当前位置:文档之家› 系统建模与辨识快速掌握

系统建模与辨识快速掌握

系统建模与辨识快速掌握

《系统辨识》第1讲要点

●引言

课程名称:系统辨识(System identification)

现代控制论:辨识、状态估计和控制理论

什么是辨识(Identification)?

System Identification系统辩识,又译为“系统识别”和“系统同定”,目前尚无公认的统一定义。《中国大百科全书》中记述为:系统辩识是根据系统的输入/输出时间函数,确定系统行为的数学模型,是现代控制理论的一个分支(中国大百科自动控制卷486-488页)。

(1) 辨识是研究建立系统或生产过程数学模型的一种理论和方法。

(2) 辨识是种从含有噪声的测量数据(输入、输出数据)中提取被研

究对象数学模型的一种统计方法。

(3) 辨识模型是对象输入输出特性在某种准则意义下的一种近似。近

似的程度取决于人们对系统先验知识的认识和对数据集性质的了

解程度,以及所选用的辨识方法是否合理。

(4) 辨识技术帮助人们在表征被研究的对象、现象或系统、过程的复

杂因果关系时,尽可能准确地确立它们之间的定量依存关系。

(5) 辨识是一种实验统计的建模方法。

1

系统辨识建模

上海大学2015 ~2016学年冬季学期研究生课程考试 小论文格式 课程名称:系统建模与辨识课程编号: 09SB59002 论文题目: 基于改进的BP神经网络模型的网络流量预测 研究生姓名: 李金田学号: 15721524 论文评语: 成绩: 任课教师: 张宪 评阅日期:

基于改进的BP神经网络模型的网络流量预测 15721524,李金田 2016/3/4 摘要:随着无线通信技术的快速发展,互联网在人们的日常生活中占据了越来越重要的位置。网络中流量监控和预测对于研究网络拓扑结构有着重要的意义。本文参考BP算法,通过分析算法的优势和存在的一些问题,针对这些缺陷进行了改进。通过建立新的流量传输的传递函数,对比了经典的传递函数,并且在网络中进行了流量预测的实验和验证。新方法在试验中表现出了良好的实验性能,在网络流量预测中有很好的应用,可以作为网络流量预测的一个新方法和新思路,并且对研究网络拓扑结构有着重要的启发作用。网络流量预测在研究网络行为方面有着重要的作用。ARMA时间序列模型是比较常见的用于网络流量预测的模型。但是用在普通时间序列模型里面的一些参数很难估计,同时非固定的时间序列问题用ARMA模型很难解决。人工神经网络技术通过对历史数据的学习可能对大量数据的特征进行缓存记忆,对于解决大数据的复杂问题很合适。IP6 网络流量预测是非线性的,可以使用合适的神经网络模型进行计算。 A Novel BP Neural Network Model for Traffic Prediction of The Next Generation Network. Abstract:With the rapid development of wireless communication technology, the internet occupy an important position in people’s daily life. Monitoring and predicting the traffic of the network is of great significant to study the topology of the network. According to the BP algorithm, this paper proposed an improved BP algorithm based on the analysis of the drawback of the algorithm. By establishing a new transfer function of the traffic transmission, we compare it with the previous transmission function. Then, the function is used to do experiments, found to be the better than before. This method can be used as a new way to predict the network traffic, which has important implications for the study of the network topology. Network traffic prediction is an important research aspect of network behavior. Conventionally, ARMA time sequence model is usually adopted in network traffic prediction. However, the parameters used in normal time sequence models are difficult to be estimated and the nonstationary time sequence problem cannot be processed using ARMA time sequence problem model. The neural network technique may memory large quantity of characteristics of data set by learning previous data, and is suitable for solving these problems with large complexity. IP6 network traffic prediction is just the problem with nonlinear feature and can be solved using appropriate neural network model.

系统辨识方法

系统辨识方学习总结 一.系统辨识的定义 关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观 测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。L.Ljung也给 “辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。出了一个定义: 二.系统描述的数学模型 按照系统分析的定义,数学模型可以分为时间域和频率域两种。经典控制理论中微 分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程 和离散状态空间方程也如此。一般在经典控制论中采用频域传递函数建模,而在现代控 制论中则采用时域状态空间方程建模。 三.系统辨识的步骤与内容 (1)先验知识与明确辨识目的 这一步为执行辨识任务提供尽可能多的信息。首先从各个方面尽量的了解待辨识的 系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。 对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。 (2)试验设计 试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度 的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。主要涉及以下两个问 题,扰动信号的选择和采样方法和采样间隔 (3)模型结构的确定 模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的, 对所辨识系统的眼前知识的掌握程度密切相关。为了讨论模型和类型和结构的选择,引 入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。所谓模型结 构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。在单输入单 输出系统的情况下,系统模型结构就只是模型的阶次。当具有一定阶次的模型的所有参 数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。 (4)模型参数的估计 参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶 段就称为模型参数估计。

