当前位置:文档之家› (完整word版)解析几何练习题及答案

(完整word版)解析几何练习题及答案

(完整word版)解析几何练习题及答案
(完整word版)解析几何练习题及答案

解析几何

一、选择题

1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是( ) A.3 B .- 3 C.33

D .-

3

3

解析:斜率k =-1-3

3-(-3)

=-3

3,故选D.

答案:D

2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1

D .-2或1

解析:①当a =0时,y =2不合题意. ②a ≠0, x =0时,y =2+a . y =0时,x =a +2

a

则a +2a =a +2,得a =1或a =-2.故选D.

答案:D

3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( ) A .4 B .21313

C.51326

D .71020

解析:把3x +y -3=0转化为6x +2y -6=0, 由两直线平行知m =2, 则d =|1-(-6)|62+22

=71020.

故选D. 答案:D

4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -5=0

D .x +2y -5=0

解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.

答案:C

5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )

A.????π6,π3 B .????

π6,π2 C.????π3,π2

D .????π3,π2

解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l 的倾斜角的取值范围为????

π6,π2.故选B.

答案:B

6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0

D .x -2y +5=0

解析:直线2x +y -5=0的斜率为k =-2, ∴所求直线的斜率为k ′=1

2

∴方程为y -3=1

2(x -2),即x -2y +4=0.

答案:A 二、填空题

7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.

解析:由题意知截距均不为零. 设直线方程为x a +y

b

=1,

由?????

a +

b =6,2a +1b =1,

解得????? a =3b =3或?????

a =4

b =2.

故所求直线方程为x +y -3=0或x +2y -4=0. 答案:x +y -3=0或x +2y -4=0

8.(2014湘潭质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.

解析:∵过点A ,B 的直线平行于直线2x +y +2=0, ∴k AB =4-m

m +2=-2,解得m =-8.

答案:-8

9.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.

解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0, 即2a -(1+a )3-(1-a )<0,化简得a -1a +2<0,∴-2

10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________. 解析:令k =0,得y +3=0,令k =1,得x +3=0.

解方程组????? y +3=0,x +3=0,得?????

x =-3,y =-3,

所以定点坐标为(-3,-3). 答案:(-3,-3) 三、解答题

11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.

解:(1)法一 当sin α=0时,直线l 1的斜率不存在, l 2的斜率为0,显然l 1不平行于l 2.

当sin α≠0时,k 1=-1

sin α,k 2=-2sin α.

要使l 1∥l 2,需-1

sin α=-2sin α,

即sin α=±22,∴α=k π±π

4,k ∈Z .

故当α=k π±π

4

,k ∈Z 时,l 1∥l 2.

法二 由l 1∥l 2,得?

????

2sin 2

α-1=0,1+sin α≠0,∴sin α=±2

2

∴α=k π±π

4

,k ∈Z .

故当α=k π±π

4

,k ∈Z 时,l 1∥l 2.

(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0. ∴α=k π,k ∈Z . 故当α=k π,k ∈Z 时, l 1⊥l 2.

12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0. (1)证明l 1与l 2相交;

(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.

证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.

(2)法一 由方程组?????

y =k 1x +1,

y =k 2x -1解得交点P 的坐标为? ????2k 2-k 1,k 2+k 1k 2-k 1, 而2x 2

+y 2

=2? ????2k 2-k 12+? ??

??k 2+k 1k 2-k 12

=8+k 22+k 2

1+2k 1k 2k 22+k 21-2k 1k 2

k 21+k 22+4k 21+k 22+4

=1.

即P (x ,y )在椭圆2x 2+y 2=1上. 即l 1与l 2的交点在椭圆2x 2+y 2=1上.

法二 交点P 的坐标(x ,y )满足?????

y -1=k 1x ,

y +1=k 2x ,

故知x ≠0.

从而???

??

k 1=y -1

x ,k 2

=y +1x .

代入k 1k 2+2=0,得y -1x ·y +1x +2=0,

整理后,得2x 2+y 2=1.

所以交点P 在椭圆2x 2+y 2=1上.

