试样体积不少于125mL。

2.4恒温水槽:容量不少于10L,控温的准确度为0.1℃。水槽中应设有一带孔的搁架,位于水面下不得少于100mm,距水槽底不得少于50 mm处。

2.5平底玻璃皿:容量不小于1L,深度不小于80mm。内设有一不锈钢三脚支架,能使盛样皿稳定。

2.6温度计或温度传感器:精度为0.1℃。

2.7计时器:精度为0.1s。

2.8位移计或位移传感器:精度为0.1mm。

2.9盛样皿盖:平板玻璃,直径不小于盛样皿开口尺寸。

2.10溶剂:三氯乙烯等。

2.11 其他:电炉或砂浴、石棉网、金属锅或瓷把坩埚等。

3方法与步骤

3.1准备工作

3.1.1按本规程T0602的方法准备试样。

3.1.2按试验要求将恒温水槽调节到要求的试验温度25℃,或15℃、30℃(5℃),保持稳定。

3.1.3 将试样注人盛样皿中,试样高度应超过预计针入度值10mm,并盖上盛样皿,以防落入灰尘。盛有试样的盛样皿在15~30℃室温中冷却不少于1.5h(小盛样皿)、2h(大盛样皿)或3h(特殊盛样皿)后,应移入保持规定试验温度±0.1℃的恒温水槽中,并应保温不少于1.5h(小盛样皿)、2h(大试样皿)或2.5h(特殊盛样皿)。

3.1.4调整针入度仪使之水平。检查针连杆和导轨,以确认无水和其他外来物,无明显摩擦。用三氯乙烯或其他溶剂清洗标准针,并擦干。将标准针插入针连杆,用螺钉固紧。按试验条件,加上附加砝码。

3.2试验步骤

3.2.1取出达到恒温的盛样皿,并移入水温控制在试验温度±0.1℃(可用恒温水槽中的水)的平底玻璃皿中的三脚支架上,试样表面以

上的水层深度不小于10mm。

3.2.2 将盛有试样的平底玻璃皿置于针入度仪的平台上。慢慢放下针连杆,用适当位置的反光镜或灯光反射观察,使针尖恰好与试样表面接触,将位移计或刻度盘指针复位为零。

3.2.3开始试验,按下释放键,这时计时与标准针落下贯入试样同时开始,至5s时自动停止。

3.2.4读取位移计或刻度盘指针的读数,准确至0.1mm。

3.2.5同一试样平行试验至少3次,各测试点之间及与盛样皿边缘的距离不应小于10mm。每次试验后应将盛有盛样皿的平底玻璃皿放入恒温水槽,使平底玻璃皿中水温保持试验温度。每次试验应换一根干净标准针或将标准针取下用蘸有三氯乙烯溶剂的棉花或布揩净,再用干棉花或布擦干。

3.2.6测定针入度大于200的沥青试样时,至少用3支标准针,每次试验后将针留在试样中,直至3次平行试验完成后,才能将标准针取出。

3.2.7测定针入度指数PI时,按同样的方法在15℃、25℃、30 ℃(或5℃)3个或3个以上(必要时增加10℃、20℃等)温度条件下分别测定沥青的针入度,但用于仲裁试验的温度条件应为5个。

4计算

根据测试结果可按以下方法计算针入度指数、当量软化点及当量脆点。

4.1 公式计算法

4.1.1将3个或3个以上不同温度条件下测试的针入度值取对数,令y=lg P,x=T,按式(T 0604-1)的针入度对数与温度的直线关系,进行y=a+b x—元一次方程的直线回归,求取针入度温度指数A lgPen。

lg P = K + A lgPen ×T

(T0604-1)

式中:lg P——不同温度条件下测得的针入度值的对数;

T——试验温度(℃);

K——冋归方程的常数项a;

A lgPen——回归方程的系数b:

按式(T0604-1)回归时必须进行相关性检验,直线回归相关系数R不得小于0.997(置信度95%),否则,试验无效。

4.1.2按式(T0604-2)确定沥青的针入度指数,并记为PI:

PI=

20-500

A lgPen(T0604-2) 1+50 A lgPen

4.1.3 按式(T0604-3)确定沥青的当量软化点T800。

T800 =lg800-

K=

2.9031-

K(T0604-3) A lgPen A lgPen

4.1.4按式(T0604-4)确定沥青的当量脆点T1.2。

T1.2 =lg1.2-

K=

0.0792-

K(T0604-4) A lgPen A lgPen

4.1.5按式(T0604-5)计算沥青的塑性温度范围ΔT。

ΔT= T800-T1.2= 2.8239

(T0604-5) A lgPen

4.2诺模图法

将3个或3个以上不同温度条件下测试的针入度值绘于图T0604-2的针入度温度关系诺模图中,按最小二乘法法则绘制回归直线,将直线向两端延长,分别与针入度为800及1.2的水平线相交,交点的温度即为当量软化点T800和当量脆点T1.2。以图中O点为原点,绘制回归直线的平行线,与PI线相交,读取交点处的PI值即为该沥青的针入度指数。此法不能检验针入度对数与温度直线回归的相关系数,仅供快速草算时使用。

5 报告

5.1应报告标准温度(25℃)时的针入度以及其他试验温度T所对应的针入度,及由此求取针入度指数PI、当量软化点T800、当量脆点T1.2的

方法和结果。当采用公式计算法时,应报告按式(T0604-1)回归的直线相关系数R。

5.2 同一试样3次平行试验结果的最大值和最小值之差在下列允许误差范围内时,计算3次试验结果的平均值,取整数作为针入度试验结果,以0.1mm计。

针入度(0.1mm) 允许误差(0.1mm)

0~49 2

50 ~14 4

150~249 12

250~500 20

当试验值不符合此要求时,应重新进行试验。

6 允许误差

6.1 当试验结果小于50(0.1mm)时,重复性试验的允许误差为2 (0.1mm),再现性试验的允许误差为4(0.1mm)。

6.2当试验结果大于或等于50(0.1mm)时,重复性试验的允许误差为平均值的4%,再现性试验的允许误差为平均值的8%

T 0605—2011 沥青延度试验

1目的与适用范围

1.1本方法适用于测定道路石油沥青、聚合物改性沥青、液体石油沥青蒸馏残留物和乳化沥青蒸发残留物等材料的延度。

1.2 沥青延度的试验温度与拉伸速率可根据要求采用,通常采用的试验温度为25℃、15℃、10℃或5℃,拉伸速度为

5cm/min±0.25cm/min。当低温采用1cm/min±0.5cm/min 拉伸速度时,应在报告中注明。

2 仪具与材料技术要求

2.1延度仪:延度仪的测量长度不宜大于150cm,仪器应有自动控温、控速系统。应满足试件浸没于水中,能保持规定的试验温度及规定的拉伸速度拉伸试件,且试验时应无明显振动。

