当前位置:文档之家› 复变函数论总结

复变函数论总结

复变函数论总结
复变函数论总结

复变函数论总结

摘要:对数学物理方法的第一篇复变函数论每一章每一节做了总结,对这一章也有了深入的认识,通过积分与柯西积分定理和柯西积分公式,学习了圆域内泰勒级数的展开与环域内洛朗级数的展开,以及应用留数定理计算实变函数定积分,傅立叶积分与傅立叶变换。

关键词:复数;导数;解析;积分;柯西公式、定理;幂级数展开;留数;傅立叶积分与傅立叶变换

1引言

《复变函数论主要内容》

第一章复变函数complex function

第二章复变函数的积分complex function integral

第三章幂级数展开power series expansion

第四章留数定理residual theorem

第五章傅立叶变换Fourier integral transformation

第一章复变函数

§1.1 复数及复数的运算

§1.2 复变函数

§1.3导数

§1.4解析函数

§1.1 复数及复数的运算

1.复数的概念

的数被称为复数,其中。

;;i为虚数单位,其意义为

当且仅当时,二者相等

复数与平面向量一一对应

z平面

虚轴y

. (x,y)

x实轴

幅角(k)

注意:复数“零”(即实部和虚部都等与零的复数)的幅角没有明确意义

2.复数的表示代数表示

三角表示

指数表示

一个复数z的共轭复数

注意:在三角表示和指数表示下,两个复数相等当且仅当模相等且幅角相差3.无限远点

在复变函数论中,通常还将模为无限大的复数也跟复平面上的一点对应,而且称这一点为无限远点,我们把无限远点记作,它的模为无限大,幅角则没有明确意义

4.复数的运算

复数的加法法则:

复数与的和定义是

两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律,且

当同一方向时等号成立。

复数的减法法则:

且有

复数的乘法法则:

乘法的交换律、结合律与分配律都成立

复数的除法法则:

注意:采用三角式或指数式比较方便。

§1.2复变函数

(一)复变函数的定义

若在复数平面上存在一个点集E,对于E的每一点,按照一定的规律,有一个或多个复数值与之相对应,则称的函数—复变函数,z称为的宗量,定义域为E,记作,zE

(二)区域的概念

领域:以复数z为圆心,以任意小正数为半径作一圆,则圆内所有点的集合称为z的领域

内点:若z及其领域均属于点集E,则称z为该点集的内点

外点:若z及其领域均不属于点集E,则称z为该点集的外点

境界点:若在z的每个领域内,既有属于E的点,也有不属于E的点,则称z为该点集的境界点,它既不是E的内点,也不是E的外点,境界点的全体成为境界线

区域是指满足下列两个条件的点集

1.全由内点组成

2.具有连通性,即点集中的任意两点都可以用一条折线连接起来,且折线

上的点全部属于改点集

闭区域:区域及其境界线所组成的点集

(三)复变函数例

周期为

周期为

周期为

(s为复数) 周期为

注意:复变函数在点连续的定义是:

当z时,

§1.3 导数

(一)导数的定义

设函数是在区域B上定义的单值函数,即对于B上的每一个z值,有且只有一个值与之相对应,若在B上的基点z,极限

存在,并且与的方式无关,则称函数点可导,复变函数的导数定义,形式上跟实变函数的导数定义一样。

现在让我们比较沿平行于实轴方向逼近零和沿平行于虚轴方向逼近零的两种情形

1.先看沿平行于实轴方向逼近零,这是而,于是

2.再看沿平行于虚轴方向逼近零,这是而,于是

则有,即

这两个方程叫做柯西黎曼方程,是复变函数可导的必要条件

(二)极坐标系中的柯西黎曼方程

§1.4 解析函数

(一)解析函数定义

若函数在点及其领域上处处可导,则称在点解析。又若在区域B上每一点都解析,则称是区域B上的解析函数。函数在一点可导与解析是不等价的,但函数若在某一区域B上解析,意味着函数在区域B上处处可导,因此函数在某区域上可导与解析是等价的

