当前位置:文档之家› 液压缸结构设计

液压缸结构设计

液压缸结构设计
液压缸结构设计

本科生毕业设计(论文)开题报告论文题目: HSG螺纹式连接液压缸结构设计

学院:

专业班级:

学生姓名:

学号:

导师姓名:

开题时间:20** 年4月23日

一.课题的背景及意义

液压传动元件以其功率大,安装布置简便,易于受控,操作方便舒适,故障率低,便于维护等优点,非常适于结构形态多变,工作条件恶劣的农业机械的应用。几十年来,液压技术不仅在农机,机床,工程机械,建筑机械,航天航空设备等得到越来越多的应用,而且形成了庞大的市场。全世界液压元件市场销售额已超过二百亿美元,我国液压行业产值已近80亿人民币。按其重要程度计算,在国外发达国家,农机用液压元件市场份额始终属于前5名,我国农机用液压元件需求量在四百万件以上,在国内各行业中,数量最多。进入二十一世纪,液压技术在农机上的应用,呈现出快速发展的势头。

国外发达国家在农业现代化装备上广泛应用电子,液压,新型材料等高技术,进一步提高了农机的操纵性、舒适性、方便性和智能化水平,保护农业生态环境,为精确农业提供新的装备。

我国在“十五”期间,将以实现水稻、玉米生产全过程机械化的田间作业机械、节水装备、农用配套动力和关键部件及农用运输等几个领域产品为发展的重点,进行共性关键技术攻关,包括拖拉机,联合收割机动力换档及静液压驱动技术,联合收割机电液自动化作业监测技术与控制技术。

我国到2005年,60%以上的重要农机产品达到国际80年代末期水平,新开发的品种70%以上达到国际90年代水平,拖拉机,联合收割机等重要产品平均无故障间隔时间接近国际80年代后期及90年代初期水平,到2015年,农机综合技术水平基本接近当时的国际水平,这样,液压技术在农机上的应用,得到了契机。

综上所述,在新世纪中,我国液压机械行业将有明显的进步,液压技术在农机上的应用将显出强大的生命力,为提高农机产品的技术含量,缩小与国外的差距作出重要贡献。

液压传动技术不仅用于传统的机械操纵、助力装置,也用于机械的模拟加工、转速控制、发动机燃料进给控制,以及车辆动力转向、主动悬挂装和制动系统,同时,也扩展到航空航天和海洋作业等领域。而液压油缸是液压传动中将液体的压力能转换成机械能,实现往复直线运动或往复摆动的执行元件,被广泛应用于各种液压机械设备中。液压油缸的设计合理性、制造质量,直接影响整个液压机械设备的的使用状态,乃至整个生产系统的正常运行和生产的安全性。所以,液压油缸的合理化设计具有重要的现实意义。

1.课题的国内外研究动态、目前的水平及发展趋势

液压油缸也是基于以密闭容器中的静压力传递力和功率这一原理实现工作目的的。目前以其可实现大范围的无级调速、体积小、质量轻、结构紧凑、惯性小,易于实现自动化、过载保护以及良好的标准化、系列化、通用化特点广泛应用工程领域。当前正继续向着以下几个方面发展:

(1)节能

近年来,由于世界能源的紧缺,各国都把液压传动的节能问题作为液压技术发展的重要

课题。20世纪70年代后期,德、美等国相继研制成功负载敏感泵及低功率电磁铁等。最近美国威克斯公司又研制成功用于功率匹配系统的CMX阀。

(2)与微电子、计算机技术结合

20世纪80年代以来,逐步完善和普及的计算机控制技术和集成传感技术为液压技术与电子技术相结合创造了条件。随着微电子、计算机技术的发展,出现了各种数字阀和数字泵,并出现了把单片机直接装在液压组件上的具有位置或力反馈的闭环控制液压元件及装置。

(3)运行的可靠性

由于有限元法在液压元件设计中的应用,可靠性实验、研究工作的广泛开展以及新材料、新工艺的发展等,使液压元件的寿命得到提高。由于对飞机、船舶、冶金等一些重要液压系统采用多裕度设计,并在系统中设置旁路净化回路及具有初级智能的自动故障检测仪表等,加强了油液的污染度控制。上述领域内的一些重要成果,使液压系统的可靠性逐年提高。

(4)高度的集成化

把叠加阀、集成块、插装阀以及各种控制阀集成于液压泵及液压执行元件上形成组合元件,有些还把单片机等集成在其控制机构上,达到了集机、电、液于一体的高度集成化。

(5)高压、低躁声、提高密封性能等

高压、高转速、低噪声组件的研究,高效滤材的研究,环保型工作介质及其相应高压液压组件的研究等也是值得注意的动向。

2.课题研究的目的、意义及工作设想

合理、正确的设计液压油缸是设计和制造液压设备的基础和保证,同时,也是很好的对整个学习期间专业知识的总结,提高对专业知识的综合利用能力为在实际的工作岗位上打下坚实的专业基础。

3.液压传动的优缺点

一、优点

(1)传动平稳在液压传动装置中,由于油液的压缩量非常小,在通常压力下可以认为不可压缩,依靠油液的连续流动进行传动。油液有吸振能力,在油路中还可以设置液压缓冲装置,故不像机械机构因加工和装配误差会引起振动扣撞击,使传动十分平稳,便于实现频繁的换向;因此它广泛地应用在要求传动平稳的机械上,例如磨床几乎全都采用了液压传动。

(2)质量轻体积小液压传动与机械、电力等传动方式相比,在输出同样功率的条件下,体积和质量可以减少很多,因此惯性小、动作灵敏;这对液压仿形、液压自动控制和要求减轻质量的机器来说,是特别重要的。例如我国生产的1m3挖掘机在采用液压传动后,比采用机械传动时的质量减轻了1t。

(3)承载能力大液压传动易于获得很大的力和转矩,因此广泛用于压制机、隧道掘进机、万吨轮船操舵机和万吨水压机等。

(4)容易实现无级调速在液压传动中,调节液体的流量就可实现无级凋速,并且凋速范围很大,可达2000:1,很容易获得极低的速度。

(5)易于实现过载保护液压系统中采取了很多安全保护措施,能够自动防止过载,避免发生事故。

(6)液压元件能够自动润滑由于采用液压油作为工作介质,使液压传动装置能自动润滑,因此元件的使用寿命较长。

(7)容易实现复杂的动作采用液压传动能获得各种复杂的机械动作,如仿形车床的液压仿形刀架、数控铣床的液压工作台,可加工出不规则形状的零件.