2.2试模:黄铜制,由两个端模和两个侧模组成,试模内侧表面粗糙度Ra0.2μm。

2.3试模底板:玻璃板或磨光的铜板、不锈钢板(表面粗糙度Ra0.2μm)。

2.4恒温水槽:容量不少于10L,控制温度的准确度为0.1℃。水槽中应设有带孔搁架,搁架距水槽底不得少于50mm。试件浸入水中深度不小于100mm。

2.5温度计:量程0~50℃,分度值0.1℃。

2.6 砂浴或其他加热炉具。

2.7甘油滑石粉隔离剂(甘油与滑石粉的质量比2:1)。

2.8其他:平刮刀、石棉网、酒精、食盐等。

3方法与步骤

3.1准备工作

3.1.1将隔离剂拌和均匀,涂于清洁干燥的试模底板和两个侧模的内侧表面,并将试模在试模底板上装妥。

3.1.2按本规程T0602规定的方法准备试样,然后将试样仔细自试模的一端至另一端往返数次缓缓注入模中,最后略高出试模。灌模时不得使气泡混入。

3.1.3试件在室温中冷却不少于1.5h,然后用热刮刀刮除高出试模的沥青,使沥青面与试模面齐平。沥青的刮法应自试模的中间刮向两端,且表面应刮得平滑。将试模连同底板再放入规定试验温度的水槽中保温1.5h。

沥青及沥青混合料试验作业指导书讲解

1.适用范围 本指导书适用沥青路面等工程的设计、施工、养护以及质量检查、验收等各个阶段。 2.引用标准 2.1 检测依据: 《公路工程沥青及沥青混合料试验规程》(JTG E20-2011) 2.2 判定依据: 《公路沥青路面施工技术规范》(JTG F40-2004) 3.送样规则 3.1 沥青试验送样 进行沥青常规检验的取样数量为:黏稠沥青或固体沥青不少于4.0kg;液体沥青不少于1L;沥青乳液不少于4L。 进行沥青性质非常规检验及沥青混合料性质试验所需的沥青数量,应根据实际需要确定。 所有需加热的沥青试样必须存放在密封带盖的金属容器中,并在盛样器上(不得在盖上)标出识别标记,如来源、品种、取样日期、地点及取样人。 3.2 沥青混合料试验送样 取样数量应符合下列要求: 试样数量应根据试验目的决定,宜不少于试验用量的2倍。按现行规范规定进行沥青混合料试验的每一组代表性取样如下表。 常用沥青混合料试验项目的样品数量

平行试验应加倍取样。在现场取样直接装入试模成型时,也可等量取样。 取样材料用于仲裁试验时,取样数量除应满足本取样方法规定外,还应多取一份备用样,保留到仲裁结束。 取样后当场试验时,可将必要的项目一并记录在试验记录报告上。此时,试验报告必须包括取样时间、地点、混合料温度、取样数量、取样人等栏目。 取样后转送试验室试验或存放后用于其它项目试验时应附有样品标签,样品标签应记载下列事项: 1、工程名称、拌和厂名称及拌和机型号。 2、沥青混合料种类及摊铺层次、沥青品种、标号、矿料种类、取样时混合料温度及取样位置或用以摊铺的路段桩号等。 3、试样数量及试样单位。 4、取样人、取样日期。 5、取样目的或用途。 4.检测目的 为了确保沥青路面的施工质量,控制沥青及沥青混凝土性能指标特制定本作业指导书。 5.沥青试验 T001 沥青试样准备方法

沥青混凝土路面

沥青混凝土路面 1 适用范围 适用于公路及城市道路工程沥青混凝土路面的机械摊铺施工。 2 施工准备 技术准备 1.调查现场情况,编制详细可行的沥青混凝土路面施工计划和施工方案,并经监理审批后组织交底。 2.沥青混凝土路面施工必须成立施工组织机构,使施工准备、摊铺、压实、质检、后勤和设备保障等全过程处于受控状态。 3.对计划使用的机械设备和混合料配合比,应通过铺筑试验段进行检验,对拌和、运输、摊铺、碾压以及工序衔接等进行优化,提出标准施工方法。 材料要求 热拌沥青混合料应符合《公路沥青路面施工技术规范》(JTJ 032)的有关规定。 机具设备 1.主要机械设备 (1)履带式沥青混凝土摊铺机、轮胎式沥青混凝土摊铺机。 (2)压实机械:6~14t双轮钢筒振动压路机,16~20t轮胎式压路机,1~2t手扶式小型振动压路机。 (3)其他机械:铣刨机、运输车、铲车、水车、加油车、路面切缝机。 2.施工及检测工具 (1)施工工具:平铁锨、耙子、小火车、浮动机准梁、筛子、墩锤、烙铁、手锤、测墩、铝合金导梁、钎子、绕线支架、紧线器、喷灯。 (2)检测工具:3m直尺、测平车、核子仪、取芯机、数显测温计、水准仪、经纬仪、钢尺、小线等。 作业条件 1.沥青混凝土下面层必须在基层验收合格并清扫干净、喷洒乳化沥青24h后方可进行施工。 2.沥青混凝土下面层施工应在路缘石安装完成并经监理验收合格后进行。路缘石与沥青混合料接触面应涂刷粘结油。

3.沥青混凝土中、表面层施工前,应对下面层和桥面混凝土铺装进行质量检测汇总。对存在缺陷部分进行必要的铣刨处理。 4.沥青混凝土中、表面层施工应在下面层及桥面防水层施工完成经监理验收合格后进行。对中、下面层表面泥泞、污染等必须清理干净并喷洒粘层油。 5.施工前对各种施工机具做全面检查,经调试证明处于性能良好状态,机械数量足够,施工能力配套,重要机械宜有备用设备。 3 施工工艺 工艺流程

沥青混合料目标配合比设计(SMA-13).

沥青SMA 混合料配合比设计(SMA-13) 一、基本情况 杭浦高速公路,拟采用改性沥青SMA-13作为面层。 原材料产地如下: 二、设计依据 1.《公路沥青路面施工技术规范》(JTG F40-2004) 2.《公路工程集料试验规程》(JTG E42-2005) 3.《公路工程沥青及沥青混合料试验规程》(JTJ052-2000) 4.《高速公路沥青路面规范化施工与质量管理指导意见》 5.《杭浦高速公路道路养护工程招标文件》 三、设计过程 1、原材料 本次室内目标配合比设计所用集料产地为湖州西园坞(辉绿岩)和闲林(石灰岩),沥青采用韩国SK 生产的SBS-改性沥青,外加剂为木质素纤维,密度为0.6g/cm 3表1 集料及沥青密度试验结果 ,掺量比例为沥青混合料总质量的0.3%,试验所用原材料均由委托方提供。各档集料、矿粉及SBS 改性沥青的密度试验结果见表1。

各档集料及矿粉的筛分结果见表2。 表2 各种矿料的筛分结果 2、混合料级配 根据委托要求,SMA-13型沥青混合料工程设计级配范围见表3。 表3 SMA-13沥青混合料工程设计级配范围 3、矿料配合比设计计算 根据各档集料的筛分结果,结合混合料级配要求,首先调试选出粗、中、细三个级配,根据工程经验确定三个级配的初始油石比为6.2%,然后用初始油石比成型试件。表4为三种级配的设计组成结果,表5为初试级配的体积分析结果。 表4 三种级配的设计组成结果 )的质量百分率(%) 1.18 0.6 0.3 0.15 0.075

表5 初试级配的沥青混合料性能指标分析结果 根据各组级配体积指标结果分析,结合以往工程经验选择级配3为设计级配,级配曲线见图1所示。 0.075 0.15 0.3 0.6 1.18 2.36 4.75 9.5 13.2 16 1.000 1.500 2.000 2.500 3.000 筛孔尺寸(mm) 图1 SMA-13设计级配曲线图 4、马歇尔稳定度试验 按设计的矿料比例配料,采用三种油石比,进行马歇尔稳定度试验,试验结果见表6,设计级配合成毛体积相对密度2.705,级配合成表观相对密度2.751。根据以下数据并确定最佳油石比为6.2%。