系统辨识与自适应控制作业

系统辨识与自适应控制 学院: 专业: 学号: 姓名:

系统辨识与自适应控制作业 一、 对时变系统进行参数估计。 系统方程为:y(k)+a(k)y(k-1)=b(k)u(k-1)+e(k) 其中:e(k)为零均值噪声,a(k)= b(k)= 要求:1对定常系统(a=0.8,b=0.5)进行结构(阶数)确定和参数估计; 2对时变系统,λ取不同值(0.9——0.99)时对系统辨识结果和过程进行 比较、讨论 3对辨识结果必须进行残差检验 解:一(1): 分析:采用最小二乘法(LS ):最小二乘的思想就是寻找一个θ的估计值θ? , 使得各次测量的),1(m i Z i =与由估计θ? 确定的量测估计θ??i i H Z =之差的平方和最小,由于此方法兼顾了所有方程的近似程度,使整体误差达到最小,因而对抑制误差是有利的。在此,我应用批处理最小二乘法,收敛较快,易于理解,在系统参数估计应用中十分广泛。 作业程序: clear all; a=[1 0.8]'; b=[ 0.5]'; d=3; %对象参数 na=length(a)-1; nb=length(b)-1; %na 、nb 为A 、B 阶次 L=500; %数据长度 uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i) yk=zeros(na,1); %输出初值 x1=1; x2=1; x3=1; x4=0; S=1; %移位寄存器初值、方波初值 xi=randn(L,1); %白噪声序列 theta=[a(2:na+1);b]; %对象参数真值 for k=1:L phi(k,:)=[-yk;uk(d:d+nb)]'; %此处phi(k,:)为行向量,便于组成phi 矩阵 y(k)=phi(k,:)*theta+xi(k); %采集输出数据 IM=xor(S,x4); %产生逆M 序列 if IM==0 u(k)=-1; else u(k)=1; end S=not(S); M=xor(x3,x4); %产生M 序列

《系统建模与及辨识》课程实验报告

《系统建模与及辨识》课程 上机实验报告 专业名称 : 控制工程 上机题目 : 用极大似然法进行参数估计 一 实验目的 通过实验掌握极大似然法在系统参数辨识中的原理和应用。 二 实验原理 1 极大似然原理 设有离散随机过程}{k V 与未知参数θ有关,假定已知概率分布密度)(θk V f 。如果我们得到n 个独立的观测值,21,V V …n V ,,则可得分布密度)(1θV f ,)(2θV f ,…,)(θn V f 。要求根据这些观测值来估计未知参数θ,估计的准则是观测值{}{k V }的出现概率为最大。为此,定义一个似然函数 ) ()()(),,,(2121θθθθn n V f V f V f V V V L = (1.1)

上式的右边是n 个概率密度函数的连乘,似然函数L 是θ的函数。如果L 达到极大值,}{k V 的出现概率为最大。因此,极大似然法的实质就是求出使L 达到极大值的θ的估值∧ θ。为了便于求∧ θ,对式(1.1)等号两边取对数,则把连乘变成连加,即 ∑==n i i V f L 1 )(ln ln θ (1.2) 由于对数函数是单调递增函数,当L 取极大值时,lnL 也同时取极大值。求式(1.2) 对θ的偏导数,令偏导数为0,可得 ln =??θL (1.3) 解上式可得θ的极大似然估计ML ∧ θ。 2 系统参数的极大似然估计 Newton-Raphson 法实际上就是一种递推算法,可以用于在线辨识。不过它是一种依每L 次观测数据递推一次的算法,现在我们讨论的是每观测一次数据就递推计算一次参数估计值得算法。本质上说,它只是一种近似的极大似然法。 设系统的差分方程为 )()()()()(1 1 k k u z b k y z a ξ+=-- (2.1) 式中 111()1...n n a z a z a z ---=+++ 1101()...n n b z b b z b z ---=+++ 因为)(k ξ是相关随机向量,故(2.1)可写成 )()()()()()(1 1 1 k z c k u z b k y z a ε---+= (2.2) 式中 )()()(1 k k z c ξε=- (2.3) n n z c z c z c ---+++= 1111)( (2.4) )(k ε是均值为0的高斯分布白噪声序列。多项式)(1-z a ,)(1-z b 和)(1-z c 中的系数n n c c b b a a ,,,,,10,1和序列)}({k ε的均方差σ都是未知参数。 设待估参数 n a a 1[=θ n b b 0 ]T n c c 1 (2.5) 并设)(k y 的预测值为 +-+++-----=∧ ∧∧∧∧)()()()1()(01n k u b k u b n k y a k y a k y n n )()1(1n k e c k e c n -++-∧ ∧ (2.6) 式中)(i k e -为预测误差;i a ∧ ,i b ∧ ,i c ∧ 为i a ,i b ,i c 的估值。预测误差可表示为 +-+-???--=-=∑∑=∧ =∧ ∧)()()()()()(01 i k u b i k y a k y k y k y k e n i i n i i