第八篇 第2节

一、选择题

1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1

解析:由题意,设圆心(0,t ), 则

12+(t -2)2=1,得t =2,

所以圆的方程为x 2+(y -2)2=1,故选A. 答案:A

2.(2014郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )

A .x 2+y 2=32

B .x 2+y 2=16

C .(x -1)2+y 2=16

D .x 2+(y -1)2=16

解析:设P (x ,y ), 则由题意可得2

(x -2)2+y 2=

(x -8)2+y 2,

化简整理得x 2+y 2=16,故选B. 答案:B

3.(2012年高考陕西卷)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则() A.l与C相交B.l与C相切

C.l与C相离D.以上三个选项均有可能

解析:x2+y2-4x=0是以(2,0)为圆心,以2为半径的圆,而点P(3,0)到圆心的距离为d =(3-2)2+(0-0)2=1<2,

点P(3,0)恒在圆内,过点P(3,0)不管怎么样画直线,都与圆相交.故选A.

答案:A

4.(2012年高考辽宁卷)将圆x2+y2-2x-4y+1=0平分的直线是()

A.x+y-1=0B.x+y+3=0

C.x-y+1=0D.x-y+3=0

解析:由题知圆心在直线上,因为圆心是(1,2),

所以将圆心坐标代入各选项验证知选项C符合,故选C.

答案:C

5.(2013年高考广东卷)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()

A.x+y-2=0B.x+y+1=0

C.x+y-1=0D.x+y+2=0

解析:与直线y=x+1垂直的直线方程可设为x+y+b=0,由x+y+b=0与圆x2+y2

=1,故b=±2.因为直线与圆相切于第一象限,故结合图形分析知=1相切,可得|b|

12+12

b=-2,则直线方程为x+y-2=0.故选A.

答案:A

6.(2012年高考福建卷)直线x+3y-2=0与圆x2+y2=4相交于A、B两点,则弦AB 的长度等于()

A.25B.2 3

C.3D.1

|0+3×0-2|

=1,半径r=2,解析:因为圆心到直线x+3y-2=0的距离d=

12+(3)2

所以弦长|AB|=222-12=2 3.

故选B.

答案:B 二、填空题

7.(2013年高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.

解析:圆的方程可化为(x -3)2+(y -4)2=25, 故圆心为(3,4),半径r =5. 又直线方程为2x -y +3=0,

∴圆心到直线的距离为d =|2×3-4+3|

4+1=5,

∴弦长为2×25-5=220=4 5.

答案:4 5

8.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.

解析:因为圆C 的圆心(1,1)到直线l 的距离为 d =

|1-1+4|12

+(-1)

2

=22,

又圆半径r = 2.

所以圆C 上各点到直线l 的距离的最小值为d -r = 2. 答案: 2

9.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.

解析:∵圆C 的圆心在直线3x -y =0上, ∴设圆心C (m,3m ).

又圆C 的半径为1,且与4x -3y =0相切, ∴|4m -9m |5=1,

∴m =±1,

∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1. 答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1

10.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________. 解析:已知圆的圆心为(2,3),半径为1.

则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.

答案:x 2+(y -1)2=1 三、解答题

11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0. (1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;

(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程. (1)证明:法一 直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0, ∵Δ=4m 2+16(m 2+1)=20m 2+16>0,

∴对m ∈R ,直线l 与圆C 总有两个不同交点.

法二 直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5内部, ∴对m ∈R ,直线l 与圆C 总有两个不同交点. (2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ), 由方程(m 2+1)x 2-2mx -4=0, 得x 1+x 2=2m

m 2+1,

∴x =m

m 2+1

.

当x =0时m =0,点M (0,1),

当x ≠0时,由mx -y +1=0,得m =y -1

x ,

代入x =m m 2+1,得x ??????? ????y -1x 2+1=y -1

x ,

化简得x 2+????y -322=1

4. 经验证(0,1)也符合,

∴弦AB 的中点M 的轨迹方程为x 2+????y -322=1

4

.

12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;

(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.

解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.

(1)若直线l 与圆C 相切, 则有

|4+2a |a 2+1

=2.解得a =-3

4

.

(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得?????

|CD |=|4+2a |

a 2

+1,|CD |2

+|DA |2

=22

,|DA |=12

|AB |=2,解得a =-7,或a =-1.

故所求直线方程为7x -y +14=0或x -y +2=0.