沥青混凝土详细分类

沥青混凝土中文名称: 沥青混凝土英文名称: asphalt concrete定义1: 经过加热的骨料、填料和沥青、按适当的配合比所拌和成的均匀混合物,经压实后为沥青混凝土。定义2: 由沥青、填料和粗细骨料按适当比例配制而成。 拼音:liqing hunningtu英文:bituminous concrete沥青混凝土俗称沥青砼(tong)经人工选配具有一定级配组成的矿料(碎石或轧碎砾石、石屑或砂、矿粉等)与一定比例的路用沥青材料,在严格控制条件下拌制而成的混合料。分类 沥青混凝土按所用结合料不同,可分为石油沥青的和煤沥青的两大类;有些国家或地区亦有采用或掺用天然沥青拌制的。按所用集料品种不同,可分为碎石的、砾石的、砂质的、矿渣的数类,以碎石采用最为普遍。按混合料最大颗粒尺寸不同,可分为粗粒(35~40毫米以下)、中粒(20~25毫米以下)、细粒(10~15毫米以下)、砂粒(5~7毫米以下)等数类。按混合料的密实程度不同,可分为密级配、半开级配和开级配等数类,开级配混合料也称沥青碎石。其中热拌热铺的密级配碎石混合料经久耐用,强度高,整体性好,是修筑高级沥青路面的代表性材料,应用得最广。各国对沥青混凝土制订有不同的规范,中国制定的热拌热铺沥青混合料技术规范,以空隙率10%及以下者称为沥青混凝土,又细分为Ⅰ型和Ⅱ型,Ⅰ型的孔隙率为3(或2)~6%,属密级配型;Ⅱ型为6~10%,属半开级配型;空隙率10%以上者称为沥青碎石,属开级配型;混合料的物理力学指标有稳定度、流值和孔隙率等。 配料情况 沥青混合料的强度主要表现在两个方面。一是沥青与矿粉形成的胶结料的粘结力;另一是集料颗粒间的内摩阻力和锁结力。矿粉细颗粒(大多小于0.074毫米)的巨大表面积使沥青材料形成薄膜,从而提高了沥青材料的粘结强度和温度稳定性;而锁结力则主要在粗集料颗粒之间产生。选择沥青混凝土矿料级配时要兼顾两者,以达到加入适量沥青后混合料能形成密实、稳定、粗糙度适宜、经久耐用的路面。配合矿料有多种方法,可以用公式计算,也可以凭经验规定级配范围,中国目前采用经验曲线的级配范围。沥青混合料中的沥青适宜用量,应以试验室试验结果和工地实用情况来确定,一般在有关规范内均列有可资参考的沥青用量范围作为试配的指导。当矿料品种、级配范围、沥青稠度和种类、拌和设施、地区气候及交通特征较固定时,也可采用经验公式估算。 制备工艺 热拌的沥青混合料宜在集中地点用机械拌制。一般选用固定式热拌厂,在线路较长时宜选用移动式热拌机。冷拌的沥青混合料可以集中拌和,也可就地路拌。沥青拌和厂的主要设备包括:沥青加热锅、砂石贮存处、矿粉仓、加热滚筒、拌和机及称量设备、蒸汽锅炉、沥青泵及管道、除尘设施等,有些还有热集料的重新分筛和贮存设备(见沥青混合料拌和基地)。拌和机又可分为连续式和分批式两大类。在制备工艺上,过去多采用先将砂石料烘干加热后,再与热沥青和冷的矿粉拌和。近来,又发展一种先

沥青混凝土路面施工工艺

沥青混凝土路面施工工艺 1基层准备及透层油施工 铺筑下面层沥青混合料前,清理基层,保证基底稍干、清洁,无任何松散的石料、灰尘与杂质。喷洒透层油。采用沥青洒布机,喷油管与路表面形成约30度角,高度使路面上喷洒的透层油形成重叠。侧石、平石等构筑物进行遮挡防护。洒布后不致流淌、渗入基层一定深度,并不形成油膜。 铺筑上面层前,对下面层表面进行清洗,保证表面无泥土、灰尘等杂物喷洒粘油层。 2测定基准线 在准备好底层后进行测量放样,标出的沥青料松铺厚度,并放出引导摊铺机运行走向与标高的控制基准线。路边根据以平石确立基准面,中部采用钢桩定位,使用钢丝绳做引导高程。 3沥青混合料的拌制与运输 (1)沥青混合料拌制 采用间歇式拌与机,沥青砼拌与设备每台实际生产能力为150t/h,,拌与时间为40S。经计算已保证铺筑能够连续进行。按照生产配合比,确定各种材料每锅用量,对配料系统进行设定。沥青加热温度控制170~180℃(改性沥青高10~20℃),矿料比沥青高10~20℃,控制沥青混与料生产温度在 150~175℃范围内。 拌与后的沥青混合料均匀一致,无花白、无粗细料分离与结团成块现象。当出现混合料降温过多、粗细集料颗粒离析以及其它影响产品质量的情况时,予以废弃,并采取纠正措施。 (2)沥青混合料运输 沥青混合料采用自卸车运输,在摊铺机前形成一个连续的供料车流,尽量减少等待的时间,保证摊铺温度。为便于卸料,运输车的车厢底板与侧板抹油

水混合液作隔离剂(柴油、水=1:3),并排除可见游离余液。 装料时,通过前后移动运料车来消除粗细料的离析现象,一车料最少分三次装载。沥青混合料在运输过程中采用防水的篷布遮盖整个运料斗;发现其温度低于要求、颗粒有花白斑点、离析、结块、含水等不符与规范要求的情况,将混合料废弃到指定位置,并不用于本工程。 4沥青混合料的摊铺 采用自动找平装置的沥青摊铺机铺筑,根据摊铺机的摊铺界限与路面宽度、横坡等划分摊铺板块,单面路拱的道路一次性摊铺路面全宽,双路拱分两幅摊铺。 摊铺前30min,把整平板加热至80-100℃,用柴油喷雾器喷洒料斗、括板送料器、整平板及螺旋输送器,安装自动找平装置,超声波控料器,并检查操作系统就是否正常。首先在起点处用人工摊铺1m长的基准面,顶面为松铺顶面,按摊铺厚度调整标尺。摊铺机后退到基准面位置,把整平板降至基准面上。摊铺时,按路线方向纵向行走,摊铺速度均匀、连续、不发生间断或停机,以保证面层平整,起步速度为1m/min,正常速度3m/min。混合料溢出储料斗,落在前方,则迅速清除,在摊铺过程中及时用直尺检测就是否满足要求。 雨、污检查井圈采用钢板覆盖,附近由人工铺筑混合料,并进行热夯。对机械不能到达的死角,用人工扣锹法进行摊铺,局部作适当整平以补齐漏铺处,检查平整度,及时修正路拱。保证摊铺温度不低于110~130℃。 5接缝施工 路面分两幅施工时,纵向缝采用采用自然缝。摊铺前,清除界面处松散的混合料。 沥青混合料路面铺筑期间,当需要暂停施工时,下面层采用斜接缝、上面层采用平接缝。平接缝当天施工结束后进行切割、清扫、成缝。