系统辨识研究的现状_徐小平

系统辨识研究的现状 徐小平1,王 峰2,胡 钢1 (1.西安理工大学自动化与信息工程学院 陕西西安 710048;2.西安交通大学理学院 陕西西安 710049) 摘 要:综述了系统辨识问题的研究进展,介绍了经典的系统辨识方法及其缺点,引出了将集员、多层递阶、神经网络、遗传算法、模糊逻辑、小波网络等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。 关键词:系统辨识;集员;多层递阶;神经网络;遗传算法;模糊逻辑;小波网络 中图分类号:TP27 文献标识码:B 文章编号:1004-373X (2007)15-112-05 A Survey on System Identif ication XU Xiaoping 1,WAN G Feng 2,HU Gang 1 (1.School of Automation and Information Engineering ,Xi ′an University of Technology ,Xi ′an ,710048,China ; 2.School of Science ,Xi ′an Jiaotong University ,Xi ′an ,710049,China ) Abstract :In this paper the advance in the study of system identification is summarized.First ,the traditional system identi 2fication methods and their disadvantages are introduced.Then ,some new methods based on set membership ,multi -level re 2cursive ,neural network ,genetic algorithms ,f uzzy logic and wavelet network are presented.Finally ,f urther research directions of system identification are pointed out. K eywords :system identification ;set membership ;multi -level recursive ;neural network ;genetic algorithms ;f uzzy logic ;wavelet network 收稿日期:2007-04-16 基金项目:教育部博士学科基金(20060700007); 陕西省自然科学基金(2005F15)资助项目 1 引 言 辨识、状态估计和控制理论是现代控制理论三个互相渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。社会科学和自然科学领域已经投入相当多的人力和物力去观察、研究有关的系统辨识问题。从1967年起,国际自动控制联合会(IFAC )每3年召开一次国际性的系统辨识与参数估计的讨论会。历届国际自动控制联合会的系统辨识会议均吸引了众多的有关学科的科学家和工程师们的积极参加。 系统辨识是建模的一种方法,不同的学科领域,对应 着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。1962年,L.A.Zadeh 给出辨识这样的定义[1]:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh 的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。而从实用性观点出发,对模型的要求并非如此苛刻,为此,对辨识又有一些实用性的定义。比如,1974年,P.E.ykhoff 给出辨识的定义[2]为:“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。”1978年,L. Ljung 给辨识下的定义[3] 更加实用:“辨识有三个要素—数 据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。”总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 本文首先介绍了经典的系统辨识方法,并指出其存在的缺陷,接着对近年来系统辨识的现代方法作以简单的综述,最后指出了系统辨识未来的发展方向。2 经典的系统辨识 经典的系统辨识方法[4-6]的发展已经比较成熟和完 2 11

系统辨识与自适应控制论文

XXXXXXXXXX 系统辨识与自适应控制课程论文 题目:自适应控制综述与应用 课程名称:系统辨识与自适应控制 院系:自动化学院 专业:自动化 班级:自动化102 姓名: XXXXXX 学号: XXXXXXXXX 课程论文成绩: 任课教师: XXXXX 2013年 11 月 15 日