(8)简化机构采用液压传动可大大地简化机械结构,从而减少了机械零部件数目。

(9)便于实现自动化液压系统中,液体的压力、流量和方向是非常容易控制的,再加上电气装置的配合,很容易实现复杂的自动工作循环。目前,液压传动在组合机床和自动线上应用得很普遍。

(10)便于实现“三化”液压元件易于实现系列比、标准化和通用化.也易于设计和组织专业性大批量生产,从而可提高生产率、提高产品质量、降低成本。

二、缺点

(1)液压元件制造精度要求高由于元件的技术要求高和装配比较困难,使用维护比较严格。

(2)实现定比传动困难液压传动是以液压油为工作介质,在相对运动表面间不可避免的要有泄漏,同时油液也不是绝对不可压缩的。因此不宜应用在在传动比要求严格的场合,例如螺纹和齿轮加工机床的传动系统。

(3)油液受温度的影响由于油的粘度随温度的改变而改变,故不宜在高温或低温的环境下工作。

(4)不适宜远距离输送动力由于采用油管传输压力油,压力损失较大,故不宜远距离输送动力。

(5)油液中混入空气易影响工作性能油液中混入空气后,容易引起爬行、振动和噪声,使系统的工作性能受到影响。

(6)油液容易污染油液污染后,会影响系统工作的可靠性。

(7)发生故障不易检查和排除。

二.毕业设计的内容及任务

1.设计思想

基于以密闭容器中的静压力传递力和功率这一原理,结合实际工作中的工况条件和要求,在完成了工况分析、负载计算以及选定工作压力的基础上进行设计。液压传动是利用帕斯卡原理,即在密闭容积内,施加在静止液体边界上的压力,在液体内可以向所有方向等值地传递到液体各点。

液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。

在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。

2.设计方案

(1)整理有关方面的资料,根据使用要求确定结构形式和安装方式。

(2)根据负载情况、运动速度、最大行程和工作压力等要求计算出主要结构尺寸。

1.结构尺寸的确定原则

液压缸已有系列标准可供选用,但有时还需自行设计一些非标准液压缸。液压缸的结构尺寸与主机的工作机构有直接关系,其设计是在完成了工况分析、负载计算以及选定了工作

压力的基础上进行的。

2.缸筒内径的确定

对于活塞杆液压缸,计算缸筒内径D 时,通常有两种计算方法,一种是根据液压缸需要生产的推力F 和系统选定的工作压力p 来计算(设回油压力为零),计算式为

3

10D -= (4—14)

另一种方法是根据运动速度v 和输入流量q 来确定刚通内径D ,计算式为

D = (4—15)

式中 m η、v η—液压缸的机械效率及容积效率。

按式(4—14)或(4—15)计算出缸筒内径D 后,还要根据GB/T2348—1993加以圆整。一般设计缸筒内径采用前一种方法,后一种方法用来校核所设计缸筒内径能否满足最低工作进给的速度要求。

3.活塞杆直径的确定

活塞杆直径d 的计算方法,通常是在缸筒内径D 已确定,在满足一定速度比

?的情况

下,来确定活塞杆的直径d ,其计算式为

d = (4—16) 按式(4—16)计算出活塞杆的直径d 后,再按标准进行圆整,然后按其结构强度和稳定性进行校核。

4.其他结构尺寸按照使用情况确定

液压缸行程L 主要根据执行机构的运动要求而定。为了简化工艺、降低成本、增加产品通用性,应尽量采用国家标准规定的标准系列值(参看GB/T2349—1980)。

当活塞杆全部外伸时,从活塞支撑面中点到导向滑动面中点的距离H 称为液压缸的最小导向长度,对于一般液压缸,其最小导向长度由下式确定,即

202L D H ≥

+ (4—17)

式中L —液压缸的最大行程;

D —缸筒内径。 活塞的宽度B 一般取0.6D~1D ;端盖滑动支撑面长度l 1根据内径确定,即

当D>80mm 时,取l 1=(0.6~1)D

当D<80mm 时,取l 1=(0.6~1)d

为保证最小导向长度,过分加大B 及l 1都是不可取的,必要时可以在活塞与导向滑动

面之间装隔环,隔环宽度C 由下式确定,即

()112C H l B =-

+ (4—18)

(3)对部分零件进行强度、刚度和稳定性验算并进行缓冲计算

1.缸筒壁厚强度计算及校核

液压缸直径D 确定后,其壁厚由强度条件来确定,壁厚强度计算有两种情况。

1)按薄壁筒公式计算

对于低压系统或当缸径D 与壁厚δ的比值D/δ≥12.5时,一般按薄壁圆筒计算,即

[]2yD p δσ≥

(4—19) 式中p y —试验压力。当工作压力p≤16MPa 时,p y =1.5p ;当压力p >16MPa 时,p y =1.25p ;

[σ]—缸筒材料的许用应力,[σ]= σb /n ,σb 为缸筒材料的抗拉强度,n 为安全系数,一般取n=5.