SMA13改性沥青混合料目标配合比设计报告

XXX路 SMA-13改性沥青混合料目标配合比设计报告

XXXX路 SMA-13改性沥青混合料目标配合比 设计报告 注意事项: 1.本报告未加盖检测单位报告专用章、缺页、添页或涂改均无效;无相关人员及签发人签字无效;未经检测单位许可复印无效; 2.对检测报告有异议者,请于收到报告之日起十五日向检测单位提出; 3.试验检测按国家标准、行业标准和企业标准执行,无标准的按双方协议执行。

XXXX检测中心设计报告

1.0 概述 受XXXX委托,XXXX检测中心承担了XXXX路工程上面层SMA-13型沥青混合料的目标配合比设计工作。本次改性沥青混合料SMA-13的目标配合比设计方法依据《公路沥青路面施工技术规》(JTG F40—2004)进行设计。 2.0 设计依据 上面层SMA-13改性沥青混合料目标配合比设计依据以下标准规、规程: 1、《公路沥青路面施工技术规》(JTG F40-2004); 2、《公路工程集料试验规程》(JTG E42-2005); 3、《公路工程沥青及沥青混合料试验规程》(JTG E20-2011); 3.0 原材料试验 本次试验所用集料、矿粉、沥青均为委托方送样,各原材料规格及产地如下: 1、沥青:XXX产SBS改性沥青; 2、集料:XXX产玄武岩(碎石1:9.5~13.2mm、碎石2:4.75~9.5mm) 3、细集料:XXX产石灰岩(碎石4:0-2.36mm) 4、矿粉:XXX矿粉厂; 5、木质素纤维:XXX(用量为混合料总质量的0.35%)。 4、抗剥落剂:XXX(用量为沥青质量的0.35%) 沥青、矿粉、粗集料、细集料、纤维试验结果如表3.0-1至表3.0-5。

土木工程材料教学大纲

《土木工程材料》课程教学大纲 一、课程的性质和学习目的 1、本课程的性质和任务 《土木工程材料》是土木工程专业的一门重要专业技术基础课, 是直接为土木工程实际问题服务的一门重要的学科。 《土木工程材料》是研究土木工程用材料结构、性能、标准及相互关系的一门科学,并且研究如何选用和组配复合材料。通过本课程的学习,使学生掌握各种材料内部组成、结构、技术性能、技术标准及其相互关系。培养学生合理选用和组配新型复合材料的能力。 2、课程的基本要求: (1)掌握砂石材料、水泥、水泥混凝土、沥青混合料的组成结构、技术性质及其关系;掌握矿质混合料、水泥混凝土、沥青混合料配合比设计; (2)熟悉石灰、沥青及钢材的组成结构、技术性质及技术要求; (3)了解各种外加剂的性能;了解部分新建筑材料的技术性能及发展趋向; (4)了解石灰、水泥凝结硬化原理;沥青混凝土强度理论;集料的级配理论;沥青乳化机理。 (5)了解土木工程中合成高分子材料的主要制品及应用、了解建筑功能材料的主要类型及特点。 3、本课程与其他课程的关系 在学习本课程之前, 应学完《数学》、《物理》、《化学》、《材料力学》、《工程地质》等课程,以便同学在学习本课程的过程中充分运用过去学过的知识。它是后续专业课的基础。二、本课程学习和考核的内容 绪论(2学时) 教学内容:土木工程材料发展概况,土木工程材料在土木工程建筑结构物中的作用,以及在经济发展中的意义;课程研究的对象和内容、要求和学习方法。 教学目标:了解土木工程材料在土木工程建筑结构物中的作用,以及在经济发展中的意义;明确本课程在本专业中的地位,了解本课程研究的对象和内容、要求和学习方法。 重点:土木工程材料在土木工程建筑结构物中的作用,土木工程材料的发展概况。 难点:土木工程材料在土木工程建筑结构物中的作用 (一)土木工程材料的基本性质(2学时) 教学内容:材料学的基本理论,材料的物理性质、力学性质、材料的耐久性。 教学目标:了解材料学的基本理论,掌握材料的物理性质、力学性质,掌握材料的物理—力学性质相互间的关系及在土木工程中的应用,掌握材料耐久性的基本概念。 重点:材料的物理—力学性质相互间的关系及在土木工程中的应用。 难点:材料的物理性质。 (二)天然石料(2学时) 教学内容:岩石的组成与分类、岩石的力学性能与测试方法、常用石料品种

沥青混凝土路面介绍

沥青混凝土路面介绍 经人工选配具有一定级配组成的矿料(碎石或轧碎砾石、石屑或砂、矿粉等)与一定比例的路用沥青材料,在严格控制条件下拌制而成的混合料。 分类沥青混凝土按所用结合料不同,可分为石油沥青的和煤沥青的两大类;有些国家或地区亦有采用或掺用天然沥青拌制的。按所用集料品种不同,可分为碎石的、砾石的、砂质的、矿渣的数类,以碎石采用最为普遍。按混合料最大颗粒尺寸不同,可分为粗粒(35~40毫米以下)、中粒(20~25毫米以下)、细粒(10~15毫米以下)、砂粒(5~7毫米以下)等数类。按混合料的密实程度不同,可分为密级配、半开级配和开级配等数类,开级配混合料也称沥青碎石。其中热拌热铺的密级配碎石混合料经久耐用,强度高,整体性好,是修筑高级沥青路面的代表性材料,应用得最广。各国对沥青混凝土制订有不同的规范,中国制定的热拌热铺沥青混合料技术规范,以空隙率10%及以下者称为沥青混凝土,又细分为Ⅰ型和Ⅱ型,Ⅰ型的孔隙率为3(或2)~6%,属密级配型;Ⅱ型为6~10%,属半开级配型;空隙率10%以上者称为沥青碎石,属开级配型;混合料的物理力学指标有稳定度、流值和孔隙率等。 配料沥青混合料的强度主要表现在两个方面。一是沥青与矿粉形成的胶结料的粘结力;另一是集料颗粒间的内摩阻力和锁结力。矿粉细颗粒(大多小于0.074毫米)的巨大表面积使沥青材料形成薄膜,从而提高了沥青材料的粘结强度和温度稳定性;而锁结力则主要在粗集料颗粒之间产生。选择沥青混凝土矿料级配时要兼顾两者,以达到加入适量沥青后混合料能形成密实、稳定、粗糙度适宜、经久耐用的路面。配合矿料有多种方法,可以用公式计算,也可以凭经验规定级配范围,中国目前采用经验曲线的级配范围。沥青混合料中的沥青适宜用量,应以试验室试验结果和工地实用情况来确定,一般在有关规范内均列有可资参考的沥青用量范围作为试配的指导。当矿料品种、级配范围、沥青稠度和种类、拌和设施、地区气候及交通特征较固定时,也可采用经验公式估算。 制备工艺热拌的沥青混合料宜在集中地点用机械拌制。一般选用固定式热拌厂,在线路较长时宜选用移动式热拌机。冷拌的沥青混合料可以集中拌和,也可就地路拌。沥青拌和厂的主要设备包括:沥青加热锅、砂石贮存处、矿粉仓、加热滚筒、拌和机及称量设备、蒸汽锅炉、沥青泵及管道、除尘设施等,有些还有热集料的重新分筛和贮存设备(见沥青混合料拌和基地)。拌和机又可分为连续式和分批式两大类。在制备工艺上,过去多采用先将砂石料烘干加热后,再与热沥青和冷的矿粉拌和。近来,又发展一种先用热沥青拌好湿集料,然后再加热拌匀的方法,以消除因集料在加热和烘干时飞灰。采用后一种工艺时,要防止残留在混合料中的水分影响沥青混凝土使用寿命,最好能同时采用沥青抗剥落剂,以增强抗水能力。

AC-13沥青混合料目标配合比设计说明.