自适应控制综述与应用 一.前言 对于系统辨识与自适应控制这门课,前部分主要讲了系统辨识的经典方法(阶跃响应法、频率响应法、相关分析法)与现代方法(最小二乘法、随机逼近法、极大似然法、预报误差法)。对于系统辨识,简单的说就是数学建模,建立黑箱系统的输入输出关系;而其主要分为结构辨识(n)与参数辨识(a、b)这两个任务。 由于在课上刘老师对系统辨识部分讲的比较详细,在此不再赘述,下面讨论自适应控制部分的相关内容。 对于自适应控制的概念,我觉得具备以下特点的控制系统,可以称为自适应控制系统: 1、在线进行系统结构和参数辨识或系统性能指标的度量,以便得到系统当前状态的改变情况。 2、按一定的规律确定当前的控制策略。 3、在线修改控制器的参数或可调系统的输入信号。 二.自适应控制综述 1.常规控制系统与自适应控制系统比较 (1)控制器结构不同 在传统的控制理论与控制工程中,常规控制系统的结构主要由控制器、控制对象以及反馈控制回路组成。 而自适应控制系统主要由控制器、控制对象、自适应器及反馈控制回路和自适应控制回路组成。 (2)适用的对象与条件不同 传统的控制理论与控制工程中,当对象是线性定常、并且完全已知的时候,才能进行分析和控制器设计。无论采用频域方法,还是状态空间方法,对象一定是已知的。这类方法称为基于完全模型的方法。在模型能够精确地描述实际对象时,基于完全模型的控制方法可以进行各种分析、综合,并得到可靠、精确和满意的控制效果。 然而,有一些实际被控系统的数学模型是很难事先通过机理建模或离线系统辨识来确知的,或者它们的数学模型的某些参数或结构是处于变化之中的.对于这类事先难以确定数学模型的系统,通过事先整定好控制器参数的常规控制往往难以对付。 面对上述系统特性未知或经常处于变化之中而无法完全事先确定的情况,如何设计一个满意的控制系统,使得能主动适应这些特性未知或变化的情况,这就 是自适应控制所要研究解决的问题.自适应控制的基本思想是:在控制系统的运行过程中,系统本身不断地测量被控系统的状态、性能和参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而作出决策,来改变控制器的结构、参数或根据自适应规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态。按这种思想建立起来的控制系统就称为自适应控制系统。

系统建模过程辨识脉冲响应

实验二:基于三阶系统的脉冲响应求传递函数 一、目的 所谓辨识,就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。此次作业任务是基于脉冲响应(既包含了输入数据也能得到输出数据)对一个三阶模型进行过程辨识,整个辨识路线如图1所示。 图1基于脉冲响应的过程辨识路线 二、辨识方法 1)差分方程法 假设待辨识的过程传递函数为: G(s)=b m s m+b m?1s m?1+?+b1s+b0 a n s+a n?1s+?+a1s+1 ,n≥m(1)如果特征方程a n s n+a n?1s n?1+?+a1s+1=0具有n个单根s1、s2、…s n,那么传递函数可以写成: G(s)=c1 s?s1+c2 s?s2 +?+c n s?s n (2) 对应的脉冲响应: g t=c1e s1t+c2e s1t+?+c n e s n t(3) 如果特征方程a n s n+a n?1s n?1+?+a1s+1=0具有重根(其中s1、s2…s n?r为单根,s0为r阶重根)时,那么传递函数可以写成: G(s)=c1 s?s1+c2 s?s2 +?+c n?r s?s n?r +c n?r+1 s?s0 +c n?r+2 (s?s0)2 +?+c n (s?s0)r (4) 对应的脉冲响应: g t=c1e s1t+c2e s1t+?+c n?r e s n?r t+?+c n?r+1e s0t +c n?r+2te s0t+?+c n t r?1e s0t(5)可以根据待定过程的脉冲响应估计值g(t)来确定c i和s i。从所获得的g(t)按照采样周期T0,选取前(n+1)个坐标点,各坐标点上的脉冲响应分别记为g(k)、g(k+1)、…、g(k+n)。组成一个AR模型:

过程建模与系统辨识课程报告

过程建模与系统辨识课程报告 班级: 姓名: 学号: 课题:人体运动计算机仿真建模方法地研究 1.人体运动计算机仿真地理论基础 (1)人体运动计算机仿真地理论 所谓人体运动计算机仿真地理论, 是指人体运动领域及其计算机仿真技术应用时作为基本立论地专业理论知识依据, 也就是指导人们从事人体运动计算机仿真应用与研究活动赖以建立和存在地专业领域内地前提和一些基本思想.总之, 因为仿真技术具有“学科面广、综合性强、应用领域宽、无破坏性、可多次重复、安全、经济、可控、不受气候和场地空间条件限制”等独特优点, 故而, 无论在交通工具安全、人机项目、虚拟设计、机器人、医疗康复、体育运动以及影视娱乐等诸多领域, 应用计算机仿真技术研究人体运动都有着其它技术所无法比拟地价值和效益.因此, 本文着眼于人体运动生物力学、计算机仿真等领域地知识基础, 从计算机仿真技术及其在人体运动领域地应用发展、人体及其运动建模等主要层面进行研究成果地综述性讨论, 旨在进一步促进人体运动领域应用计算机仿真技术在理论与实践上得以不断拓宽和深入发展. (2)人体及其运动建模 当人体被作为一种系统来看待时, 其本身及其运动包含了众多不