2)按后壁圆筒公式计算

对于中高压系统或当缸径D 与壁厚δ的比值D/δ<3.2时,一般按后壁筒计算。若缸筒由塑性材料制造,缸筒壁厚应按第四强度理论计算,即

12D δ??≥?? (4—20) 若缸筒由脆性材料制造,缸筒壁厚应按第二强度理论计算,即

12D δ??≥?? (4—21)

2.活塞杆强度及稳定性校核 活塞杆全部伸出时,活塞杆顶端至液压缸支撑点之间的距离称为计算长度l ,其值与液压缸的安装形式有关。根据计算长度l 与活塞杆直径d 的不同比值,应对活塞杆进行不同项目的校核。

当计算长度与活塞杆直径d 之比l/d <10时,属于短行程液压缸,主要校核其拉压强度。 当活塞杆受压时,若计算长度与活塞杆直径d 之比l/d >10,容易出现不稳定状态,发生纵向弯曲破坏,这时必须进行活塞杆的稳定性校核。活塞杆所能承受的符合应满足以下条件,即

k k

F F n ≤ (4—22)

式中k n —安全系数,一般取k n =2~4,冲击载荷较大时k n 还可取大一些;

k F —液压缸活塞杆产生纵向弯曲丧失稳定时的临界负荷。

当细长比

k F 用欧拉公式计算,即

22k n EJ F l

π= (4—23) 式中K —

活塞杆截面的回转半径,K =

J —活塞杆截面的转动惯量;

A —活塞杆截面积;

m —柔性系数;

n —末端系数;

E —活塞杆材料的弹性模量。

当细长比l/K <

k F 用戈登—兰金公式计算,即 211c k f A

F a n K =??+ ??? (4—24)

式中c f —材料强度实验值,按表4-2选取;

a —实验常数。

此外还应对螺纹联接强度、卡环联接强度、焊接联接强度和液压缸的制动和缓冲装置进行计算,使所设计的液压缸满足使用要求。

(4)结合注意事项完成结构设计。

设计中与计算中应注意的问题

1)液压缸结构形式的选择关系到液压缸的具体结构设计和性能设计,因此必须根据系统设计要求,对不同形式的液压缸进行充分分析和对比,然后参考同类设备使用情况来确定。

2)在保证实现设计要求的前提下,应使液压缸外形尺寸尽可能小。

3)应尽量使活塞杆在受拉状态下承受最大负载,但一般情况活塞杆多在受压状态下工作。因此,为避免产生纵向弯曲,应保证液压缸在受压状态下具有良好的稳定性。

4)具体结构设计要按照推荐的结构形式进行,尽量采用标准件,结构尽可能简单,且便于加工、装配和维修。

5)不一定所有液压缸都要设置缓冲和排气装置,应根据具体情况和要求而定,有时可在系统中考虑。

6)确定液压缸安装固定形式时,必须考虑到缸筒和活塞杆受热后会伸长的问题。因此,定位销只能打在液压缸一端的两侧;双杆活塞缸的活塞杆与运动部件不能采用刚性连接。(5)整理设计说明书,绘制有关图纸,整理有关设计资料、材料。

3.课题研究拟采用的方法和手段

采用单活塞杆式液压缸的设计形式,以液压传动的基础知识为指导,结合力学分析、计算、校核方法,绘图以CAD完成。

1.主要零部件强度校核

2.缸筒壁厚强度计算及校核

3.活塞杆强度及稳定性校核及缓冲计算

设计主要尺寸图纸

(1)油缸装备图一张 ---------- 0号图纸

(2)活塞杆零件图一张-------- 1号图纸

(3)活塞组件图一张 ---------- 2号图纸

(4)零件图一张 ---------- 1号图纸

(5)油缸缓冲装置组件图一张---------- 1号图纸

(6)油缸密封压盖零件图一张----------3号图1张

(7)油缸放气阀组件图一张----------3号图1张

(8)油缸缓冲装置针形阀组件图一张----------3号图1张

4.预计毕业设计课题的最终目标及达到的水平

实现有关液压油缸的高品质设计,要求其使用性能的提高,参数明确合理,应用专业知识系统,并能提高对液压油缸的认识。

三.毕业设计工作计划及进度安排

第1周明确设计任务,根据课题要求查阅资料,借参考书;

第2周写开题报告,查阅相关外文资料;

第3周选择并确定外文翻译内容,进行外文翻译;

第4周资料整理完成开题报告

第5周检查开题报告;并继续外文翻译;

第6周检查外文翻译;

第7周熟悉零件结构;

第8周熟悉绘图软件的使用;

第9周上交开题报告,外文翻译

第10周进行整体方案及总体结构设计

第11周进行整体方案及总体结构设计计算

第12周校合尺寸,开始准备画图

第13周整体修改整理图纸;

第14周撰写设计计算说明书;

第15周修改整理设计计算说明书;

第16周修改、整理、排版、打印、装订;

第17周教师评阅,准备答辩。

四.参考文献

[1]陈立德.机械制造装备设计.北京.高等教育出版社,2006

[2]王先逵.机械制造工艺学.北京.机械工业出版社,2006

[3]吴宗泽.机械设计师手册. 北京:机械工业出版社,2002

[4]王章忠.机械工程材料. 北京:机械工业出版社,2001

[5]李益民.机械制造工艺设计简明手册. 北京:机械工业出版社,2005

[6]戴亚春.机械制造工艺实习指导书. 北京:化学工业出版社,2007

[7]何庆.机械制造专业毕业设计指导. 北京:化学工业出版社,2008

[8]黄如林等.金属加工工艺及工装设计. 北京:化学工业出版社,2006

摘要

液压缸是液压系统中最广泛应用的一种液压执行元件。液压缸是将液压泵输出的压力能转换为机械能的执行元件,它主要是用来输出直线运动。

液压传动和液力传动均是以液体作为工作介质来进行能量传递的传动方式。液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。由于液压传动有许多突出的优点,因此,它被广泛地应用于机械制造、工程建筑、石油化工、交通运输、军事器械、矿山冶金、轻工、农机、渔业、林业等各方面。同时,也被应用到航天航空、海洋开发、核能工程和地震预测等各个工程技术领域。

本文对液压缸参数化设计方法进行深入系统的研究,建立液压缸CAD原型软件系统,主要研究成果如下: 1.系统分析液压缸工作原理的基础上,归纳了液压缸的工作形式及主要安装形式。在分析液压缸主要部件结构特点的基础上,建立了基于装配的面向对象液压缸产品设计模型; 2.研究面向制造的产品特征建模技术,基于产品建模方法和面向对象技术,建立了基于特征的液压缸产品模型。研究了适用于液压缸参数化设计的标准件库建模方法及数据库建模技术,并据此建立了液压缸参数化数据库模型及基于装配的液压缸参数化模型; 3.建立液压缸参数化CAD系统模型,基于商用CAD软件,开发了液压缸参数化CAD软件原型系统。

关键词:液压缸;液压泵;液压传动;液力传动

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

工况负载组成负载值F 工况负载组成负载值F 启动981 保压3150×103加速537 补压3150×103快速491 快退+G 10301 按上表绘制负载图如图***所示。 F/N v/mm s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