沥青混合料目标配合比设计说明 (AC-13 一.设计依据 1.《公路工程沥青路面施工技术规范》(JTG-F40-2004; 2.《公路工程沥青及沥青混合料试验规程》(JTJ-052-2000; 3.《公路工程集料试验规程》(JTGE42-2005; 4.郑开建管办相关技术文件。 二.原材料 1.沥青。采用中海36-1沥青公司生产的AH-70重交沥青,其质量技术指标见表1。 沥青的技术指标 表1 试验项目单位技术要求试验结果 针入度(25℃, 0. 1mm 60~80 70 100g,5s 延度(5cm/min, cm ≥100150 15℃

延度(5cm/min, cm ≥2050.8 10℃ 软化点(环球法℃>46 48 密度(15℃g/cm3实测 1.010 溶解度sb(三氯 %>99.-- 乙烯 RTFOT后残留物质量损失%≤±0.80.05 针入度比P(25℃%≥6170 软化点增值(环球 ℃—-- 法 延度(10℃, cm ≥611.4 5cm/min 2.集料。采用河南禹州碎石厂生产的碎石,其中分为四档:1#料(10~16mm、2#料(4.75~13.2mm、3#料(2.36~4.75mm、4#料(<2.36mm,其质量技术指标见表2、表3。粗集料质量指标 表2 试验项目单位标准试验结果 视密度1#料g/cm3≥2.60 2.755

2#料g/cm3≥2.60 2.796 3#料g/cm3≥2.60 2.722 石料压碎值%≤2617.2 细长扁平颗粒 1#料%<15 7.8 含量 2#料%<15 8.0 对沥青的粘附 ≥5级5级 性 水洗法 1#料%≤10.2 <0.075mm含 量 2#料%≤10.6 3#料%≤10.8 细集料质量指标 表3 试验项目单位标准试验结果视密度g/cm3≥2.60 2.710

公路工程沥青及沥青混合料试验规程完整

公路工程沥青及沥青混合料试验规程 2术语 2.1.1沥青的密度 沥青在规定温度下单位体积所具有的质量,以g/cm 3计。 2.1.2沥青的相对密度 在同一温度下,沥青质量与同体积的水质量之比值,无量纲。 2.1.3针人度 在规定鍵和时间内,附加一定质量的标准针垂直贯入沥的深度,以 0.1mm 计。 2.1.4针人度指数 沥青结合料的温度感应性指标,反映针入度随温度而变化的程度,由不同温度的针入度按规定方法计算得到,无量纲。 2.1.5延度 规定形态的沥青试样,在规定温度下以一定速度受拉伸至断开时的长度,以cm计。 2.1.6软化点(环球法) 沥青试样在规定尺寸的金属环内,上置规定尺寸和质量的钢球,放于水或甘油中,以规定的速度加热,至钢球下沉达规定距离时的温度,以C 计。 2.1.7沥青的溶解度 沥青试样在规定溶剂中可溶物的含量,以质量百分率表示。 2.1.8蒸发损失 沥青试样在163C温度条件下加热并保持5h后质量的损失,以百分率表示。 2.1.9闪点

沥青试样在规定的盛样器内按规定的升温速度受热时所蒸发的气体以规定的方法与试焰接触,初次发生一瞬即灭的火焰时的温度,以C计。盛样器对黏稠沥青是克利夫兰开口杯(简称COC),对液体沥青是泰格开口杯(简称TOC)。 2.1.10弗拉斯脆点 涂于金属片上的沥青薄膜在规定条件下,因冷却和弯曲而出现裂纹时的温度,以C计。 2.1.11沥青的组分分析 按规定方法将沥青试样分离成若干个组成成分的化学分析方法。 2.1.12沥青的黏度 沥青试样在规定条件下流动时形成的抵抗力或内部阻力的度量,也称黏滞度。 2.1.13沥青、混合料的密度 压实沥青混合料常温条件下单位体积的干燥质量,以g/cm 3计。 2.1.14枥青混合料的相对密度 同一温度条件下压实沥青混合料试件密度与水密度的比值,无量纲。 2.1.15浙青混合料的理大密度 假设压实沥青混合料试件全部为矿料(包括矿料自身内部的孔隙)及沥青所占有、空隙率为零的理想状态下的最大密度,以g/cm 3计。 2.1.16沥青混合料的理论最大相对密度 同一温度条件下沥青混合料理论最大密度与水密度的比值,无量纲。 2.1.17沥青混合料的表观密度 沥青混合料单位体积(含混合料实体体积与不吸收水分的内部闭口孔隙体积之和)的干质量,又称视密度,由水中重法测定(仅适用于吸水率小于0.5%的沥青混合料试件),以g/cm 3计。 2.1.18沥青混合料的表观相对密度 沥青混合料表观密度与同温度水密度的比值,无量纲: 2.1.19沥青混合料的毛体积密度 压实沥青混合料单位体积(含混合料的实体矿物成分及不吸收水分的闭口孔

沥青混合料中沥青含量试验

沥青混合料中沥青含量试验沥青混合料的沥青含量是沥青的质量战沥青混合料总质量的之比,也叫油石比,使沥青混合料 配合比的重要指标,也是影响沥青路面质量与工程造价的关键指标, 沥青混合料中的沥青含 量测定方法主要有:射线法、离心分离法、回流式抽屉仪法、脂肪抽提器法四种。由于回流式抽提仪法的准确性较差,现在较少使用,而脂肪抽提器法只在国外较普遍采用,国内由于材料原因也较少使用,所以本节只介绍射线法和离心分离法。 离心分离法 1、目的与使用范围离心分离法适用于热拌热铺沥青混合料路面施工时的沥青用量检测,以评 定拌和厂产品质量,也适用于旧路调查时检测沥青混合料的沥青用量,用此法抽提的沥青溶液可用于回收沥青,以评定沥青的老化性质。 2、仪器与材料 离心抽提仪(离心分离器转速大于3000r/min )、圆环形滤纸、回收瓶(大于1700mL)、压力过滤装置、天平(感量0.01g、1mL 各一个)、量筒、电烘箱(能自动调节温度)、三氯乙烯、碳酸铵饱和溶液等。 3、方法与步骤 (1)试验取样 1)施工现场可以从拌和场直接进行取样,温度下降至10 0C以下时,用大烧杯去混 合料试样质量1 0 0 0?1 5 0 0 g左右(粗粒式用高限,细粒式用低限,中粒式用中 限),准确至0.1g。 2)旧路可用钻机法或切割法进行取样的,用电风扇将其吹干燥,并置微波炉或烘箱中 适当加热成松散状态后称取规定的数量,但不得用锤击以防集料破碎。 (2)实验步骤 1)向装有试样的烧杯中注入三氯乙烯溶剂,将其浸泡3 0min,并用玻璃棒适当搅动混合料,且记录溶剂用量,使沥青充分溶解。 注:也可直接在离心分离器中浸泡。 2)将混合料及溶液全部倒入离心分离器。 3)称取洁净的圆环形滤纸(不宜重复使用)质量,准确至0.01g,并将滤纸垫在分离器边缘上,紧固盖子,将回收瓶放在分离器出口处。注意上口密封,防止流出液成雾状散失。 4)开动离心机,转速逐渐增至3 0 0 0 r/min,沥青溶液停止流出后停机。 5)从上盖的孔中加入数量相同的新溶剂,稍停3?5min后,重复上述操作,如此 数次直至流出的抽屉液成清澈的淡黄色为止。 6)取下圆环形滤纸,其增重部分(m 2)为矿粉的一部分。 7)称取容器中经过10 5C±5C的烘箱干燥后集料质量(m”。 8)用压力过滤器过滤回收瓶中的沥青溶液,由滤纸的增重得泄漏入滤液中矿粉质量 (m3),如无压力过滤器时,也可用燃烧法测定。 9)用燃烧法测定抽提液中矿粉质量的步骤如下: ①将回收瓶的抽屉液倒入量筒中,准确定量至mL (Va)。 ②充分搅匀抽屉液,取出10 mL (Vb )放入坩埚中,在热浴上适当加热使溶液试样 发成暗黑色后,置高温炉(5 0 0?6 0 0 C)中烧成残渣,取出坩埚冷却。 ③向坩埚中按每1g残渣5 mL的用量比例,注入碳酸铵饱和溶液,静置1h,放入1 05C±5C烘箱中干燥。