同层面而复杂地因素和交互作用.因此, 要深刻理解和把握人体及其运动, 模型化方法是不可或缺地.概略来说, 人体及其运动模型地构造主要有两种方式( 或者两者地结合) : 第一种方式从逻辑上看是演绎为主地, 即将人体系统分成子系统, 且子系统地性质和关系已被成熟地理论知识或规律所涵盖, 进而把这些子系统用数学方法加以联结得到整个系统地模型, 因为它无须对人体实际系统进行试验, 故而, 这种方式通常就被称为建模; 第二种方式则主要是归纳地, 它主要依据从实际人体地实验数据( 记录人体系统地输入输出) 并进而进行数据分析来建立数学模型或图象模型, 通常被称为系统辩识.就人体运动地力学模型而言, 从最简化地质点、刚体, 到多刚体、柔性多体等模型, 都以阐释人体机械运动形式地机理为目标, 其主要内容涵盖多体系统力学模型、非完整系统力学模型等, 并为人体地动力学研究提供了理论基础.在计算机仿真地交互效果上, 人体地逼真形象模型是在计算机图形学与先进仿真技术不断融合促进下发展起来地, 又在虚拟现实技术大力推动下, 三维“虚拟人”模型亦不断推出, 其中主要有如下几种形式: 骨架、体素、曲线、球体堆积、曲面等模型形式. (3)人体运动计算机仿真地理论地发展 随着系统仿真技术及相关地计算机图形学、数据库技术、虚拟现实技术地交互融合与推动, 加上以人体或其运动为核心地不同领域地强烈需求地推动, 虚拟人体及其运动成为当前研究发展地热点, 在建模方法与技术地核心理论基础方面, 人工智能( 专家知识、神经网

系统辨识

系统辨识理论综述 郭金虎 【摘要】全面论述了系统辨识理论的提出背景以及理论成果,总结了系统辨识理论的基本原理、基本方法以及基本内容,并对其应用及发展做了全面的讨论。 【关键词】系统辨识;准则函数 1概述 系统辨识问题的提出是由于随着科学技术的发展,各门学科的研究方法进一步趋向定量化,人们在生产实践和科学实验中,对所研究的复杂对象通常要求通过观测和计算来定量的判明其内在规律,为此必须建立所研究对象的数学模型,从而进行分析、设计、预测、控制的决策。例如,在化工过程中,要求确定其化学动力学和有关参数,已决定工程的反应速度;在热工过程中,要求确定如热交换器这样的分布参数的系统及动态参数;在生物系统方面,通常希望获得其较精确的数学模型,一般描述在生物群体系统的动态参数;为了控制环境污染,希望得到大气污染扩散模型和水质模型;为进行人口预报,做出相应的决策,要求建立人口增长的动态模型;对产品需求量、新型工业的增长规律这类经济系统,已经建立并继续要求建立其定量的描述模型。其他如结构或机械的振动、地质分析、气象预报等等,都涉及系统辨识和系统参数估计,这类要求正在不断扩大。 2系统辨识的基本原理 2.1系统辨识的定义和基本要素 实验和观测是人类了解客观世界的最根本手段。在科学研究和工程实践中,利用通过实验和观测所得到的信息,或掌握所研究对象的特性,这种方式的含义即为“辨识”。关于系统辨识的定义,1962年,L.A.Zadeh 是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中,确定一个与所测系统等价的模型”。1978年,L.Ljung 也给出了一个定义:“辨识既是按规定准则在一类模型中选择一个与数据拟合得最好的模型”。可用图2-1来说明辨识建模的思想。 0 G g G 等价准则系统原型 系统模型激励信号y g y e J u 图2-1 系统辨识的原理

自适应控制习题(系统辨识)

自适应控制习题 (徐湘元,自适应控制理论与应用,电子工业出版社, 2007) 【2-1】 设某物理量丫与XI 、X2、X3的关系如下:丫=0 1X1 + 0 2X2+0 3X3 由试验获得的数据如下表。试用最小二乘法确定模型参数 0 1、0 2和0 3 X1:0.620.4 0.420.820.660.720.380.520.450.690.550.36 X2:12.014.214.612.110.88.2013.010.58.8017.014.212.8 X3:5.206.100.328.305.107.904.208.003.905.503.806.20 Y: 51.649.948.550.649.748.842.645.937.864.853.445.3 【2-3】 考虑如下模型 其中w(t)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k), 分别采用批处理最小二乘法、具有遗忘因子的最小二乘法(入 =0.95)和递推最小二乘法 估计模型参数(限定数据长度 N 为某一数值,如N=150或其它数值),并将结果加以比 较。 【2-4】 对于如下模型 (1 _0.8z 1 0.15z 2 )y(k) 一(z 2 0.5z 3 )u(k) - (1 - 0.65z 1 - 0.1z 2 )w(k) 其中w(k)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k), 分别采用增广最小二乘法和随机逼近法进行模型参数估计,并比较结果。 (提示:w(t)可以用MATLAB^的函数“ randn ”产生)。 【3-1】 设有不稳定系统: (1z 1)y(k) - z ^(10.9z 1)u(k) 期望传递函数的分母多项式为 Amz z m r 且无稳态误差。试按照极点配置方法设计控制系统,并写出控制表达式。 【3-2} 设有被控过程:一 - _ (1 1.7z 1 0.6z 2)y(k)z 2(11.2z 1 )u(k) 一 ~ - 一 - -1.3z 0.5z u(t)w(t) I 0.3z 2 1 - - T ()(10.5 ),期望输出y 跟踪参考输入y , y(t)