一、液压传动课程设计的目的: 1、综合运用《液压传动》课程及其它先修课程的理论和工程实际知识,以课程设计为载体,通过液压功能原理及液压装置的设计实践,使理论和工程实际知识密切地结合起来,从而使这些知识得到进一步巩固、加深和扩展,并培养分析和解决工程实际问题的设计计算能力。 2、使学生掌握根据设计题目搜集有关设计资料和文献的一般方法和途径,提高学生综合利用设计资料的能力,为独立从事液压传动设计建立良好的基础。 3、在设计实践中学习和掌握方案论证及拟定方法,掌握液压回路的组合方法及 液压元件的选用原则、结构形式,深化对液压系统设计特点的认识和了解。二、液压课程设计题目:

设计一台上料机液压系统,要求驱动它的液压传动系统完成快速上升→慢速上升→停留→快速下降的工作循环。其结构示意图如图1所示。其垂直上升工作的重力为N 7000,滑台的重量为N 5000,快速上升的行程为mm 450,其最小速度为s mm /55;慢速上升行程为mm 200,其最小速度为mm/s 13;快速下降行程为 mm 450,速度要求mm/s 55。滑台采用V 型导轨,其导轨面的夹角为 90,滑台 与导轨的最大间隙为mm 2,启动加速与减速时间均为s .50,液压缸的机械效率(考 虑密封阻力)为0.9。

目录 1 前言 (1) 2 负载分析 (2) 2.1 负载与运动分析 (2) 2.2 负载动力分析 (2) 2.3负载图和速度图的绘制 (5) 3 设计方案拟定 (7) 3.1液压系统图的拟定 (7) 3.2 液压系统原理图 (8) 3.3 液压缸的设计 (8) 4 主要参数的计算 (12) 4.1 初选液压缸的工作压力 (12) 4.2 计算液压缸的主要尺寸 (12) 4.3活塞杆稳定性校核 (13) 4.4计算循环中各个工作阶段的液压缸压力,流量和功率 (13) 5 液压元件的选用 (15) 5.1确定液压泵的型号及电动机功率 (15) 5.2选择阀类元件及辅助元件 (16) 1

目录 0.摘要 (1) 1.设计要求 (2) 2.负载与运动分析 (2) 2.1负载分析 (2) 2.2快进、工进和快退时间 (3) 2.3液压缸F-t图与v-t图 (3) 3.确定液压系统主要参数 (4) 3.1初选液压缸工作压力 (4) 3.2计算液压缸主要尺寸 (4) 3.3绘制液压缸工况图 (5) 4.拟定液压系统的工作原理图 (7) 4.1拟定液压系统原理图 (7) 4.2原理图分析 (8) 5.计算和选择液压件 (8) 5.1液压泵及其驱动电动机 (8) 5.2阀类元件及辅助元件的选 (10) 6.液压系统的性能验算 (10) 6.1系统压力损失验算 (10) 6.2系统发热与温升验算 (11) 7.课设总结 (12)

0.摘要 液压传动技术是机械设备中发展最快的技术之一,特别是近年来与微电子、计算技术结合,使液压技术进入了一个新的发展阶段,机、电、液、气一体是当今机械设备的发展方向。在数控加工的机械设备中已经广泛引用液压技术。作为机械制造专业的学生初步学会液压系统的设计,熟悉分析液压系统的工作原理的方法,掌握液压元件的作用与选型是十分必要的。 液压传动在国民经济的各个部门都得到了广泛的应用,但是各部门采用液压传动的出发点不尽相同:例如,工程机械、压力机械采用液压传动的主要原因是取其结构简单、输出力大;航空工业采用液压传动的主要原因取其重量轻、体积小;机床上采用液压传动的主要原因则是取其在工作过程中能无级变速,易于实现自动化,能实现换向频繁的往复运动等优点。 关键词:钻孔组合机床卧式动力滑台液压系统

1.设计要求 设计一台卧式钻孔组合机床的液压系统,要求完成如下工作循环式:快进→工进→快退→停止。机床的切削力为25000N ,工作部件的重量为9800N ,快进与快退速度均为7m/min ,工进速度为0.05m/min ,快进行程为150mm ,工进行程40mm ,加速、减速时间要求不大于0.2s ,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1 。要求活塞杆固定,油缸与工作台连接。设计该组合机床的液压传动系统。 2.负载与运动分析 2.1负载分析 (1)工作负载: T F =25000N (2)摩擦负载: 摩擦负载即为导轨的摩擦阻力 静摩擦阻力:Ffs = 0f ?G=1960N 动摩擦阻力:Ffd =d f ?G=980N (3)惯性负载:Fa = t v g G ??=500N (4)液压缸在个工作阶段的负载。 设液压缸的机械效率cm η =0.9,得出液压缸在各个工作阶段的负载和推力,如表1所示。 表1液压缸各阶段的负载和推力 工况 计算公式 外负载F/N 液压缸推力 F0= F / cm η/N 启动 F=Ffs 1960 2178 加速 F=Ffd +Fa 1480 1644 快进 F=Ffd 980 1089 工进 F=Ffd +T F 25980 28867 反向启动 F=Ffs 1960 2178 加速 F=Ffd +Fa 1480 1644 快退 F=Ffd 980 1089

液压油缸主要几何尺寸的计算: 上图中各个主要符号的意义: 错误!未找到引用源。— 液压缸工作腔的压力(Pa ) 错误!未找到引用源。— 液压缸回油腔的压力(Pa ) 错误!未找到引用源。—液压缸无杆腔工作面积 错误!未找到引用源。—液压缸有杆腔工作面积 D —液压缸内径 d —活塞杆直径 F — 液压缸推力 (N ) v —液压缸活塞运动速度 液压缸内径D 的计算 根据载荷力的大小和选定的系工作统压力来计算液压缸内径D 。液压缸内径D 和活塞杆直径d 可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时: ()212 1212 4F d p D p p p p π=---有杆腔进油并不考虑机械效率时: ()221 1212 4F d p D p p p p π=+--