公路工程沥青与沥青混合料试验规范流程

公路工程沥青及沥青混合料试验规程 2 术语 2.1.1 沥青的密度 沥青在规定温度下单位体积所具有的质量,以g/cm3计。 2.1.2 沥青的相对密度 在同一温度下,沥青质量与同体积的水质量之比值,无量纲。 2.1.3 针人度 在规定鍵和时间内,附加一定质量的标准针垂直贯入沥的深度,以0.1mm计。 2.1.4 针人度指数 沥青结合料的温度感应性指标,反映针入度随温度而变化的程度,由不同温度的针入度按规定方法计算得到,无量纲。 2.1.5 延度 规定形态的沥青试样,在规定温度下以一定速度受拉伸至断开时的长度,以cm计。 2.1.6 软化点(环球法) 沥青试样在规定尺寸的金属环内,上置规定尺寸和质量的钢球,放于水或甘油中,以规定的速度加热,至钢球下沉达规定距离时的温度,以℃计。 2.1.7 沥青的溶解度 沥青试样在规定溶剂中可溶物的含量,以质量百分率表示。 2.1.8 蒸发损失 沥青试样在163℃温度条件下加热并保持5h后质量的损失,以百分率表示。 2.1.9 闪点 沥青试样在规定的盛样器内按规定的升温速度受热时所蒸发的气体以规定的方法与试焰接触,初次发生一瞬即灭的火焰时的温度,以℃计。盛样器对黏稠沥青是克利夫兰开口杯(简称COC),对液体沥青是泰格开口

杯(简称TOC)。 2.1.10 弗拉斯脆点 涂于金属片上的沥青薄膜在规定条件下,因冷却和弯曲而出现裂纹时的温度,以℃计。 2.1.11沥青的组分分析 按规定方法将沥青试样分离成若干个组成成分的化学分析方法。 2.1.12 沥青的黏度 沥青试样在规定条件下流动时形成的抵抗力或内部阻力的度量,也称黏滞度。 2.1.13 沥青、混合料的密度 压实沥青混合料常温条件下单位体积的干燥质量,以g/cm3计。 2.1.14枥青混合料的相对密度 同一温度条件下压实沥青混合料试件密度与水密度的比值,无量纲。 2.1.15浙青混合料的理大密度 假设压实沥青混合料试件全部为矿料(包括矿料自身内部的孔隙)及沥青所占有、空隙率为零的理想状态下的最大密度,以g/cm3计。 2.1.16沥青混合料的理论最大相对密度 同一温度条件下沥青混合料理论最大密度与水密度的比值,无量纲。 2.1.17沥青混合料的表观密度 沥青混合料单位体积(含混合料实体体积与不吸收水分的内部闭口孔隙体积之和)的干质量,又称视密度,由水中重法测定(仅适用于吸水率小于0.5%的沥青混合料试件),以g/cm3计。 2.1.18沥青混合料的表观相对密度 沥青混合料表观密度与同温度水密度的比值,无量纲: 2.1.19沥青混合料的毛体积密度 压实沥青混合料单位体积(含混合料的实体矿物成分及不吸收水分的闭口孔隙、能吸收水分的开口孔隙等颗粒表面轮廓线所包围的全部毛体积)的干质量,以g/cm3计。 2.1.20沥青混合料的毛体积相对密度

沥青混凝土路面施工方案及方法

沥青混凝土路面施工方 案及方法 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

沥青混凝土路面施工方案及方 法 一、沥青透层和粘层 1、施工方案 本合同段有沥青透层71839 m 2,粘层109654 m 2,采用一台4500L 的沥青洒布车施工。 2、施工方法 机械设备配置:沥青透层和粘层施工配备4500L 沥青洒布车1台、8000L 洒水车2台和YZ8G 压路机2台。 3、透层施工 透层宜紧接在水泥稳定碎石基层施工结束碾压成型表面稍变干燥,但尚未硬化的情况下浇洒。透层沥青选用PA-2慢裂洒布型乳化沥青,透层沥青的用量应根据基层的种类通过试洒确定,对水泥稳定碎石基层,用量为~m 2。如基层完工后时间较长,表面过分干燥,应对基层清扫,并在基层表面少量洒水湿润,等表面稍干后浇洒透层沥青。浇洒前应对路缘石、人工构造物进行保护,以防污染。透层沥青洒布后应不致流淌,要渗透入基层一定深度,并不得在表面形成油膜。在铺筑沥青面层前,若局部地方有多余的透层沥青,应予清除,有遗处则应用人工补洒。 4、粘层施工 待透层沥青晒干后,再用沥青洒布车进行粘层沥青(快裂的洒布型乳化沥青PC-3型)的浇洒,用量为~1000m 2。撒布石屑后,用8t 压路机静压2~3遍,当通行车辆时,应控制车速。在铺筑沥青面层前,如发现局部地方透层沥青剥落,应予修补,对多余的浮动石屑立即扫除。 如遇大风或即将降雨时,不得洒透层和粘层沥青。气温低于10℃时也不宜洒透层和粘层沥青。 二、沥青混凝土面层

1、施工方案 本合同段路面结构组合为4cm厚的AC-13C细粒式改性沥青砼+4cm厚的AC-16C中粒式沥青砼(各路段的行车道、主要平面交叉和桥头引道路面)、5cm厚的AC-13C细粒式沥青砼(各路段辅道和次要平面交叉)及4cm厚的AC-13C细粒 6cm厚的AC-16C中粒式沥青砼调平层(原老路路式改性SBS-C改性沥青砼+4cm ~ 面加铺路段)共计90308m2,拟采用1台QB300C强制间歇式沥青混合料搅拌设备(300t/h)进行拌和,1台ABG423混合料摊铺机(12m)进行摊铺。 2、机械设备配制 3、施工准备 参加前一工序的验收交接工作,下承层表面应平整坚实,其高程宽度、平整度、密实度均应符合设计要求,并有现场监理工程师工序验收的合格签认。下承层表面的卸陷应及时处理,施工前应对下承层做全面检查,建立严格的交接制度。 铺筑一段200m的试验路段,以此检验施工方案、沥青混合料配合比,测定松铺厚度及施工机械性能。并有针对性地收集松铺厚度、压实度与碾压遍数的关系等数据,试验路段结束后,编制试验路段总结报告,经监理工程师批准后,用以指导全面施工。

