当前位置:文档之家› 高中数学竞赛模拟题

高中数学竞赛模拟题

高中数学竞赛模拟题
高中数学竞赛模拟题

2011年全国高中数学联赛模拟试题一

一试

一.填空题(每小题8分,共64分)

1.函数254()2x x f x x

-+=-在(,2)-∞上的最小值是 . 2. 函数x

x x x y cos sin 1cos sin ++=的值域是 . 3. 将分别为1、2、…、9的九个小球放入一个袋中,这些小球仅不同,其余完全相同。甲从袋中摸出一个球,其为a ,放回后,乙从此袋中再摸出一个球,其为b 。则使不等式a ?2b +10>0成立的事件发生的概率等于 .

4.设数列{}n a 的前n 项和n S 满足:1(1)

n n n S a n n -+=+,1,2,n =,则通项n a = . 5.已知椭圆22

221(0)x y a b a b

+=>>与直线1x y +=交于M,N 两点,且OM ON ⊥,(O 为

原点),当椭圆的离心率2

e ∈时,椭圆长轴长的取值围是 .

6.函数 y =的最大值是 .

7.在平面直角坐标系中,定义点()11,y x P 、()22,y x Q 之间的“直角距离”为.),(2121y y x x Q P d -+-=若()y x C ,到点()3,1A 、()9,6B 的“直角距离”相等,其中实数x 、y 满足100≤≤x 、100≤≤y ,则所有满足条件的点C 的轨迹的长度之和为 .

8.一个半径为1的小球在一个壁棱长为则该小球永远不可能接触到的容器壁的面积是 .

二.解答题(共56分)

9.(16分) 已知定义在R 上的函数()f x 满足:5(1)2f =

,且对于任意实数x y 、,总有()()()()f x f y f x y f x y =++-成立.

(1)若数列{}n a 满足2(1)()(1,2,3,

)n a f n f n n =+-=,求数列{}n a 的通项公式; (2)若对于任意非零实数y ,总有()2f y >.设有理数12,x x 满足12||||x x <,判断1()

f x 和2()f x 的大小关系,并证明你的结论.

10.(20分)设0b >,数列{}n a 满足1a b =,1122

n n n nba a a n --=

+-(2)n ≥. (1)求数列{}n a 的通项公式; (2)证明:对于一切正整数n ,1

112

n n n b a ++≤+.

11.(20分)若a 、b 、c R +∈,且满足22)4()(c b a b a c

b a kab

c ++++≤++,求k 的最

大值。

加试

一.(40分)在平面直角坐标系xOy 上,给定抛物线L :214

y x =.实数,p q 满足 24p q -≥0,12,x x 是方程20x px q -+=的两根,记12(,)max{,}p q x x ?=.

(1)过点2001(,

)4

A p p 0(0)p ≠作L 的切线交y 轴于点

B .证明:对线段AB 上的任一点(,)Q p q ,有0(,)2

p p q ?=; (2)设{(,)|D x y y =≤1x -,y ≥215(1)}44

x +-.当点(,)p q 取遍D 时,求(,)p q ?的最小值 (记为min ?)和最大值(记为max ?).

二.(40分)如图,给定凸四边形ABCD ,180B D ∠+∠<,P 是平面上的动点,令()f P PA BC PD CA PC AB =?+?+?.

(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆;

(Ⅱ)设E 是ABC ?外接圆O 的弧AB上一点,满足:3AE AB =,31BC EC

=-,12

ECB ECA ∠=∠,又,DA DC 是圆O的切线,2AC =,求()f P 的最小值.

二题图

三.(50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。

四.(50分)求证:对1,2,3,i =均有无穷多个正整数n ,使得,2,28n n n ++中恰有i 个可表示为三个正整数的立方和。

模拟试题一参考答案

第一试

一. 填空题(每小题8分,共64分)

1.2.当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x

+-+==+---12(2)2x x ≥??-- 2=,当且仅当122x x

=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.

2. 121,11,22?