(二)解析函数性质

1.若函数在区域B上解析,则

u(x,y) ,v(x,y) 是B上的两组正交曲线族

2.若函数在区域B上解析,则u,v均为B上的调和函数,即

(三)求解析函数的方法

1.曲线积分法:全微分的积分与路径无关,故可选取特殊积分路径

2.凑全微分显示法

3.不定积分法

第二章复变函数的积分

§2.1 复变函数的积分

§2.2 柯西定理

§2.3 不定积分

§2.4 柯西公式

§2.1 复变函数的积分

(一)复变函数路积分定义

复变函数路积分可以归结为两个实变函数的线积分,它们分别是路积分的实部和虚部

u(x,y)dx

v(x,y)dxu(x,y)dy

(二)复变函数路积分性质

1.常数因子可以移到积分号外

2.函数的和的积分等于各个函数的积分之和

3.反转积分路径,积分变号

4.全路径上的积分等于各段上积分之和

5.积分的模小于等于模的积分

注意:复变函数的积分值不仅依赖于起点和终点,还与积分路径有关

§2.2 柯西定理

(一)单通区域的情形

所谓单通区域是这样的区域,在其中做任何简单的闭合围线,围线内的店都是属于该区域内的点

单通区域柯西定理:如果函数在闭单通区域上解析,则沿上任意分段光滑闭合曲线l,有

(二)复通区域的情形

在区域内,只要有一个简单的闭合曲线其内有不属于该区域的点,这样的区域便称为复通区域,对于区域的境界线,外境界线是逆时针方向为正,内境界线是顺时针方向为正

复通区域柯西定理:如果是闭复通区域上的单值解析函数,则

式中为区域外境界线,诸为区域内境界线,积分均沿境界线正方向进行

(三)总结柯西定理

1.闭单通区域上的解析函数沿境界线积分为零

2.闭复通区域上的解析函数沿所有内外境界线正方向积分和为零

3.闭复通区域上的解析函数沿外境界线逆时针方向积分等于沿所有内境界

线逆时针方向积分之和

§2.3 不定积分

当积分起点固定时,这个不定积分就定义了一个单值函数,记作

就是说路积分的值等于原函数的改变量

注意:须记住下面重要结果

的结果是

§2.4 柯西公式

(一)单通区域柯西公式:

设在单通区域D内解析,为D的内点,则D的边界线,又可写为(二)复通区域的柯西公式:

设在复通区域D内解析,为D的内点,则

(积分沿的边界线1的正方向)

第三章幂级数展开

§3.1 复数项级数

§3.2 幂级数

§3.3 泰勒级数展开

§3.4 解析延拓

§3.5洛朗级数展开

§3.6 孤立奇点的分类

§3.1 复数项级数

(一)定义:

设有复数项的无穷级数

它的每一项都可分为实部和虚部,那么,

从而

这样复数项无穷级数的收敛性问题就归结为两个实数项级数的收敛问题,柯西收敛判据成立。

(二)绝对收敛

如果复数项级数各项的模组成的级数

收敛,就把复数项级数叫做绝对收敛

注意:绝对收敛级数各项先后次序可以改变,两个绝对收敛的复数项级数的乘积也会收敛于原来函数的乘积

(三)一致收敛

复变项级数

它的各项是z的函数,如果在某个区域上所有的点级数都收敛,就叫作在此区域上收敛。复变项级数在区域上收敛的充分必要条件是,在区域上各点z,对于给定任意小正数,必有N存在,使得nN时

||,

式中p为任意正整数,如果N与z无关,就把复变项级数叫做在此区域上一致收敛,一致收敛具有连续性、可积性、解析性。

§3.2 幂级数

定义:

叫做为中心的幂级数,为圆心做一个半径为R的圆周,由于幂级数在圆的

内部绝对收敛,在圆外发散,这个圆因而叫做幂级数的收敛圆,半径则叫做收敛半径。

|或

注意:函数在区域内解析的充要条件是,函数在此区域内任意一点的领域内都可展成幂级数

§3.3 泰勒级数展开

任意阶导数都存在的实变函数可以展为泰勒级数

定理:设在以为圆心的圆内解析,则对圆内任意z点,可展为幂级数

其中

具体步骤:先确定展开中心,再确定系数,最后将系数代回,写出泰勒级数

方法:直接发和间接法

注意:若在以点解析,则

1.在以某一领域内可导

2.在以某一领域内有连续的偏导数并满足柯西黎曼方程

3.沿所有内外境界线正方向积分和为零

4.可化为幂级数泰勒展开

§3.4 解析延拓

简单的说,解析延拓就是解析函数定义域的扩大,而且解析延拓是唯一的。

§3.5 洛朗级数展开

(一)定理:设在环形区域的内部单值解析,则对环域上任意z点,可展为幂级

其中,

积分路径C为位于环域内按逆时针方向绕内圆一周的任意闭合曲线

(二)具体步骤:先求的奇点,然后以为展开中心,奇点为分隔点,找出到无穷

远使解析的环域

(三)洛朗级数和泰勒级数的区别

1. 从形式上看,洛朗级数有幂次为负数的项,而泰勒级数没有。

2. 但这只是表面现象,这两者本质上的不同在于,洛朗级数是在孤立奇点

的邻域的级数展开,它的定义域是一个环状的区域

3. 洛朗级数的正则部分(也就是幂次非负的部分)是在|z|<=R有效的,而

主要部分(也就是幂次为负的部分)是在r<=|z|处有效的,两者都有定

义的部分就是那个环状区域。

4. 实际上,泰勒级数是更基本的。洛朗级数的正则部分就是这个孤立奇点

附近的关于z的泰勒级数,而其主要部分则是无穷远点附近的关于1/z

的泰勒级数。也就是说洛朗级数是两个泰勒级数的和。

§3.6 孤立奇点的分类

(一)定义:若在以点不可导,而在的任意小领域内处外处处可导,便称为的孤立

奇点

(二)孤立奇点的分类

在挖去孤立奇点而形成的环域上的解析函数的洛朗级数或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,在这三种情况下,我们分别把的可去奇点,极点或本性奇点

第四章留数定理

§4.1 留数定理

§4.2 应用留数定理计算实变函数定积分

§4.1 留数定理

(一)留数的概念:洛朗级数的项的系数叫做函数在以点的留数通常记作Res,

这样

(二)留数定理:设函数在回路l所围区域B上除有限个孤立奇点外解析,在闭区

域B上处外连续,则

留数定理将回路积分归结为被积函数在回路所围区域上个奇点的留数之和

(三)留数的求法:

1.非零的有限值,即

若可以表示为的特殊形式,其中都在点解析,是的一阶零点,,从而是的一阶极点,则

2.若是的m阶极点,则有

(四)求回路积分:

1.确定孤立奇点

2.看是否在积分范围内

3.求留数

4.代回回路积分

§4.2 应用留数定理计算实变函数定积分

(一)方法:

1.变量代换

2.解析延拓

(二)具体类型:

1.类型1 :,被积函数是三角函数的有理式,积分区间,作自然代换z,

则有

,,,

于是原积分化为

I(

2.类型2:,积分区间是;复变函数在实轴上没有奇点,在上半平面除有限

个奇点外是解析的;当z在上半平面和在实轴上时,z一致地。如果是

有理分式,上述条件意味着没有实的零点,的次数至少高于两次,则有

3.类型3:,,积分区间;偶函数在实轴上没有奇点,在上半平面处有限个

奇点外是解析的;当z在上半平面实轴上时,一致地,则有

第五章傅立叶变换

§5.1 傅立叶级数

§5.2 傅立叶积分与傅立叶变换

§5.3 函数

§5.1 傅立叶级数

(一)周期函数的傅立叶展开

若函数以2l为周期,即,则可将展开为级数

其中

(二)狄里希利定理

若函数满足条件:

1.处处连续。或在每个周期中只有有限个第一类间断点

2.在每个周期中只有有限个极值点

则级数收敛,且

级数和

(三)奇函数及偶函数的傅立叶展开

奇函数:及诸均为零,

偶函数:所有均为零

(四)定义在有限区间上的函数的傅立叶展开

可以采取解析沿拓的方法,使其成为某种周期函数(五)复数形式的傅立叶级数

§5.2 傅立叶积分与傅立叶变换

(一)实数形式的傅立叶积分

注意:

1.奇函数的傅立叶积分

2.偶函数的傅立叶积分

(二)复数形式的傅立叶积分

(三)傅立叶变换的基本性质

1.导数定理:

2.积分定理:

3.相似性定理:

4.延迟定理:

5.位移定理:

6.卷积定理:,,则

(四)多重傅立叶积分

§5.3 函数

(一)函数

(二)函数的一些性质

1.函数是偶函数,它的导数是奇函数

2.