Ac10沥青混凝土目标配合比

沥青混凝土(AC-10)目标配合比设计说明 一、概述 1、依据 (1)《公路工程沥青路面施工技术规范》(JTG F40-2004) (2)《公路工程沥青及沥青混合料试验规程》(JTJ052—2000) (3)《公路工程集料试验规程》(JTG E42—2005) 2、粗集料:碎石经试验其表观相对密度、吸水率、针片状含量、<0.075颗粒含量、磨耗值各项指标均符合规范要求。 3、细集料:粗石粉、石屑,经试验其各项指标均符合规范要求。 4、矿粉:经检验其表观密度、亲水系数等各项指标均符合规范要求。 5、沥青,沥青为齐鲁石化70#道路石油沥青。经检验其针入度、延度、软化点、沥青与粗集料的粘附性等各项指标均规范要求。 二、目标配合比设计 1、级配设计:对碎石、粗石粉、石屑、矿粉分别进行了筛分,最终确定各矿料掺配比例为:5-10mm碎石:粗石粉:石屑:矿粉=30:25:40:5 2、最佳油石比的确定 参照试验规程沥青参考用量,结合实际经验,按油石比0.5%变化,制作五组试件,即油石比分别为5.0%、5.5%、6.0%、6.5%、6.10%,每组试件四至五块,冷却12个小时后,测其密度、饱和度、空隙率等指标,然后经马歇尔试验测的稳定度、流值结果汇总下表: 沥青混合料试验结果汇总表

根据以上各项试验结果及计算结果,分别绘制饱和度、矿料间隙率、空隙率、密度、与油石比的关系曲线,最后确定最佳沥青用量为5.75%。 三、室内配合比结论 根据上述试验,实验室建议的沥青目标配合比为: 矿料级配:5-10mm碎石:粗石粉:石屑:矿粉=30:25:40:5 最佳油石比:6.10%,最佳沥青用量5.75%。 本次目标配合比设计可作为工地生产配合比设计依据。

土木工程材料1 期末考试试题及参考答案

土木工程材料复习题 一、填空 1、石油沥青的主要组丛有油分、树脂、地沥青质。 2、防水卷材按材料的组成不同,分为氧化沥青卷材、高聚物改性沥青卷材、合成高分子卷材。 3、低碳钢受拉直至破坏,经历了弹性、屈服、强化、颈缩四个阶段。 4、抹灰砂浆和砌筑砂浆不同,对它的主要技术要求不是强度,而是和易性。 5、石灰膏和熟石灰在砂浆中的主要作用是使砂浆具有良好的和易性,所以也称外掺料。 6、强度等级为C30的混凝土,其立方体抗压强度标准值为30MP。 7、硅酸盐水泥的水化热主要由铝酸三钙和硅酸三钙产生,其中铝酸三钙水化热最大。 8、材料抵抗渗透的性质称为抗渗性,其大小可用渗透系数表示,也可用抗渗等级表示。 9、烧结普通砖的标准尺寸为240㎜*115㎜*53㎜,如果计划砌筑10M3砌体需用该砖约5120匹。 10.材料的亲水性与憎水性用(润湿边角)来表示,材料的吸湿性用(含水率)来表示。材料的吸水性用(吸水率)来表示。 2.石膏的硬化时体积是(膨胀的),硬化后孔隙率较(大)。 3.石灰浆体在空气中硬化,是由(结晶)作用和(碳化)作用同时进行的过程来完成,故石灰属于(气硬性)胶凝材料。 4.硅酸盐水泥熟料中四种矿物成分的分子式是(C3A)、(C2S)、(C3S )、(C4AF)。 5.混凝土的合理砂率是指在(用水量)和(水泥用量)一定的情况下,能使混凝土获得最大的流动性,并能获得良好粘聚性和保水性的砂率。 6.砌筑砂浆的流动性用(沉入度)表示,保水性用(分层度)来表示。 7.钢结构设计时碳素结构钢以(屈服)强度作为设计计算取值的依据。 8、石油沥青按三组分划分分别为(油分)、(树脂)、(地沥青质)。 1.对于开口微孔材料,当其孔隙率增大时,材料的密度(不变),吸水性(增强), 抗冻性(降低),导热性(降低),强度(降低)。 2.与硅酸盐水泥相比,火山灰水泥的水化热(低),耐软水能力(好或强),干缩(大). 3.保温隔热材料应选择导热系数(小), 比热容和热容(大)的材料. 4.硅酸盐水泥的水化产物中胶体为(水化硅酸钙)和(水化铁酸钙). 5. 普通混凝土用砂含泥量增大时,混凝土的干缩(增大),抗冻性(降低). 6.普通混凝土配合比设计中要确定的三个参数为(水灰比)、(砂率)和(单位用水量). 7.钢材中元素S主要会使钢的(热脆性)增大,元素P主要会使钢的(冷脆性)增大. 8.含水率为1%的湿砂202克,其中含水为(2)克,干砂(200 )克. 9.与建筑石灰相比,建筑石膏凝结硬化速度(快),硬化后体积(膨胀) . 10.石油沥青中油分的含量越大,则沥青的温度感应性(越大),大气稳定性(越好). 11.按国家标准的规定,硅酸盐水泥的初凝时间应满足(不早于45min)。 12.相同条件下,碎石混凝土的和易性比卵石混凝土的和易性(差)。 13.石灰的陈伏处理主要是为了消除(过火石灰)的危害。 14.钢的牌号Q235-AF中A表示(质量等级为A级)。 15.结构设计时,硬钢的强度按(条件屈服点)取值。 16.选择建筑物围护结构的材料时,应选用导热系数较(小)、热容量较(大)的材料,保证良好的室内气候环 境。 17.钢筋混凝土结构用热轧钢筋中光圆钢筋用____HPB___符号表示,带肋钢筋用___HRB__符号表示。 18.钢结构设计时,钢材强度的取值依据为(屈服强度)。σ0.2中,0.2表示的意义为(残余变形为原标距长度的 0.2%时所对应的应力值)。 19.用连续级配骨料配制的砼拌合物工作性良好,不易产生___离析____现象,所需要的水泥用量比采用间断级 配时__多___。 1

沥青混凝土路面施工方案54270

目录 1 编制说明 (1) 1.1 编制依据 (1) 1.2 编制原则 (1) 1.3 编制范围 (1) 2 工程概况 (2) 2.1 设计概况 (2) 2.2 主要工程数量 (4) 3 总体施工方案 (5) 3.1 施工步骤 (5) 3.2 作业段划分 (5) 3.2 工期安排 (6) 4 施工工艺及方法 (6) 4.1 施工准备 (6) 4.1.1 技术准备 (6) 4.1.2 机械准备 (7) 4.1.3 材料准备 (7) 4.1.4 现场准备 (7) 4.2 主要施工工艺 (7) 4.2.1 级配碎石垫层 (7) 4.2.2 水泥稳(底)基层 (8) 4.2.3 透层、封层及粘层 (10) 4.2.4 沥青混凝土面层 (11) 5 人员及物资设备计划 (13) 5.1 人员配备 (13)