???----? ??? ???? 设t =s inx +co s x =).4sin(2cos 22sin 222π+=???? ??+x x x 因为,1)4sin(1≤+≤-π

x 所以.22≤≤-t 又因为t 2=1+2s inxco s x ,所以

s inxco s x =212-t ,所以2

1121

2-=+-=t t x y ,所以.212212-≤≤--y 因为t ≠-1,所以12

1-≠-t ,所以y ≠-1. 所以函数值域为.212,11,212??

? ??--???????-+-∈ y 3. 8161。

甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。由不等式a ?2b +10>0得2b

6181135745=++++。 4. 112

(1)n n n -+。1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++, 即 2n n a n n n n n n a ++++-++-+=+)

1(111)2)(1(221 =)1(1)2)(1(2+++++-n n a n n n , 由此得 2)

1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122

b a =+= (10a =), 有112n n b b +=

,故12n n b =,所以)1(12

1+-=n n a n n .

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学竞赛_函数【讲义】

1 第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

2012年全国高中数学联赛模拟试题二

2012年全国高中数学联赛模拟试题二 一、选择题:每题6分,满分36分 1、数列10021,,,x x x 满足如下条件:对于k x k ,100,2,1 =比其余99个数的和小k ,已知 n m x = 50,m ,n 是互质的正整数,则m+n 等于( ) A 50 B 100 C 165 D 173 2、若2 6cos cos ,22sin sin = +=+y x y x ,则)sin(y x +等于( ) A 2 2 B 2 3 C 2 6 D 1 3、P 为椭圆 19 162 2 =+y x 在第一象限上的动点,过点P 引圆92 2 =+y x 的两条切线PA 、PB ,切点分 别为A 、B ,直线AB 与x 轴、y 轴分别交于点M 、N ,则MON S ?的最小值为( ) A 2 9 B 32 9 C 4 27 D 34 27 4.函数2 0.3()log (2)f x x x =+-的单调递增区间是( ) . (A) (,2)-∞- (B) (,1)-∞ (C) (-2,1) (D) (1,) +∞ 5.已知,x y 均为正实数,则22x y x y x y + ++的最大值为( ) . (A) 2 (B) 23 (C) 4 (D) 43 6.直线y=5与1y =-在区间40, πω????? ? 上截曲线 sin (0, 0)2y m x n m n ω =+>>所得的弦长相等且不为零,则下列描述正确的是( ) . (A )35,n= 2 2 m ≤ (B )3,2m n ≤= (C )35,n=2 2 m > (D )3,2m n >= 二、填空题:每小题9分,满分54分 7、函数)(x f 满足:对任意实数x,y ,都有 23 ) ()()(++=-y x xy f y f x f ,则=)36(f . 8、正四面体ABCD 的体积为1,O 为为其中心. 正四面体D C B A ''''与正四面体ABCD 关于点O 对 称,则这两个正四面体的公共部分的体积为 . 9、在双曲线xy =1上,横坐标为 1 +n n 的点为n A ,横坐标为 n n 1+的点为)(+∈N n B n .记坐标为 (1,1)的点为M ,),(n n n y x P 是三角形M B A n n 的外心,则=+++10021x x x . 10.已知sin(sin )cos(cos )x x x x +=-,[]0,,x π∈ 则=x . 11.设,A B 为抛物线2 2(0)y px p =>上相异两点,则2 2 O A O B AB +- 的最小值为 ___________________. 12.已知A B C ?中,G 是重心,三内角,,A B C 的对边分别为,,a b c ,且

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

重点高中数学竞赛知识点

重点高中数学竞赛知识点

————————————————————————————————作者:————————————————————————————————日期:

数学 均值不等式 被称为均值不等式。·即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为“调几算方”。 其中:,被称为调和平均数。 ,被称为几何平均数。 ,被称为算术平均数。 ,被称为平方平均数。 一般形式 设函数(当r不等于0时);(当r=0时),有时,。 可以注意到,Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即 。 特例 ⑴对实数a,b,有(当且仅当a=b时取“=”号),(当且仅当a=-b时取“=”号) ⑵对非负实数a,b,有,即 ⑶对非负实数a,b,有 ⑷对实数a,b,有 ⑸对非负实数a,b,有 ⑹对实数a,b,有