3.对于任意一个定义在(上的连续函数,

4.即使是连续分布的质量、电荷或持续作用的力也可用函数表出

5.如果的实根(k=1,2,3….)全是单根,则

(三)函数是一种广义函数

(四)函数的傅立叶变换

(五)多维的函数

2.小结

对数学物理方法的第一篇复变函数论每一章每一节做了总结,对这一章也有了深入的认识,通过积分与柯西积分定理和柯西积分公式,学习了圆域内泰勒级数的展开与环域内洛朗级数的展开,以及应用留数定理计算实变函数定积分,傅立叶积分与傅立叶变换

参考文献:

[1]梁昆淼,数学物理方法,高等教育出版社

复变函数论文

复变函数在GIS上的运用与地位 一摘要 该论文主要研究复变函数在GIS专业上的作用和地位,通过复变函数发展简介和内容,我们认识到复变函数的发展史和学术地位,因为它运用广泛,作为当代大学生,我们应该明白它在学习中起到举足轻重的作用,从学习中的地位延伸到专业中的地位,从而了解他在GIS的运用,借助复变函数推出柯西—黎曼曲面,进而导出复球面的紧性,得出扩充复平面是紧的,得出结论,体会,心德和认识,最后对结论进行推导和运用。 二关键词 复变函数,地理信息系统,复平面,柯西—黎曼曲面 三正文 (一)复变函数的发展简况与内容 复变函数理论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。复变函数理论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。为复变函数理论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。复变函数理论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 复变函数理论主要包括解析函数理论、黎曼曲面理论、几何函数论、留数理论、积分和级数、广义解析函数等方面的内容。复变函数理论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。

复变函数论第一章复数与复变函数

引言 复数理论的产生、发展经历了漫长而又艰难的岁月.复数是16世纪人们在解代数方程时引入的. 1545年,意大利数学物理学家H Cardan (卡丹)在所著《重要的艺术》一书中列出将10分成两部分,使其积为40的问题,即求方程(10)x x -的根,它求出形式的根为 5+525(15)40--=. 但由于这只是单纯从形式上推广而来引进,并且人民原先就已断言负数开平方是没有意义的.因而复数在历史上长期不能为人民所接受.“虚数”这一名词就恰好反映了这一点. 直到十八世纪,,D Alembert (达朗贝尔):L Euler (欧拉)等人逐步阐明了复数的几何意义与物理意义,建立了系统的复数理论,从而使人民终于接受并理解了复数. 复变函数的理论基础是在十九世纪奠定的,主要是围绕..A L Cauchy (柯西),K Weierstrass (魏尔斯特拉斯)和B Riemann (黎曼)三人的工作进行的. 到本世纪,复变函数论是数学的重要分支之一,随着它的领域的不断扩大而发展成庞大的一门学科,在自然科学其它(如空气动力学、流体力学、电学、热学、理论物理等)及数学的其它分支(如微分方程、积分方程、概率论、数论等)中,复变函数论都有着重要应用. 第一章 §1 复数 教学目的与要求:了解复数的概念及复数的模与辐角; 掌握复数的代数运算复数的乘积与商﹑幂与根运算. 重点:德摩弗()DeMoiVre 公式. 难点:德摩弗()DeMoiVre 公式. 课时:2学时. 1. 复数域 形如z x iy =+或z z yi =+的数,称为复数,其中x 和y 均是实数,称为复数z 的 实部和虚部,记为Re x z =,Im y z = i =,称为虚单位. 两个复数111z x iy =+,与222z x iy =+相等,当且仅当它们的实部和虚部分别对应相等,即12x x =且12y y =虚部为零的复数可看作实数,即0x i x +=,特别地,000i +=,因此,全体实数是全体复数的一部分. 实数为零但虚部不为零的复数称为纯虚数,复数x iy +和x iy -称为互为共轭复数,记

复变函数论第三版课后习题答案 2

第一章习题解答 (一) 1 .设z =z 及Arcz 。 解:由于3i z e π -== 所以1z =,2,0,1, 3 Arcz k k ππ=-+=±。 2 .设121z z =,试用指数形式表示12z z 及12 z z 。 解:由于6412,2i i z e z i e ππ -==== 所以()6 46 4 12 12222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+====。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3是内 接于单位圆 1 =z 的一个正三角形的顶点。 证 由于1 321 ===z z z ,知 321z z z ?的三个顶点均在单位圆上。 因为 3 33 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 1212 1-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