5.2机械配置 (13) 6 质量保证措施 (14) 6.1 质量目标 (14) 6.2 质量管理措施 (14) 6.4 各工序验收标准 (15) 7 安全保证措施 (17) 7.1安全目标 (17) 7.2 安全培训 (17) 7.3 安全保证措施 (17) 8 环境保护措施 (18) 9 雨季施工措施 (19)

1 编制说明 1.1 编制依据 (一)《江顺大桥及江门大道管养中心施工图设计文件》。 (二)现行国家、地方施工规范、标准及规程: (1)《公路路面基层施工技术细则》(JTG/T F20-2015) (2)《城市道路照明设计规范》(CJJ 45-2006) (3)《城镇道路路面设计规范》(CJJ 169-2012) (4)《公路交通标志和标线设置规范》(JTG D82-2009)(三)江门市交通运输工程质量监督站的相关要求。 (四)业主的相关要求。 (五)我单位的施工能力、技术力量以及我单位在类似工程的施工经验。 (六)施工区域自然因素、沿线交通情况及现场施工条件。 1.2 编制原则 (一)符合建设单位及合同有关工程工期、质量、安全、环境保护及文明施工等方面的基本规定。 (二)通过方案比选,选择最合理、最科学的施工组织方案的原则。 (三)遵循“安全生产”和“质量第一”的指导思想,从技术上、管理上提出安全、质量具体要求和防范措施。 (四)坚持科学的施工方案和合理的施工顺序,科学配置资源,实现均衡生产,达到合理的经济技术指标。 (五)积极开发、使用新技术和新工艺;采取技术和管理措施,推广建筑节能和绿色施工。 (六)与公司质量、环境、职业健康安全管理体系有效结合。 1.3 编制范围 本方案适用于江顺大桥及江门大道管养中心专用车道工程沥青混凝土路面施工。

AC-20沥青混合料目标配合比设计说明

AC-20沥青混合料目标配合比设计说明 该配合比是根据原材料的性能及混合料的技术要求进行计算,并经试验室试配、调整后确定,满足设计和施工要求。配合比设计中沥青采用韩国SK株式会生产的SK牌AH-70道路石油沥青,现将试验成果报告如下: 一、试验内容 1、原材料试验 对平度市黑羊山碎石场提供的石灰岩集料和大沽河砂进行筛分试验及表观密度、毛体积密度和吸水率等试验;对莱西望城谭格庄石粉加工厂的矿粉进行了亲水系数、筛分和表观相对密度试验;对韩国SK株式会生产的SK牌AH-70道路石油沥青进行了针入度、延度及软化点三大指标试验. 2、AC-20型沥青混合料组成设计试验 在规范要求AC-20型级配范围基础上,对设计级配曲线进行优化设计,通过马歇尔试验,确定最佳沥青用量。并对AC-20型沥青混凝土混合料目标配合比水稳定性检验。 二、试验说明 1、本次试验严格按照交通部颁发的《公路沥青路面施工技术规范》(JTG F40-2004)、《公路工程沥青及沥青混合料试验规程》(JTJ052-2000)和《公路集料试验规程》(JTJ E42-2005); 2、在沥青混合料时间的成型过程中,沥青加热温度为158℃、矿料加热温度为180℃,沥青混合料拌和温度为160℃、击实温度为145℃。 3、沥青混合料最大相对密度采用真空法实测,沥青混合料马歇尔试件

毛体积密度采用表干法测定。 三、计算说明 1、合成矿料的有效相对密度γse γse=(100-P b)/(100/γt-P b/γb) 式中:γse——合成矿料的有效相对密度;本次试验矿料有效相对密度根 据真空法实测最大相对密度进行反算。 P b——试验采用的沥青用量(占混合料总量的百分数),%; γt——试验沥青用量条件下实测得到的最大相对密度,无量纲; γb——沥青的相对密度(25℃/25℃),无量纲。 2、矿料全体的合成毛体积相对密度r sb r sb=100/(P1/γ1+P2/γ2+…+P n/γn) 式中:P1、P2、…、P n——各种矿料成分的配合比,其和为100; γ1、γ2、…、γn——各种矿料相应的毛体积相对密度,矿粉以 表观相对密度代替。 3、试件的最大理论相对密度γt 本次试验该指标采用了理论密度仪实测。 4、矿料间隙率(VMA)(%) VMA=(1-γf / γsb×p s)×100 式中:γf——试件的毛体积相对密度,无量纲; p s——各种矿料占沥青混合料总质量的百分率之和,即 P S=100-P b,%; 5、试件的空隙率VV(%) VV=(1-r f /γt)×100 式中:γt——沥青混合料的最大理论相对密度,无量纲。 6、沥青饱和度VFA(%) VFA={(VMA-VV)/VMA}×100 7、集料吸收沥青含量P ba(%)

沥青混合料试验规程

目录

(弯曲梁流变仪法) 一、目的与适用范围 1.1本方法用弯曲梁流变仪测定沥青的弯曲蠕变劲度和m值。测量的弯曲蠕变劲度范围为20~1OOOMPa。 1.2本方法适用干原样沥青、压力老化后的沥青和薄膜烘箱(或旋转薄膜烘箱)后的老化沥青。 1.3根据本方法进行试验时,若试件的形变大于4mm或小于0.08mm时,试验结果无效。 二、仪具与材料 2.1弯曲梁流变仪试验系统由以下几部分组成:

2.2.2加载系统:能向试件施加35mN ±5mN 的接触荷载,试验过程中将试验荷载 2.2试验系统基本技术要求和参数 2.2.1加载框:由一套试件支架、加载轴、荷载传感器、荷载调零装置、加载装置及位移测量传感器等组成。示意图如图T0627-1所示。 保持在980mN ±50mN 以内。技术要求如下: 1)加载系统要求:试验荷载的升压时间应不少于5s 。开始试验时系统在0.5 ~5s 内将接触荷载从35mN ±5mN 增加到初始试验荷载980mN ±50mN ,此时试验荷载应稳定在平均试验荷载±50mN 之内,之后稳定在平均试验荷载±10mN 。 2)加载轴:带有半径为6.3mm ±1.3mm 球形接触点。 3)荷载传感器:用来测量初始接触荷载和试验荷载。最小量程应不小于2.00N ,分辨率不小于2.5mN 。 4)线性差动式位移传感器(LVDT ):量程不小于6mm ,分辨率不小于2.5μm 。 5)试件支架:接触半径为3.0mm 士0.3mm 由不锈钢或其他防腐蚀金属制成的支架。 2.2.3温度传感器:测量范围为0~-36℃,精确至士O.1℃。 2.2.4恒温浴:在-36~0℃范围能将浴内各点温度保持在试验温度±0.1℃。 2.1 带有试件支架的加载框。 2.1 将试件保持在试验温度下并提供浮力以抵消试件重力的恒温2.1 计算机控制和数据自动采集系统元件。 2.1 试样梁模具。 2.1检量和校正系统的梁。 图T0627-1弯曲梁流变仪示意图 1-温度传感器;2-沥青试件;3-控制与数据采集;4-位移传感器; 5-加载轴;6-空气轴承;7-荷载传感器;8-水槽;9-试件支架

相关主题
文本预览
相关文档 最新文档