⑺对实数a,b,c,有 ⑻对非负数a,b,有 ⑼对非负数a,b,c,有 在几个特例中,最著名的当属算术—几何均值不等式(AM-GM不等式): 当n=2时,上式即: 当且仅当时,等号成立。 根据均值不等式的简化,有一个简单结论,即。 排序不等式 基本形式: 排序不等式的证明 要证 只需证 根据基本不等式 只需证 ∴原结论正确 棣莫弗定理 设两个复数(用三角形式表示),则: 复数乘方公式:. 圆排列 定义 从n个不同元素中不重复地取出m(1≤m≤n)个元素在一个圆周上,叫做这n个不同元素的圆排列。如果一个m-圆排列旋转可以得到另一个m-圆排列,则认为这两个圆排列相 同。 计算公式 n个不同元素的m-圆排列个数N为: 特别地,当m=n时,n个不同元素作成的圆排列总数N为:。

高中数学竞赛讲义-抽屉原理

§23抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

(完整word版)No.31全国高中数学联合竞赛模拟试题.doc

No.31 高中数学联赛模拟试卷 1、已知0 a b, x a b b, y b b a,则 x, y 的大小关系是. 2、设a b c , n N ,且 1 1 c n 恒成立,则 n 的最大值为 a b b a c 3、对于m 1 的一切实数 m ,使不等式 2 x 1 m(x2 1) 都成立的实数x 的取值范围是 4 、已知 f x log sin x, 0, ,设 a f sin cos , b f sin cos , 2 2 c f sin 2 ,那么 a、b、 c的大小关系是 cos sin 5、不等式4x 2 2 3 x 2000 . 的解集是 1999 6、函数f x x 2 2x 2 2 x 1 的最小值为 2x 7、若a,b,n R ,且a b n ,则 1 1 1 1 的最小值是. a b 8、若3x2 xy 3y 2 20 ,则 8x 2 23y 2的最大值是. 9、设n N ,求 | n 1949 | | n 1950 | | n 2001 |的最小值. 1 1 L 1 10、求s 1 ,则 s 的整数部分 2 3 106 11、圆周上写着红蓝两色的数。已知,每个红色数等于两侧相邻数之和,每个蓝色数等于两侧相邻数之和的一半。证明,所有红色数之和等于0。(俄罗斯) 12、设a, b, c R ,求证:a2 b2 c2 a b c . b c c a a b 2 (第二届“友谊杯”国际数学竞赛题)

乌鲁木齐市高级中学数学竞赛培训题 2 参考答案 1、解法 1 x a b b a , y b b a a . a b b b b a 0 a b, a b b b b a, x y . 解法 2 x a b b b b a x y b b a a b , a b b a, 1, x y . b y 解法 3 1 1 1 1 a b b b b a x y a b b b b a a a a b b a 1 1 0, x y . = a 0, x y 解法 4 原问题等价于比较 a b b a 与 2 b 的大小 . 由 x 2 y 2 ( x y) 2 , 得 2 ( a b b a )2 2(a b b a) 4b , a b b a 2 b . a b b a , a b b a 2 b , x y . 解法 5 如图 1,在函数 y x 的图象上取三个不同的 y C 点 A ( b a , b a )、B ( b , b )、C ( a b , a b ). B 由图象,显然有 k BC k AB ,即 a b b b b a , A (a b) b b (b a) 即 a b b b b a ,亦即 x y . O b-a b b+a x a 图 1 解法 6 令 f (t) a t t , f (t ) 单 a t t 调递减,而 b b a , f (b) f (b a) ,即 a b b b b a , x y . 2、解法 1 原式 a c a c n . n a c a c .而 a c a c a b b c a b b c min a b b c a b b c b c a b 2 + b c a b 4 ,且当 b c a b ,即 a c 2b a b b c a b b c a b b c 时取等号. a c a c 4 . n 4.故选 C . a b b c min

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学正态分布知识点+练习

正态分布 要求层次 重难点 正态分布 A 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. (一) 知识内容 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近 的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22 ()2()2πx f x e μσσ --=?,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作 2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线. ⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. 例题精讲 高考要求 正态分布 x=μ O y x