第八篇 第3节

一、选择题

1.设P 是椭圆x 225+y 216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )

A .4

B .5

C .8

D .10

解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D. 答案:D

2.(2014唐山二模)P 为椭圆x 24+y 2

3=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2

=60°,则PF 1→·PF 2→

等于( )

A .3

B . 3

C .23

D .2

解析:由椭圆方程知a =2,b =3,c =1,

∴?

????

|PF 1|+|PF 2|=4,|PF 1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°

∴|PF 1||PF 2|=4.

∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.

答案:D

3.(2012年高考江西卷)椭圆x 2a 2+y 2

b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点

分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )

A.14 B .

55

C.12

D .5-2

解析:本题考查椭圆的性质与等比数列的综合运用. 由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c , |F 1B |=a +c ,

又|AF 1|,|F 1F 2|,|F 1B |成等比数列, 故(a -c )(a +c )=(2c )2, 可得e =c a =5

5.故应选B.

答案:B

4.(2013年高考辽宁卷)已知椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的左焦点为F ,C 与过原点的直

线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =4

5

,则C 的离心率为( )

A.35 B .57

C.45

D .67

解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos ∠ABF =100+64-2×10×8×4

5=36,

则|AF |=6,∠AFB =90°,

半焦距c =|FO |=12|AB |

=5,

设椭圆右焦点F 2, 连结AF 2,

由对称性知|AF 2|=|FB |=8, 2a =|AF 2|+|AF |=6+8=14, 即a =7, 则e =c a =57.

故选B. 答案:B

5.已知椭圆E :x 2m +y 2

4=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =

kx +1被椭圆E 截得的弦长不可能相等的是( )

A .kx +y +k =0

B .kx -y -1=0

C .kx +y -k =0

D .kx +y -2=0

解析:取k =1时,l :y =x +1.

选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等. 选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等. 选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等. 排除选项A 、B 、C ,故选D. 答案:D

6.(2014山东省实验中学第二次诊断)已知椭圆x 2a 2+y 2

b 2=1(a >b >0)的左、右焦点分别为

F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使a sin ∠PF 1F 2=c

sin ∠PF 2F 1,则该椭圆的离心率的取

值范围为( )

A .(0,2-1)

B .????

22,1

C.?

??

?0,

22 D .(2-1,1)

解析:由题意知点P 不在x 轴上, 在△PF 1F 2中,由正弦定理得

|PF 2|sin ∠PF 1F 2=|PF 1|

sin ∠PF 2F 1,

所以由

a sin ∠PF 1F 2=c

sin ∠PF 2F 1

可得a |PF 2|=c |PF 1|,

|PF 1||PF 2|=c

a

=e , 所以|PF 1|=e |PF 2|.

由椭圆定义可知|PF 1|+|PF 2|=2a , 所以e |PF 2|+|PF 2|=2a , 解得|PF 2|=

2a e +1

. 由于a -c <|PF 2|

e +1

即1-e <2

e +1

<1+e ,

也就是?????

(1-e )(1+e )<2,2<(1+e )2

解得2-1

∴2-1

7.设F 1、F 2分别是椭圆x 225+y 2

16=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,

|OM |=3,则P 点到椭圆左焦点距离为________.

解析:∵|OM |=3,∴|PF 2|=6, 又|PF 1|+|PF 2|=10, ∴|PF 1|=4.

答案:4

8.椭圆x 2a 2+y 2

b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与

椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.

解析:不妨设|F 1F 2|=1, ∵直线MF 2的倾斜角为120°, ∴∠MF 2F 1=60°.

∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3, 2c =|F 1F 2|=1. ∴e =c

a =2- 3.

答案:2- 3

9.(2014西安模拟)过点(3,-5),且与椭圆y 225+x 2

9=1有相同焦点的椭圆的标准方

程为________________.

解析:由题意可设椭圆方程为y 225-m +x 2

9-m =1(m <9),

代入点(3,-5), 得

525-m +3

9-m

=1, 解得m =5或m =21(舍去), ∴椭圆的标准方程为y 220+x 2

4=1.

答案:y 220+x 2

4

=1

10.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1

⊥PF 2→

.若△PF 1F 2的面积为9,则b =________.