一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时 D = 有杆腔进油时: D = 设计调高油缸为无杆腔进油。 所以,216.91D mm = ==,按照GB/T2348-2001对液压缸内径进行圆整,取错误!未找到引用源。,即缸内径可以取为mm 250。 2.2活塞杆直径d 的计算 在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根 据液压缸速度比2 1v v v =λ的要求已经缸内径D 来确定。其中,活塞杆直径与缸内 径和速度比之间的关系为: d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比 液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几 种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。 v λ 1.15 1.25 1.33 1.46 2 d 0.36D 0.45D 0.5D 0.56D 0.71D 液压缸往复速度比v λ推荐值如下表所示:

文章编号 :1008-1402(2006 04-0524-05 一种双作用多级液压缸的设计与应用 臧克江 , 蒲红 , 李彩花 , 胡晓平 (佳木斯大学机械工程学院 , 黑龙江佳木斯 154007 摘要 :通过对一种双作用多级液压缸伸缩过程的分析 , 弄清了影响此种双作用多级液压缸动作顺序的几何要素和系统的力学要素 , 确定了此种双作用多级液压缸设计原则及液压缸正常工作的条件 , 为此种双作用多级液压缸的设计及应用提供了理论依据 . 关键词 :液压 ; 双作用 ; 多级缸 中图分类号 : TH137文献标识码 : A 根据工作要求设计了如图 1所示的液压系统 . 系统由变量泵供油 , 三位四通换向阀控制液压缸的伸缩 , 液控单向阀保证液压缸伸缩停在任意位置 , 通过单向节流阀调节液压缸缩回速度 , 电磁溢流阀实现系统的调压和卸荷

. 图 1液压系统原理图 在系统调试过程中发现 , 液压缸活塞外伸时 , 按照先大后小的顺序 , 而在液压缸活塞回缩时本应 该按先小后大的顺序时 , 可是出现按先大后小的顺序 . 如果在回缩过程中三位四通换向阀电磁铁失电 , 使三位四通换向阀处中立位置 , 出现大活塞快速外伸 , 小活塞杆快速回缩 , 负载急剧下落 , 不能保证负载回落时停在任意位置的要求 , 实质上此系统不能正常工作 . 本文对此系统出现的现象进行了研究 , 提出了多级双作用液压缸设计及使用时应注意的事项 . 1液压缸结构设计 由于系统对负载的运动速度没有过多要求 , 只是对推力和行程有要求 , 因此本系统参考文献 [1]对液压缸进行了机构设计 , 其机构简图如图 2(a 所示 . 此液压缸为

课程设计说明书(液压油缸的压力和速度控制)

目录 1、设计课题 (3) 1.1设计目的 (3) 1.2设计要求 (3) 1.3设计参数 (3) 1.4设计方案 (3) 2、设计方案 (4) 2.1工况分析 (4) 2.2拟定液压系统 (6) 3、机械部分计算 (9) 3.1液压缸的设计计算 (9) 3.2液压缸的校核计算 (12) 3.3液压缸结构设计 (15) 3.4选择液压元件 (17) 4 、系统的验算 (20) 4.1.压力损失的验算 (20) 4.2 系统温升的验算 (21) 5、电气部分设计 (23) 5.1控制系统基本组成 (23) 5.2PLC控制系统的流程图 (24)

1 设计课题 1.1设计目的 通过课程设计培养学生综合运用所学知识和技能、提高分析和解决实际问题能力的一个重要环节,专业课程设计是建立在专业基础课和专业方向课的基础上的,是学生根据所学课程进行的工程基本训练,课程设计的目的在于: 1、培养学生综合运用所学的基础理论和专业知识,独立进行机电控制系统(产品)的初步设计工作,并结合设计或试验研究课题进一步巩固和扩大知识领域。 2、培养学生搜集、阅读和综合分析参考资料,运用各种标准和工具书籍以及编写技术文件的能力,提高计算、绘图等基本技能。 3、培养学生掌握机电产品设计的一般程序和方法,进行工程师基本素质的训练。 4、树立正确的设计思想及严肃认真的工作作风。 1.2设计要求 执行元件:液压油缸; 传动方式:电液比例控制; 控制方式:PLC控制; 控制要求:速度控制; 控制精度:0.01 1.3设计参数 油缸工作行程——600 mm; 额定工作油压——6.5MPa; 移动负载质量——1000 kg; 负载移动阻力——5000 N; 移动速度控制——0.2m/s; 1.4设计方案 利用设计参数和控制要求设计出液压油缸,进而设计出液压系统,通过PLC 对液压油缸进行速度控制。

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结构具体分析。 3.2.1 缸体组件 ?

缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,

但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。 ? (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。 3.2.1.2 缸筒、端盖和导向套的基本要求 ?缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为20000N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的部压力损失,以减少功率损失。主要表现在改进元件部流道的

压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,通过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化可以提高工作可靠性,实现液压系统柔性化、智能化,改变液压系统效率低,漏油、维修性差等缺点,充分发挥液压传动出力大、贯性小、响应快等优点,其主要发展动向如下:[1]

河南理工大学机械学院 课程设计说明书 题目名称:单柱压力机的液压缸设计 学院:机械与动力工程学院 班级:机电11-1 姓名:邱晓 学号: 311104001017 指导教师:刘俊利

目录 一、课程设计的目的及要求…………………………………… 二、课程设计内容及参数确定………………………………… 三、液压缸主要尺寸的确定……………………………………… 四、液压缸的密封设计………………………………………… 五、支承导向的设计…………………………………………… 六、防尘圈的设计……………………………………………… 七、液压缸材料的选用………………………………………… 八、课程设计总结……………………………………………… 九、参考文献………………………………………………………

说明书 一、课程设计的目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门,如:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人,火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以,研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式 不必进行推导,但应注明公式中各符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。