系统辨识作业和答案

一. 问答题 1. 介绍系统辨识的步骤。 答:(1)先验知识和建模目的的依据;(2)实验设计;(3)结构辨识;(4)参数估计;(5)模型适用性检验。 2. 考虑单输入单输出随机系统,状态空间模型 []) ()(11)()(11)(0201)1(k v k x k y k u k x k x +=??? ???+??????=+ 转换成ARMA 模型。 答:ARMA 模型的特点是u(k)=0, []) ()(11)()(0201)1(k v k x k y k x k x +=?? ? ???=+ 3. 设有一个五级移位寄存器,反馈取自第2级和第3级输出的模2加法和。试说明: (1) 其输出序列是什么? (2) 是否是M 序列? (3) 它与反馈取自第4级与第3级输出模2加法和所得的序列有何不同? (4) 其逆M 序列是什么? 答:(1)设设输入序列1 1 1 1 1 111018110107101006010015100114001113011112111111)()()()()()()()(()()()()()()()01110161110115110101410100)13(010011210011110011110011109()()()()()()()001112401110)23(111012211010211010020010011910011180011117()()()()()()()()10011 3200111310111030001112911010281010027010012610011 25 其输出序列为:1 1 1 1 1 0 0 1 0 1 ⑵不是M 序列 ⑶第4级与第3级模2相加结果

系统辨识与建模实验报告

系统辨识与建模实验报告电加热炉动态特性辨识实验 姓名学号: 张春燕312102332 同组同学:沈剑312102331 序号:81 指导老师:郭毓 实验时间:2013年5月

系统辨识与建模实验电加热炉动态特性辨识实验 目录 一.实验目的 (3) 2.2 数据获取 (3) 2.3 离线辨识 (3) 3.1 数据预处理 (3) 3.2 结构辨识 (4) 3.3.1 RLS辨识参数 (6) 3.3.2 RELS辨识参数 (7) 3.3.3 RIV辨识参数 (8) 3.3.4 RML辨识参数 (9) 3.4 模型验证 (10) 3.4.1 输入阶跃响应比较 (10) 3.4.2 比较残差 (11) 四.实验结果分析 (12) 五.实验心得 (12) 附录1: (13) 附录2: (13) 附录3: (14) 附录4: (16)

一.实验目的 通过实验了解辨识方法在工程应用中的一些实际问题;了解数据获取和数据处理的各种方法和手段,掌握各种辨识方法的应用特点。 二.实验内容及其步骤 2.1 编写M 序列的产生程序 在实验参数设定时选择加热电压60V ,采样周期为3S ,所以加入的M 序列电压最好为加热电压的10-20%,M 序列的采样周期为数据采样周期的整数倍,因为实验时间有限,选择了2组数据,即M 序列信号为6V 、10V ,采样周期60s. 2.2 数据获取 高温老化试验温箱,以控制电压作为炉温控制系统的输入控制变量,即,设备的输入量是燃料供给量或电压、电流,而输出量是炉膛内腔的温度。 在热稳定工况的基础上,在电压稳定值上再附加一个辨识信号,即M 序列电压信号。加热炉热惯性大,升温过程较长,所以采样周期较长,M 序列的周期也较长。这样施加M 序列周期信号之后,记录几个周期的炉温试验数据。 2.3 离线辨识 利用处理过的数据,选择某种辨识方法;如RLS 、RELS 、RIV 或RML 等参数估计方法计算,以及F 检验方法或AIC 定阶法。离线估计出参数模型参数,并计算相应的模型静态增益,同时比较利用不同方法所得到的辨识结果。最后,模型验证。 三.数据处理 数据处理主要包括输入输出数据,模型结构确定,然后辨识参数。 3.1 数据预处理 在实验中采集了四组数据,仿真时选择M 序列为10的数据组。 其中采样/20s T ?=,为隔20点采样。在离线辨识时发现,如果数据全部运用则采样时间长度过短,则计算量大并容易产生病态方程,所以数据采用隔点取数据的方法。