解析:由题意得?????

|PF 1|+|PF 2|=2a ,

|PF 1|2+|PF 2|2=4c 2

∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2, 即4a 2-2|PF 1||PF 2|=4c 2,

∴|PF 1||PF 2|=2b 2,

∴S △PF 1F 2=1

2|PF 1||PF 2|=b 2=9,

∴b =3. 答案:3 三、解答题

11.(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2

b 2=1(a >b >0)的

左焦点为F 1(-1,0),且点P (0,1)在C 1上.

(1)求椭圆C 1的方程;

(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.

解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 1上,可得?????

a 2-

b 2=1,

b =1,

∴?????

a 2

=2,b 2=1.

故椭圆C 1的方程为x 22

+y 2

=1.

(2)由题意分析,直线l 斜率存在且不为0, 设其方程为y =kx +b ,

由直线l 与抛物线C 2相切得?????

y =kx +b ,

y 2=4x ,

消y 得k 2x 2+(2bk -4)x +b 2=0, Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.

由直线l 与椭圆C 1相切得?????

y =kx +b ,

x 22+y 2

=1,

消y 得(2k 2+1)x 2+4bkx +2b 2-2=0, Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0, 化简得2k 2=b 2-1.

①②联立得?

????

kb =1,

2k 2=b 2-1,

解得b 4-b 2-2=0, ∴b 2=2或b 2=-1(舍去), ∴b =2时,k =

22,b =-2时,k =-2

2

. 即直线l 的方程为y =

22x +2或y =-2

2

x - 2. 12.(2014海淀三模)已知椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的四个顶点恰好是一边长为2,一内

角为60°的菱形的四个顶点.

(1)求椭圆C 的方程;

(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△P AB 为等边三角形,求k 的值.

解:(1)因为椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的菱

形的四个顶点.

所以a =3,b =1, 椭圆C 的方程为x 23+y 2

=1.

(2)设A (x 1,y 1),则B (-x 1,-y 1),

当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴, y 轴与直线l :x +y -3=0的交点为P (0,3), 又因为|AB |=23,|PO |=3, 所以∠P AO =60°, 所以△P AB 是等边三角形, 所以直线AB 的方程为y =0, 当直线AB 的斜率存在且不为0时, 则直线AB 的方程为y =kx ,

所以?????

x 2

3+y 2=1,y =kx ,

化简得(3k 2+1)x 2=3, 所以|x 1|=

3

3k 2+1, 则|AO |=

1+k 2

3

3k 2+1

=3k 2+33k 2+1

.

设AB 的垂直平分线为y =-1

k

x ,

它与直线l :x +y -3=0的交点记为P (x 0,y 0),

所以?????

y =-x +3,y =-1

k x ,

解得?

????

x 0=

3k

k -1

,y 0

=-3

k -1.

则|PO |=

9k 2+9

(k -1)2

, 因为△P AB 为等边三角形, 所以应有|PO |=3|AO |, 代入得

9k 2+9

(k -1)2=33k 2+33k 2+1

解得k =0(舍去),k =-1. 综上,k =0或k =-1.

第八篇 第4节

一、选择题

1.设P 是双曲线x 216-y 2

20=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,

则|PF 2|等于( )

A .1

B .17

C .1或17

D .以上答案均不对

解析:由双曲线定义||PF 1|-|PF 2||=8, 又|PF 1|=9,

∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1, ∴|PF 2|=17. 故选B. 答案:B

2.(2013年高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2

sin 2

θ=1的( )

A .实轴长相等

B .虚轴长相等

C .离心率相等

D .焦距相等

解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=

cos 2θ+sin 2θ

=1,故选D.

答案:D

3.(2012年高考湖南卷)已知双曲线C :x 2a 2-y 2

b 2=1的焦距为10,点P (2,1)在C 的渐近线

上,则C 的方程为( )

A.x 220-y 2

5=1 B .x 25-y 2

20=1

C.x 280-y 2

20

=1 D .x 220-y 2

80

=1

解析:由焦距为10,知2c =10,c =5. 将P (2,1)代入y =b

a

x 得a =2b .

a 2+

b 2=

c 2,5b 2=25,b 2=5,a 2=4b 2=20, 所以方程为x 220-y 2

5=1.故选A.