农机用多级液压缸 自卸汽车用多级液压缸有TG、TMG和TSG三个系列。其中TG系列为单位用式(图9)、TMG系列为末级双作用式(图10)、TSG系列为双作用式多级液压缸(图11)。适用于工程及矿山用自卸汽车和特种车辆车厢的后卸、侧卸和三向卸。 (1)型号说明 4 TG-E 150×1500 EQ ①② ③④ ⑤ ⑥ ①伸出级数:4级 ②液压缸型式 TG----单作用式多级液压缸 TMG----末级双作用式多级液压缸 TSG----双作用式多级液压缸 ③压力级 E---16Mpa ④伸出套筒最大外径(mm) ⑤总行程(mm) ⑥安装方式 EQ----上端球铰,下端耳环 EE----两端耳环 QQ----两端球铰 ZQ----上端秋铰,中部耳轴 1-弹性圆柱销;2-卡环;3-油杯;4-孔用弹性挡圈;5-关节轴节;6-下连接头;7-密封垫;8-铰接螺栓;9-铰接管接头;10-轴用弹性挡圈;11-导向环;12-缸筒;13、14、15-1-3

级套筒;16-柱塞;17-挡圈;18-O形密封圈;19-防尘圈;20-上连接头;21-锁紧钢丝 1-油杯;2-关节轴承;3-下连接头;4-内油管;5-防尘圈;6-O形密封全;7-外缸;8-一级缸;9-二级缸;10-中间铰轴;11-活塞环;12-支承环;13-挡圈;14-缸盖 1-孔用弹性挡圈;2-关节轴承;3-O形密封圈;4-钢丝档圈;5-支承环;6-后端盖;7-锁紧钢丝;8-Y形密封圈;9-活塞环;10-缸筒;11-一级活塞;12-二级活塞;13-三级活塞;14-内油管;15-防尘圈;16-连接头 (2)性能参数 TG系列多级液压缸的套筒(柱塞)外径分别为60,80,100,120,150,180和210mm共七种;伸出级数为2~6级;单级行程125~1500mm共16个行程等级(符合国家标准GB2349-80);额定压力16MPa.

液压缸的设计计算-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

液压缸的设计计算 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。

(此文档为word格式,下载后您可任意编辑修改!) 毕 业 设 计 液压缸的设计 姓名:_______________ 学号:_______________ 专业:_______________ 班级:_______________ 指导老师:_______________

2013 年11 月28 日

摘要 将液压缸提供的液压能重新转换成机械能的装置称为执行元件。执行元件是直接做功者,从能量转换的观点看,它与液压泵的作用是相反的。根据能量转换的形式,执行元件可分为两类三种:液压马达、液压缸、和摆动液压马达,后者也可称摆动液压缸。液压马达是作连续旋转运动并输出转矩的液压执行元件;而液压缸是作往复直线运动并输出力的液压执行元件。此说明书是针对液压缸的工作环境和工作要求来确定液压缸的工作压力和承载能力,来确定其缸筒内径、壁厚和活塞杆的直径。再根据液压缸的零部件的工作要求确定零件的工艺,根据零件的精度要求确定零件的加工方法,并生成工艺卡片,完成零件的加工。 关键字:液压缸、机械能、转矩、执行元件 Abstract Hydraulic cylinder will be able to provide the device called actuators. Work is a direct implementation of components, from the point of view of energy conversion; it is the role of the in the form of implementation of the three components can be divided into two categories: and the output of the of components

课程设计说明书 名称:液压缸设计 专业:机械设计制造及其自动化 班级:机制10-?班 姓名: 学号:06 指导教师姓名:徐鹏 设计起止日期:2013年7月8日——2013年7月12日

《液压与气压传动课程设计》任务书 一、设计题目:液压缸设计 二、数据: 推力大小:; 速比:; 行程:; 缸体型式:; 活塞杆外端连接型式:; 是否有导向:。 三、任务量: 液压缸总图:2号(手工绘制); 零件图:3号(手工绘制); 说明书:液压缸的设计及计算说明书(手写)。 指导教师:徐鹏2013年7月8 日 课程设计成绩评定单

液压缸设计指导书 机械工程学院 机设教研室

一、设计目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门。其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。 为此,编写了这本“液压缸设计指导书”,供机械专业学生学习液压传动课程及课程设计时参考。 二、设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式不必进行推导,但应注明公式中多符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。 5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。 三、设计任务 设计任务由指导教师根据学生实际情况及所收集资料情况确定。最后人均一题,避免重复。 四、设计依据和设计步骤 油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。不同的机型和工作机构对油缸则有不同的工作要求。因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容。主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。 油缸的设计内容和步骤大致如下: 1、液压缸类型和多部分结构的选择。 2、确定基本参数。主要包括工作负载、工作速度(当有速度要求时)、工作行程、导向长度、缸筒内径及活塞杆直径等。 3、强度和稳定性计算。其中包括缸筒壁厚、外径和缸底厚度的强度计算,活塞杆强度和稳定性验算,以及各连接部分的强度计算。 4、导向、密封、防尘、排气和缓冲等装置的设计。 5、整理设计说明书。绘制工作图。 应该指出,不同类型和结构的油缸,其设计内容量是不同的,而且各参数之间需要综合考虑反复验算才能得出比较满意的结果。因此设计步骤不可能是固定不变的。 五、结构型式的确定

液压油缸的一般设计步骤 液压油缸的一般设计步骤 1)掌握原始资料和设计依据,主要包括:主机的用途和工作条件;工作机构的结构特点、负载状况、行程大小和动作要求;液压系统所选定的工作压力和流量;材料、配件和加工工艺的现实状况;有关的国家标准和技术规范等。 2)根据主机的动作要求选择液压缸的类型和结构形式。 3)根据液压缸所承受的外部载荷作用力,如重力、外部机构运动磨擦力、惯性力和工作载荷,确定液压缸在行程各阶段上负载的变化规律以及必须提供的动力数值。 4)根据液压缸的工作负载和选定的油液工作压力,确定活塞和活塞杆的直径。 5)根据液压缸的运动速度、活塞和活塞杆的直径,确定液压泵的流量。 6)选择缸筒材料,计算外径。