系统辨识与建模system identificati

系统辨识与建模system identificati 系统辨识 根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控 制理论中的一个分支。对系统进行分析的主要问题是根据输入时间函数和系统 的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控 制输入,使输出满足预先规定的要求。 简介 根据系统的输入输出时间函数来确定描述系统行为的数学模型。现代控制 理论中的一个分支。通过辨识建立数学模型的目的是估计表征系统行为的重要 参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输 出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是 根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题 是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所 研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函 数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构 辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参 数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。 辨识的基本步骤 先验知识和建模目的的依据 先验知识指关于系统运动规律、数据以及其他方面的已有知识。这些知识 对选择模型结构、设计实验和决定辨识方法等都有重要作用。用于不同目的的 模型可能会有很大差别。

先验知识是指关于系统运动规律、数据以及其他方面的已有 系统辨识 知识。这些知识对选择模型的结构、设计实验和决定辨识方法等都具有重要的作用。例如可以从基本的物理定律(牛顿定律,基尔霍夫定律,物质守恒定律等)去确定模型结构,建立所研究的变量之间的关系。如果关于这方面的知识是完备的,模型的结构和参数(至少在原则上)便是可以确定的。在空间技术的应用中建立飞行器的动力学模型就是一个例子。但在多数情形下却很难做到这一点。这时先验知识虽然不能完全确定模型,但是在模型结构(也就是辨识中的模型类)的选择上仍然是一个重要因素。此外,对参数变化范围的确定、初值的选取,对数据的必要的限制,以及对模型的适用性进行检验等方面,先验知识也都是最重要的依据。 其次,建模的目的对于确定模型的结构和辨识方法也有重要意义。用于不同目的的模型可能会有很大的差别。在估计具有特定物理意义的参数时,主要考虑模型的参数值与真实的参数值是否一致。在建立预测模型时,只需要考虑预测误差。在建立仿真模型时,就要根据应用的要求去决定仿真的深度,也就是决定模型结构的复杂程度。而对于设计控制系统的模型,则出于不同的控制目的可选择不同的模型类。 实验设计 辨识是从实验数据中提取有关系统信息的过程,设计实验的目标之一是要使所得到的数据能包含系统更多的信息。主要包括输入信号设计,采样区间设计,预采样滤波器设计等。 辨识的基础是输入和输出数据,而数据来源于对系统的实验和观测,因此辨识归根到底是从数据中提取有关系统的信息的过程,其结果是和实验直接联系在一起的。设计实验的目标之一是要使所得到的数据能包含系统的更多的信息。为此,首先要确定用什么准则来比较数据的好坏。这种准则可以是从辨识的可行性出发的,也可以是从某种最优性原则出发的。实验设计要解决的问题主要是:输入信号的设计,采样区间的设计,预采样滤波器的设计等(见系统辨识实验设计)。

系统辨识与自适应控制--大作业

1 辨识的对象模型 假设有一理想数学模型,它的离散化方程如下式所示: () 1.8(1)0.3(2) 1.2(1)(2)()y k y k y k u k u k e k +-+-=-+-+ 式中,()e k 是服从正态分布的白噪声)1,0(N ,()k u 为系统输入,()k y 为系统输出。 现在输入信号采用4阶M 序列,其幅值为1。假设系统的模型阶次是已知的,即 1212()(1)(2)(1)( 2)()y k a y k a y k bu k b u k e k +-+-=-+-+。 下面采用递推最小二乘参数辨识。 2 递推最小二乘参数辨识方法 简单的最小二乘参数辨识一次性方法计算复杂,不能够进行在线辨识,而且 所需要的计算存储空间很大,而很多计算都是重复的计算。为了解决这个问题,并实现在线的实时辨识,引入递推的最小二乘参数辨识。 递推最小二乘参数辨识的整体思想是,最新辨识出来的参数是建立在上次辨识的参数基础上,根据最新得到的辨识数据,对辨识的参数添加了一个参数增量。下面利用数学语言对递推最小二乘参数辨识方法进行描述。 根据最小二乘原理,用N 次观测数据,得出参数向量θ的最小二乘估计l θ? 1()()T T N N N H H H Y N θ-= (1) 其中,?N θ表示根据N 次观测数据所得到的最小二乘值计量,下表N 表示该符号代表N 次观测数据构成的矩阵。 ()[(1),(2),...,()]T Y N y y y N = (2) N H =(0) .....(1)(0).....(1)(1).....(2)(1).....(2). .(1).....()(1).....()y y n u u n y y n u u n y N y N n u N u N n ----????----?? ???? ?? ??------?? (3)然后令1()T N N N P H H -=,且N P 是一方阵,它的维数取决于未知数的个数,而与观 测次数无关。则 1 1111T N N N N P P h h --+++??=+? ? (4) 式中1N h +表示第1N +次观测数据。 利用矩阵反演公式计算(4)式