答案:A

4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )

A.14

B .35

C.34

D .45

解析:∵c 2=2+2=4, ∴c =2,2c =|F 1F 2|=4,

由题可知|PF 1|-|PF 2|=2a =22, |PF 1|=2|PF 2|,

∴|PF 2|=22,|PF 1|=42,

由余弦定理可知cos ∠F 1PF 2=(42)2+(22)2-422×42×22=3

4.故选C.

答案:C

5.设椭圆C 1的离心率为5

13,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1

的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )

A.x 242-y 2

32=1 B .x 2132-y 2

52=1

C.x 232-y 2

4

2=1 D .x 2132-y 2

12

2=1

解析:在椭圆C 1中,因为e =5

13,2a =26,

即a =13,所以椭圆的焦距2c =10, 则椭圆两焦点为(-5,0),(5,0), 根据题意,可知曲线C 2为双曲线, 根据双曲线的定义可知, 双曲线C 2中的2a 2=8, 焦距与椭圆的焦距相同, 即2c 2=10, 可知b 2=3,

所以双曲线的标准方程为x 242-y 2

32=1.故选A.

答案:A

6.(2014福州八中模拟)若双曲线x 29-y 2

16=1渐近线上的一个动点P 总在平面区域(x -

m )2+y 2≥16内,则实数m 的取值范围是( )

A .[-3,3]

B .(-∞,-3]∪[3,+∞)

C .[-5,5]

D .(-∞,-5]∪[5,+∞)

解析:因为双曲线x 29-y 2

16=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+

y 2≥16内,即直线与圆相离或相切,所以d =|4m |

5≥4,解得m ≥5或m ≤-5,故实数m 的

取值范围是(-∞,-5]∪[5,+∞).选D.

答案:D 二、填空题

7.(2013年高考辽宁卷)已知F 为双曲线C :x 29-y 2

16=1的左焦点,P ,Q 为C 上的点.若

PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.

解析:由题知,双曲线中a =3,b =4,c =5, 则|PQ |=16, 又因为|PF |-|P A |=6, |QF |-|QA |=6,

所以|PF |+|QF |-|PQ |=12, |PF |+|QF |=28, 则△PQF 的周长为44. 答案:44

8.已知双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的

距离为1,则双曲线C 的方程为________.

解析:双曲线中,顶点与较近焦点距离为c -a =1, 又e =c

a =2,两式联立得a =1,c =2,

∴b 2

=c 2

-a 2

=4-1=3,∴方程为x 2

-y 2

3

=1.

答案:x 2

-y 2

3

=1

9.(2014合肥市第三次质检)已知点P 是双曲线x 2a 2-y 2

b 2=1(a >0,b >0)和圆x 2+y 2=a 2+

b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.

解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径, 故∠F 1PF 2=90°,∠PF 1F 2=30°, 设|PF 2|=m ,

则有|F 1F 2|=2m ,|PF 1|=3m , 该双曲线的离心率等于 |F 1F 2|||PF 1|-|PF 2||=2m

3m -m =3+1.

答案:3+1

10.(2013年高考湖南卷)设F 1,F 2是双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0)的两个焦点.若

在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.

解析:设点P 在双曲线右支上, 由题意,在Rt △F 1PF 2中, |F 1F 2|=2c ,∠PF 1F 2=30°, 得|PF 2|=c ,|PF 1|=3c , 根据双曲线的定义:

|PF 1|-|PF 2|=2a ,(3-1)c =2a , e =c a =2

3-1=3+1. 答案:3+1 三、解答题

11.已知双曲线x 2

-y 2

2

=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,

且点P 是线段AB 的中点?

解:法一 设点A (x 1,y 1),B (x 2,y 2)在双曲线上, 且线段AB 的中点为(x 0,y 0),

若直线l 的斜率不存在,显然不符合题意.