7)选择缸盖的结构形式,计算缸盖与缸筒的连接强度。 8)根据工作行程要求,确定液压缸的最大工作长度L,通常L>=D,D为活塞杆直径。由于活塞杆细长,应进行纵向弯曲强度校核和液压缸的稳定性计算。 9)必要时设计缓冲、排气和防尘等装置。 10)绘制液压缸装配图和零件图。 11)整理设计计算书,审定图样及其它技术文件。 液压缸工作时出现爬行现象的原因及排除方法 1)缸内有空气侵入,应增设排气装置或使液压缸以最大行程快速运动,强迫排除空气。 2)液压缸的端盖处密封圈压得太紧或太松,应调整密封圈使之有适当的松紧度,保证活塞杆能用手来回平稳地拉动而无泄漏。 3)活塞与活塞杆同轴度不好,应校正、调整。 4)液压缸安装后与导轨不平行,应进行调整或重新安装。 5)活塞杆弯曲,应校直活塞杆。 6)活塞杆刚性差,加大活塞杆直径。 7)液压缸运动零件之间间隙过大,应减小配合间隙。 8)液压缸的安装位置偏移,应检查液压缸与导轨的平行度,并校正。

1.汽车板簧分选实验压力机(立式),液压缸对工件(汽车板簧)施加的最大压 力为3万N,动作为:快进→工进→加载→保压→慢退→快退,快进速度14mm/s,工进速度0.4mm/s,要求液压缸上位停止、下行时、保压后慢退不能失控。最大行程600mm。试完成: (1)系统工况分析; (2)液压缸主要参数确定; (3)拟定液压系统原理图; (4)选取液压元件; (5)油箱设计(零件图);* (6)油箱盖板装配图、零件图;* (7)集成块零件图; 2.钻孔动力部件质量m=2000kg,液压缸的机械效率ηw=0.9,钻削力Fc=16000N 工作循环为:快进→工进→死挡铁停留→快退→原位停止。行程长度为150mm ,其中工进长度为50mm。快进、快退速度为75mm/s,工进速度为1.67 mm/s。导轨为矩形,启动、制动时间为0.5s。要求快进转工进平稳可靠,工作台能在任意位置停止。 3.单面多轴钻孔组合机床动力滑台液压系统,要求设计的动力滑台实现的工作 循环是:快进——工进——快退——停止。主要性能参数与性能要求如下:切削阻力FL=30468N;运动部件所受重力G=9800N;快进、快退速度1=

3=0.1m/s,工进速度2=0.88×10-3m/s;快进行程L1=100mm,工进行程 L2=50mm;往复运动的加速时间Δt=0.2s;动力滑台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。液压系统执行元件选为液压缸。 4.卧式钻孔组合机床液压系统设计:设计一台卧式钻孔组合机床的液压系统, 要求完成如下工作循环:快进→工进→快退→停止。机床的切削力为25×103 N,工作部件的重量为9.8×103 N,快进与快退速度均为7 m/min,工进速度为0.05 m/min,快进行程为150 mm,工进行程为40 mm,加速、减速时间要求不大于0.2 s,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为 0.1。要求活塞杆固定,油缸与工作台连接。设计该组合机床的液压传动系统。 5.某厂需要一台加工齿轮内孔键槽的简易插床,插头刀架的上下往复运动采用 液压传动。工件安装在工作台上,采用手动进给。 其主要技术规格如下: 1)加工碳钢齿轮键槽,插槽槽宽t=12mm,走刀量S=0.3mm/行程; 2)插头重量500N; 3)插头工作行程(下行)的速度为13m/min。 试设计该插床的液压系统及其液压装置。 6.设计一台钻镗专用机床,要求孔的加工精度为二级,精镗的光洁度为▽6。加 工的工作循环是工件定位、夹紧——动力头快进——工进——快退——工件松开、拔销。加工时最大切削力(轴向)为20000N,动力头自重30000N,工作进给要求能在20-120mm/min内进行无级调速,快进、快退的速度均为6m/min,动力头最大行程为400mm,为使工作方便希望动力头可以手动调整进退并且能中途停止,动力滑台采用平导轨。 要求:1)按机床工作条件设计油路系统,绘系统原理图。 2)列出电磁铁动作顺序图。

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以,高于16乘以 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积 (cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径 (cm) 液压油缸速度 (m/min) V = Q / A Q :流量 (l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度 (m/min) S :液压缸行程 (m) t :时间 (min) 液压油缸出力 (kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时 ) p :压力 (kgf /cm 2 )

课程设计说明书 (2016-2017学年第二学期) 课程名称液压传动与控制技术课程设计 设计题目卧式组合钻床动力滑台液压系统 院(系)机电工程系 专业班级14级机械设计制造及其自动化x班 姓名陈瑞玲 学号20141032100 地点教学楼B301 时间2017年5月25日—2017年6月22日成绩:指导老师:蓝莹

目录 液压传动与控制技术课程设计任务书 (3) 1.概述 (4) 1.1 课程设计的目的 (4) 1.2 课程设计的要求 (4) 2. 液压系统设计 (4) 2.1 设计要求及工况分析 (4) 2.1.1设计要求 (4) 2.1.2 负载与运动分析 (5) 2.2 确定液压系统主要参数 (7) 小结 (17) 参考文献 (18)

液压传动与控制技术课程设计任务书

1.概述 1.1 课程设计的目的 本课程是机械设计制造及其自动化专业的主要专业基础课和必修课,是在完成《液压与气压传动》课程理论教学以后所进行的重要实践教学环节。本课程的学习目的在于使学生综合运用《液压与气压传动》课程及其它先修课程的理论知识和生产实际知识,进行液压传动的设计实践,使理论知识和生产实际知识紧密结合起来,从而使这些知识得到进一步的巩固、加深和扩展。通过设计实际训练,为后续专业课的学习、毕业设计及解决工程问题打下良好的基础。 1.2 课程设计的要求 (1) 液压传动课程设计是一项全面的设计训练,它不仅可以巩固所学的理论知识,也可以为以后的设计工作打好基础。在设计过程中必须严肃认真,刻苦钻研,一丝不苟,精益求精。 (2) 液压传动课程设计应在教师指导下独立完成。教师的指导作用是指明设计思路,启发学生独立思考,解答疑难问题,按设计进度进行阶段审查。 (3) 设计中要正确处理参考已有资料与创新的关系。任何设计都不能凭空想象出来,利用已有资料可以避免许多重复工作,加快设计进程,同时也是提高设计质量的保证。另外任何新的设计任务又总有其特定的设计要求和具体工作条件。 (4) 学生应按设计进程要求保质保量的完成设计任务。 2. 液压系统设计 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式组合钻床动力滑台液压系统为例,介绍液压系统的设计计算方法。 2.1 设计要求及工况分析 2.1.1设计要求 要求设计的动力滑台实现的工作循环是:快进→工进→快退→停止。