系统辨识设计

基于最小二乘法的机械手参数辨识 1 引言 1.1 机械臂概况 工业机械臂是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。工业机械臂是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。尤其在高温、高压、粉尘、噪声以及带有放射性和污染的场合,应用得更为广泛。在我国,近几年来也有较快的发展,并取得一定的效果,受到机械工业和铁路工业部门的重视。 机械臂是模拟人的上臂而构成的。为了抓取空间中任意位置和方位的物体,需有6个自由度,即6个关节。一般情况下,全部关节皆为转动型关节,而且其前3个关节一般都集中在手腕部。关节型机械臂的特点是结构紧凑,所占空间体积小,相对的工作空间最大,还能绕过基座周围的一些障碍物,是机械臂中使用最多的一种结构形式,比较典型的如PUMA、SCARA等[1]。多关节机械臂的优点是:动作灵活、运动惯性小、通用性强、能抓取靠近机座的工件,并能绕过机体和工作机械之间的障碍物进行工作,目前广泛应用于工业自动化生产线上。 1.2 机械臂的研究现状 早在20世纪50年代,由于高性能的飞机自动驾驶仪控制需要人们就对自适应控制进行了广泛的研究,但由于计算能力和控制理论的水平,这种思想没有得到成功的推广与应用。经过几十年的努力,自适应控制理论得到了进一步的发展和完善。近年来,国内外学者对自适应控制已做了卓越的研究工作,也取得了可喜的研究成果,有许多研究成果已经应用到生产实际中[3]。 随着科学技术的发展和社会的进步,机器人的应用越来越普及,不仅广泛应用于工业生产和制造部门,而且在航天、海洋探测、危险或条件恶劣的特殊环境中获得了大量应用。并且,它还逐渐渗透到了日常生活及教育娱乐等各个领域。而机器人中控制问题始终比较难解决,怎么样能够更好的控制机器人就成为当今研究的重点,在此研究自适应控制来解决机器人的控制问题。当操作机器人的工作环境及工作目标的性质和特征在工作过程中随时发生变化时,控制因素具有未知性和不确定的特性。这种未知因素和不确定性将使控制系统的性能变差,不能满足控制要求。采用一般反馈技术或开环补偿方法不能很好的解决这一问题。如要解决上述问题,就要求控制器能在运行过程中不断地测量受控对象的特性,

系统辨识与自适应控制

《系统辨识与自适应控制》课程论文 自动控制理论发展到了很高的水平,经典控制论被更有前途的现代控制理论所超越,控制技术的水平越来越高。现代控制理论的应用是建立在已知受控对象的数学模型这一前提下的,而在当时对受控对象数学模型的研究相对较为滞后。现代控制理论的应用遇到了确定受 控对象合适的数学模型的各种困难。因此,建立系统数学模型的方法一一系统辨识,就成为 应用现代控制理论的重要前提。在另一方面,随着计算机科学的飞速发展,计算机为辨识系统所需要进行的离线计算和在线计算提供了高效的工具。在这样的背景下,系统辨识问题便 愈来愈受到人们的重视,成为发展系统理论,开展实际应用工作中必不可少的组成部分。 系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。现代控制理 论中的一个分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个 能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的 要求。而系统辨识所研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类卩={M} (即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y , yM)( 一般情况下,J是误差函数,是过程输出 y和模型输出yM的一个泛函);然后选择使误差函数 J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨 识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。 经典方法 经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频 率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。其中最小二乘法(LS)是一 种经典的和最基本的,也是应用最广泛的方法。但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小 二乘法(Gl S)、辅助变量法(IV)、增广最小二乘法(El , S)和广义最小二乘法(Gl S),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR — I S)和随机逼近算法 经典的系统辨识方法还存在着一定的不足: (1)利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常无法保证; (2)极大似然法计算耗费大,可能得到的是损失函数的局部极小值; (3)经典的辨识方法对于某些复杂系统在一些情况下无能为力。 现代方法 随着系统的复杂化和对模型精确度要求的提高,系统辨识方法在不断发展,特别是非线 性系统辨识方法。 1、集员系统辨识法 在1979年集员辨识首先出现于Fogel撰写的文献中,1982年Fogel和Hua ng又对 其做了进一步的改进。集员辨识是假设在噪声或噪声功率未知但有界UBB(U nknown But Bounded)的情况下,利用数据提供的信息给参数或传递函数确定一个总是包含真参数或传递函数的成员集(例如椭球体、多面体、平行六边体等)。不同的实际应用对象,集员成员集的 定义也不同。集员辨识理论已广泛应用到多传感器信息融合处理、软测量技术、通讯、信号 处理、鲁棒控制及故障检测等方面。

相关主题
文本预览
相关文档 最新文档