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

平面解析几何 经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角α的范围0 0180α≤< (2 )经过两点 的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ?=。特别地,当直线 12,l l 的斜率都不存在时,12l l 与的关系为平行。 (2)两条直线垂直 如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥?=- 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。 二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件 局限性 点斜式 为直线上一定点,k 为斜率 不包括垂直于x 轴的直线 斜截式 k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线 两点式 是直线上两定点 不包括垂直于x 轴和y 轴的直线 截距式 a 是直线在x 轴上的非零截距, b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线

一般式 A , B , C 为系数 无限制,可表示任何位置的直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是 ,两条直线的 交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解 就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。 2.几种距离 (1)两点间的距离平面上的两点 间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线 间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 注:斜率变化分成两段,0 90是分界线,遇到斜率要谨记,存在与否需讨论。 直线的参数方程 〖例1〗已知直线的斜率k=-cos α (α∈R ).求直线的倾斜角β的取值范围。 思路解析:cos α的范围→斜率k 的范围→tan β的范围→倾斜角β的取值范围。

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A . 13 B . 5 C . 23 D . 59 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2, 且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A . 6 3 B . 33 C . 23 D . 13 3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 5.【2015高考新课标1,理14】一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22 221()x y a b a b +=>>0的 右焦点,直线2 b y = 与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :22 22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,

解析几何专题含答案

椭圆专题练习 1.【2017,2】椭圆22 194 x y +=的离心率是 A . 13 B . 5 C . 23 D . 59 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2, 且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A . 6 B . 3 C . 2 D . 13 3.【2016高考理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段 PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 5.【2015高考新课标1,理14】一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 6.【2016高考卷】如图,在平面直角坐标系xOy 中,F 是椭圆22 221()x y a b a b +=>>0的右焦 点,直线2 b y = 与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :22 22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

解析几何解答题专练

解析几何解答题专练

19.(本小题14分) 已知椭圆G 的中心在坐标原点,焦点在x 轴上,且经过点)20 P ,和点 212Q ?-- ?? ,. (Ⅰ)求椭圆G 的标准方程; (Ⅱ)如图,以椭圆G 的长轴为直径作圆O ,过直线2-=x 上的动点T 作圆O 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆G 交于不同的两点C ,D ,求CD AB 的取值范围. 解:(Ⅰ)设椭圆G 的标准方程为22 221x y a b +=(0a b >>), 将点)20 P ,和点21Q ? - ? ? , 代入,得 22 2 2 11 12a a b ?=??+=??,解得 2221 a b ?=??=??. 故椭圆G 的标准方程为2 212 x y +=. (Ⅱ)圆2 C 的标准方程为2 22 x y +=, 设()1 1 ,A x y ,()2 2 ,B x y , 则直线AT 的方程为1 1 2x x y y +=,直线BT 的方程为2 2 2x x y y +=, 再设直线2-=x 上的动点()2,T t -(t R ∈),由点()2,T t -在直线AT 和BT 上,得

设1s m =(1 04s <≤) ,则AB CD = 设()3 1632f s s s =+-,则()()2 269661160 f s s s '=-=-≥, 故()f s 在10,4 ?? ?? ? 上为增函数, 于是()f s 的值域为(]1,2,CD AB 的取值范围是(. 19.(本小题满分14分) 已知椭圆C : 22 22 1(0)x y a b a b +=>> 离心率2 e = ,短轴长为. (Ⅰ)求椭圆C 的标准方程; (Ⅱ) 如图,椭圆左顶点为A , 过原 点O 的直线(与坐标 轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别 与y 轴 交于M ,N 两点.试问以MN 为直径的圆是否经过 定点(与直线PQ 的斜率无关)?请证明你的结论.

解析几何初步试题及答案

《解析几何初步》检测试题 命题人 周宗让 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12- C 、13 D 、13 - 3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( ) A .2 1 B .2 1- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y x B .032=--y x C .210x y ++= D .210x y +-= 6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( ) A .()0,4 B .()0,2 C .()2,4- D .()4,2- 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距

为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242 x y -++=的切线,则此切线段的长度为( ) A . 2 B .32 C .12 D . 2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点, 则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 12.直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N 两点, 若MN ≥则k 的取值范围是( ) A. 304?? -??? ?, B. []304??-∞-+∞????U ,, C. ???? D. 203?? -????, 二填空题:(本大题共4小题,每小题4分,共16分.) 13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的

解析几何练习题及答案

解析几何 一、选择题 1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是( ) A.3 B .-3 C.33 D .-33 解析:斜率k =-1-33- -3 =-33 ,故选D. 答案:D 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或1 解析:①当a =0时,y =2不合题意. ②a ≠0, x =0时,y =2+a . y =0时,x =a +2 a , 则a +2a =a +2,得a =1或a =-2.故选D. 答案:D 3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( ) A .4 B .21313 C. 51326 D .71020 解析:把3x +y -3=0转化为6x +2y -6=0, 由两直线平行知m =2, 则d =|1--6|62+22=71020. 故选D. 答案:D 4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -5=0 D .x +2y -5=0 解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所