液压油缸主要几何尺寸的计算: 上图中各个主要符号的意义: 错误!未找到引用源。—液压缸工作腔的压力(Pa) 错误!未找到引用源。—液压缸回油腔的压力(Pa) 错误!未找到引用源。—液压缸无杆腔工作面积 错误!未找到引用源。—液压缸有杆腔工作面积 D—液压缸内径 d—活塞杆直径 F —液压缸推力(N) v—液压缸活塞运动速度 液压缸内径D的计算 根据载荷力的大小和选定的系工作统压力来计算液压缸内径D。液压缸内径D 和活塞杆直径d可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时: D= 有杆腔进油并不考虑机械效率时: D=

一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时 D = 有杆腔进油时: D = 设计调高油缸为无杆腔进油。 所以,216.91D mm = =,按照GB/T2348-2001对液压缸 内径进行圆整,取错误!未找到引用源。,即缸内径可以取为mm 250。 2.2活塞杆直径d 的计算 在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根 据液压缸速度比2 1v v v =λ的要求已经缸内径D 来确定。其中,活塞杆直径与缸内 径和速度比之间的关系为: d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比 液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几 种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。 v λ 1.15 1.25 1.33 1.46 2 d 0.36D 0.45D 0.5D 0.56D 0.71D 液压缸往复速度比v λ推荐值如下表所示:

题目1: 一卧式钻镗组合机床动力头要完成快进-工进-快退-原位停止的工作循环;最大切削力为F L=11500N,动力头自重F G=19500N;工作进给要求能在0.02~1.2m/min范围内无级调速,快进、快退速度为6m/min;工进行程为100mm,快进行程为300mm;导轨型式式平导轨,其摩擦系数取fs=0.2,fd=0.1;往复运动的加减速时间要求不大于0.5s。 设计要求: (1)确定执行元件(液压缸)的主要结构尺寸(D、d等) (2)确定系统的主要参数; (3)选择各类元件及辅件的形式和规格,列出元件明细表; (4)绘制正式液压系统图(A3手绘) (5)进行必要的性能估算(系统发热计算和效率计算)。

题目1: 一台专用双面铣床,最大的切削力为9000N,工作台、夹具和行程的总重量4000N,工件的总重量为1800N,工作台最大行程为600mm,其中工进行程为350mm。工作台的快进速度为4.5m/min,工进速度在50~100mm/min范围内无级调速。工作台往复运动的启制(加速减速时间)为0.05s,工作台快退速度等于快进速度,滑台采用平面导轨。静摩擦系数为0.2s,动摩擦系数为0.1。(夹紧力大于等于最大静摩擦力) 机床的工作循环为:工作定位-工件夹紧-工作台快进-工作台工进-加工到位后停留-快退-原位停止-工件松开-定位销拔出。 要求系统采用电液结合实现自动化循环,速度换接无冲击,且速度要平稳,能承受一定量的反向负载。 试完成: (1)按机床要求设计液压系统,绘制液压系统图;(A3手绘) (2)确定夹紧缸、主工作液压缸的结构参数; (3)计算系统各参数,选择液压元件型号,列出元件明细表; (4)列出设计系统中的电磁铁动作顺序表。

双作用多级液压缸设计分析 摘要:双作用多级液压缸的制作难度、维修难度相比于传统液压缸来说更高。本文重点分析了一种双作用多级液压缸的结构,说明了其在工作时的大致过程,并给出了相应的工作原理,提出了优化改进方案。 关键词:双作用多级液压缸;结构;设计 双作用多级液压缸是一种区别于传统液压缸的新型液压机器,与后者相比,前者的优点是结构非常紧凑,且外形很小,可以满足空间不大的环境,还能够满足外伸内缩时带动负载的功能。但相比普通液压缸,其结构又比较复杂,成本与加工难度很高,都必须由专业的工厂设计。 1.液压结构设计 在系统对负载的运动速度没有具体要求,而只是对其推力和行程有要求的情况下,对液压缸的结构进行了设计。其结构设计图如图1所示。此液压缸是双作用两级活塞式的。由第一级活塞,第二级活塞还有缸筒构成,其中1为缸筒,2为第一级活塞,3为第二级活塞。首先将第一级的活塞筒部做成双层的结构,并在外层的左端开有一个小孔(D),内层的右侧开有小孔E,液压缸的油口A在第二级的活塞杆上面,并在第二级活塞杆上开一小孔C,且C与B相通,B口通过其通道与液压缸的右半部分相连[1]。 2.双作用多级液压缸工作过程 我们将第一级的活塞左半部分的有效面积称为S1,右半部分面积为S2,第二级活塞左端部分的面积为S2,有端部分的有效面积为S2a.一般情况下,我们将液压缸活塞向外伸展时分为两种情况,第一种为第二级活塞不动,第一级活塞运动,两级活塞一起向外翻。第二种是每当第一级到达右面的点时,其所受的压力等于第二级活塞左半部分所受的压力,将第二级活塞推到第一级活塞的右半部分。在上述分析活塞外伸过程中,考虑到活塞的右端有效面积相对于左端面积比较小,而且外伸时有杆腔的压力比较低,忽略了作用在活塞右端上的液压力,这与实际是符合的[2]。我们从多级液压缸的工作过程可以看出这种液压缸较单级液压缸的效率更高,需注意方面更多。 3.二级双作用液压缸的设计注意点 在二级双作用液压缸中,其一级活塞杆制作过程比较复杂,在设计时要详细地考虑合理的设置。首先应注意在焊缝的设计时要留有足够的空间,其次要注意应该在磨平打光之前对左右油口进行加工;第三在设计内外钢管间的间隙时通常有两种设计方法,一种是内外管的外表面设置轴向槽;另一种是在内钢管外表设置螺旋槽,在螺旋槽和轴向槽的设置中必须在保证油量的前提下进行。第四在选择密封的材料时,要根据实际情况进行选择。其一般分为U和Y型(字母型),

相关主题
文本预览
相关文档 最新文档