⑶重要结论: ①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%. ②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则. (二)典例分析: 【例1】 已知随机变量X 服从正态分布2(3)N a , ,则(3)P X <=( ) A .1 5 B . 1 4 C .1 3 D . 12 【例2】 在某项测量中,测量结果X 服从正态分布() ()210N σσ>,,若X 在()01, 内取值的概率为0.4,则X 在()02, 内取值的概率为 . 【例3】 对于标准正态分布()01N , 的概率密度函数()2 2 x f x -=,下列说法不正确的是( ) A .()f x 为偶函数 B .()f x C .()f x 在0x >时是单调减函数,在0x ≤时是单调增函数 D .()f x 关于1x =对称 【例4】 已知随机变量X 服从正态分布2(2)N σ, ,(4)0.84P X =≤,则(0)P X =≤( ) A .0.16 B .0.32 C .0.68 D .0.84 【例5】 某种零件的尺寸服从正态分布(04)N ,,则不属于区间(44)-,这个尺寸范围的零件约占总数 的 . 【例6】 已知2(1)X N σ-, ~,若(31)0.4P X -=≤≤-,则(31)P X -=≤≤( ) A .0.4 B .0.8 C .0.6 D .无法计算 【例7】 设随机变量ξ服从正态分布(29)N ,,若(2)(2)P c P c ξξ>+=<-,则_______c =.

高中数学竞赛讲义_数列

数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛模拟试题一汇总

高中数学竞赛模拟试题一 一 试 (考试时间:80分钟 满分100分) 一、填空题(共8小题,5678=?分) 1、已知,点(,)x y 在直线23x y += 上移动,当24x y +取最小值时,点(,)x y 与原点的距离是 。 2、设()f n 为正整数n (十进制)的各数位上的数字的平方之和,比如 ()22212312314 f =++=。记 1()() f n f n =, 1()(()) k k f n f f n +=, 1,2,3... k =,则 =)2010(2010f 。 3、如图,正方体1 111D C B A ABCD -中,二面角 1 1A BD A --的度数 是 。 4、在2010,,2,1 中随机选取三个数,能构成递增等差数列的概率是 。 5、若正数c b a ,,满足 b a c c a b c b a +- +=+,则c a b +的最大值是 。 6、在平面直角坐标系xoy 中,给定两点(1,2)M -和(1,4)N ,点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 。 7、已知数列...,,...,,,210n a a a a 满足关系式18)6)(3(1=+-+n n a a 且30=a ,则∑=n i i a 01 的值是 。 8、函数sin cos tan cot sin cos tan cot ()sin tan cos tan cos cot sin cot x x x x x x x x f x x x x x x x x x ++++=+++++++在(,)2 x o π∈时的最 小值为 。

二、解答题(共3题,分44151514=++) 9、设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有:n n n n a a 111+≥+ 10、已知曲线m y x M =-22:,0>x ,m 为正常数.直线l 与曲线M 的实轴不垂直,且依次交直线x y =、曲线M 、直线x y -=于A 、B 、C 、D 4个点,O 为坐标原点。 (1)若||||||CD BC AB ==,求证:AOD ?的面积为定值; (2)若BOC ?的面积等于AOD ?面积的3 1,求证:||||||CD BC AB == 11、已知α、β是方程24410()x tx t R --=∈的两个不等实根,函数=)(x f 1 22 +-x t x 的定义域为[,]αβ. (Ⅰ)求);(min )(max )(x f x f t g -= (Ⅱ)证明:对于) 2 ,0(π∈i u )3,2,1(=i ,若1sin sin sin 321=++u u u ,则 64 3 )(tan 1)(tan 1)(tan 1321<++u g u g u g . 二 试 (考试时间:150分钟 总分:200分) 一、(本题50分)如图, 1O 和2 O 与 ABC ?的三边所在的三条直线都相 切,,,,E F G H 为切点,并且EG 、FH 的 延长线交于P 点。 求证:直线PA 与BC 垂直。 二、(本题50分)正实数z y x ,,,满 足 1≥xyz 。证明: E F A B C G H P O 1。 。 O 2

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

相关主题
文本预览
相关文档 最新文档