以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C. 答案:C 5.若直线l :y =kx - 3 与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A.??????π6,π3 B .? ????π6,π2 C.? ?? ??π3,π2 D .???? ??π3,π2 解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l 的倾斜角 的取值范围为? ?? ?? π6,π2.故选B. 答案:B 6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0 D .x -2y +5=0 解析:直线2x +y -5=0的斜率为k =-2, ∴所求直线的斜率为k ′=1 2 , ∴方程为y -3=1 2(x -2),即x -2y +4=0. 答案:A 二、填空题 7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________. 解析:由题意知截距均不为零. 设直线方程为x a +y b =1,

解析几何试题及答案

解析几何 1.(21)(本小题满分13分) 设,点的坐标为(1,1),点在抛物线上运动,点满足,经 过点与轴垂直的直线交抛物线于点,点满足 ,求点的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由知Q,M,P三点在同一条垂直于x轴的直 线上,故可设 ① 再设 解得②,将①式代入②式,消去,得 ③,又点B在抛物线上,所以, 再将③式代入,得 故所求点P的轨迹方程为 2.(17)(本小题满分13分) 设直线 (I)证明与相交; (II)证明与的交点在椭圆 (17)(本小题满分13分)本题考查直线与直线的位置关系,线线相交的判断与证明,点在曲线上的判断与证明,椭圆方程等基本知识,考查推理论证能力和运算求解能力. 证明:(I)反证法,假设是l1与l2不相交,则l1与l2平行,有k1=k2,代入k1k2+2=0,得此与k1为实数的事实相矛盾. 从而相交. (II)(方法一)由方程组,解得交点P的坐标为,而 此即表明交点 (方法二)交点P的坐标满足, ,整理后,得 所以交点P在椭圆 .已知椭圆G:,过点(m,0)作圆的切线l交椭圆G于A,B两点。 (1)求椭圆G的焦点坐标和离心率; (2)将表示为m的函数,并求的最大值。 (19)解:(Ⅰ)由已知得所以 所以椭圆G的焦点坐标为,离心率为 (Ⅱ)由题意知,.当时,切线l的方程, 点A、B的坐标分别为此时 当m=-1时,同理可得 当时,设切线l的方程为 由;设A、B两点的坐标分别为,则; 又由l与圆

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

解析几何课后答案按

第1章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 §1.3 数量乘矢量 1.要使下列各式成立,矢量,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=-

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- 2. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以构成一个三角形. [证明]: )(21 AC AB AL += )(21 BM += 0= 3. 设L 、 [证明] 4. [证明] 但 OB OD OC OA OB OC OA OD +=+-=-∴=-=-= 由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD , ∴0=+=+OB OD OC OA , 从而OA=OC ,OB=OD 。

5. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB ++=4. [证明]:因为OM = 21 (OA +OC ), =2 1 (OB +), 所以 2=2 1 (OA +OB ++OD ) 所以 OA +OB ++OD =4OM . 6. [所以所以显然所以 1. [所以从而 OP =λ+1. 2. 在△ABC 中,设=1e ,AC =2e ,AT 是角A 的平分线(它与BC 交于T 点),试将分解为1e ,2e 的线性组合. 图1-5

高中数学解析几何解答题)

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点, 问E 、F 两点能否关于过点P (0, 3 3)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 解:(1)根据椭圆的几何性质,线段F 1F 2与线段B 1B 2互相垂直平分,故椭圆中心即为该四 点外接圆的圆心 …………………1分 故该椭圆中,22c b a == 即椭圆方程可为22222b y x =+ ………3分 设H (x,y )为椭圆上一点,则 b y b b y y x HN ≤≤-+++-=-+=其中,182)3()3(||22222…………… 4分 若30<

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

解析几何F答案

解析几何F答案

《解析几何》试题(F )答案 一、填空题:(每空2分,共30分) 1、 {} 36,45,48--; 2、 )3 ,3,3( 3 21321321z z z y y y x x x ++++++; 3、4 π或43π ,{}2,1,1-或{}2,1,1--; 4、15-; 5、)1,1,2(-; 6、01844-=-=-z y x 或0 1 241-= -=-z y x ; 7、3; 8、14 1arcsin ,)0,2,2(--; 9、 2; 10、双叶双曲面; 11、锥面; 12、椭圆抛物面; 13、旋转椭球面。 二、(本题16分) 解:(1)矢量设A 在矢量B 方向上的射影为 B B A A prj B ?= ,………………………………………… …………………………2 由于b a A 32+=,b a B -=,所以, 2 2 223),(cos 232))(32(b b a b a a b ab a b a b a B A -∠+=-+=-+=?, (2)

而 ) ,(cos 22))((2 2 222 b a b a b a ab b a b a b a B ∠-+=-+=--=, (2) 又由于1=a ,2=b ,3),(π=∠b a , 所 以 9 -=?B A , 3 2 =B ,…………………………………………… ………………..2 解 得 3 3-=A prj B 。………………………………………… ………………………….2 ( 2 ) 因 为 =?B A ),(sin 55)()32(b a b a a b b a b a ∠=?=-?+ (3) =353 sin 10=π。 所以以A 和B 为邻边的平行四边形的面积为 3 5。 (3) 三、(本题8分) 解:由于四面体的四个顶点为)0,0,0(A ,)6,0,6(B , )0,3,4(C 及)3,1,2(-D ,则以点)0,0,0(A 为始点,分别以点) 6,0,6(B ,)0,3,4(C 及)3,1,2(-D 为终点的矢量是 (1) {} 6,0,6=…………………………………………… (1)

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

解析几何大题带答案

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中, M 、N 分别是椭圆 12 42 2=+y x 的顶点,过坐标原点 的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,), 2,0(),0,2(,2,2--= =N M b a 故所以线 段MN 中点的坐标为)2 2 ,1(- -,由于直线PA 平分 线段MN ,故直线PA 过线段MN 的中点,又直 线PA 过坐标 原点,所以 .2 2122 =-- = k

解法二: 设) 0,(),,(,,0,0),,(),,(1112121 2 2 1 1 x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为2 1 ,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 )() (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y 因此.,11 PB PA k k ⊥-=所以 28. (北京理19) 已知椭圆 2 2:1 4 x G y +=.过点(m,0)作圆 221 x y +=的 切线I 交椭圆G 于A ,B 两点. (I )求椭圆G 的焦点坐标和离心率; (II )将AB 表示为m 的函数,并求AB 的最大值. (19)(共14分) 解:(Ⅰ)由已知得,1,2==b a 所以. 322--=b a c 所以椭圆G 的焦点坐标为) 0,3(),0,3(-

解析几何综合运用练习题含答案

学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知直线 1:210 l ax y ++=与直线2:(3)0 l a x y a --+=,若12//l l,则a 的值为() A.1 B.2 C.6 D.1或2 2.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与 直线x+y+3=0相切,则圆C的方程为( ) A.(x+1)2+y2=2 B.(x-1)2+y2=1 C.(x+1)2+y2=4 D.(x-2)2+y2=4 3.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆 过点(0,2),则C的方程为( ) A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 4.双曲线x21( ) A. B. m≥1 C.m>1 D. m>2

二、填空题(题型注释) 5.经过圆x 2+2x +y 2 =0的圆心C ,且与直线x +y =0垂直的直线方程是________. 6.已知抛物线y 2 =4x 的焦点F 恰好是双曲线22x a -2 2y b =1(a>0,b>0)的右顶点,且双曲线的渐近线方程为y =±3x ,则双曲线方程为________. 三、解答题(题型注释) 7.已知点A(3,3),B(5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程. 8.如图,在直角坐标系中,已知△PAB 的周长为8,且点A ,B 的坐标分别为(-1,0),(1,0). (1)试求顶点P 的轨迹C 1的方程; (2)若动点C(x 1,y 1)在轨迹C 1上,试求动点Q 11,322x y ?? ??? 的轨迹C 2的方程.

解析几何第四版吕林根课后习题答案定稿版

解析几何第四版吕林根 课后习题答案精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

第三章 平面与空间直 线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。

(ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式: 042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B -- , 从而平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面?

相关主题
文本预览
相关文档 最新文档