(完整版)《复变函数》教学大纲

《复变函数》教学大纲 说明 1.本大纲适用数学与应用数学本科教学 2.学科性质: 复变函数论是成人高等师范数学专业基础课程之一,它在微分方程、概率论、力学等学科中都有应用,复变函数论方法是工程、科技的常用方法之一。复变函数论主要研究解析函数。解析函数定义的几种等价形式,表现了解析函数这一概念在不同方面的特性。复变函数论的基本理论以柯西定理为主要定理,柯西公式为重要公式,留数基本定理是柯西定理的推广。保形映照是复变函数几何理论的基本概念。;留数理论和保形映照也为实际应用提供了特有的复变函数论方法。 3.教学目的: 复变函数论是微积分学在复数域上的推广和发展,通过复变函数论的学习能使学生对微积分学的某些内容加深理解,提高认识。复变函数论在联系和指导中学数学教学方面也有重要的作用,学生通过复变函数论的学习对中学数学的某些知识有比较透彻的理解与认识,从而增加做好中学数学教育工作的能力。 4.教学基本要求: 通过本课程的学习,要求学生达到: 1.握基本概念和基本理论; 2.熟练的引进基本计算(复数、判断可导性及解析性、复积分、函数 的展式、孤立奇点的判断、留数的计算及应用、求线性映照及简单映 照等); 2.固和加深理解微积分学的有关知识。 5.教学时数分配: 本课程共讲授72学时(包括习题课),学时分配如下表: 教学时数分配表

以上是二年制脱产数学本科的教学时数。函授面授学时不低于脱产的40%,可安排28~30学时。 教学内容 第一章复数与复变函数 复变函数的自变量和因变量都是复数,因此,复数和平面点集是研究复变函数的基础。复变函数及其极限理论与微积分学的相应内容类似,但因复变函数是研究平面上的问题,因此有其新的含义与特点。 (一)教学内容

复变函数第二章学习方法导学

第二章 解析函数 解析函数是复变函数论研究的中心和主要对象,它是一类具有某种特性的可微(可导)函数,并在理论和实际问题中有着广泛的应用. 本章,我们首先介绍复变函数的极限与连续,并从复变函数的导数概念出发,引入解析函数,导出复变函数可导和解析的主要条件——柯西—黎曼条件,并给出判断函数可导和解析的一类充分必要条件(它是用复变函数的实部和虚部两个二元实函数所具有的微分性质来表达的充要条件);其次,介绍几类基本初等解析函数,这些函数实际上是数学分析中大家所熟知的初等函数在复数域上的推广,并研究它们的有关性质. 一、基本要求 1.掌握复变函数的极限和连续的概念,能对照数学分析中极限和连续的性质,平行地写出复变函数的极限与连续的相应性质(比如极限和连续的四则运算性、极限和连续的局部不等性(由于复数没有大小的规定,因此,此性质是与局部保号性相对应的性质)、极限与连续的局部有界性、极限存在的柯西准则、极限的归结原则和复合函数的连续性等),并能熟练地运用四则运算性和复合函数的连续性求函数的极限或判断函数的连续性. 2.熟练掌握复变函数的极限和连续与其实部、虚部两个二元实函数的极限和连续的等价关系,能利用这种关系借助二元实函数的极限或连续简洁地求复变函数的极限或讨论复变函数的连续性;能利用这种关系借助有界闭集上二元连续函数的整体性质简洁地证明有界闭集上复变连续函数的整体性质(比如:有界性,最大模和最小模的存在性,一致连续性).另外,关于对具体函数的一致连续性的讨论,大家还要掌握利用下面的结论来判断函数不一致连续的有效方法,结论如下: 复变函数()f z 在点集E ?£上一致连续?对任意两个点列n z ,n z 'E ∈,只要0()n n z z n '-→→∞,总有()()0()n n f z f z n '-→→∞.

复变函数论作业及答案

习题1 第一章 复数与复变函数 1.12z = =求|z|,Argz 解:123212 2 =??? ? ??+??? ??=z Argz=arctan 212-+2k π=23k π π+-, ,2,1,0±±=k 2.已知2 11i z += ,=2z i -3,试用指数形式表示2 1 21z z z z 及 解:2 11i z += i e 4 π = =2z i -3i e 6 2π -= 所以21z z =i e 6 2π -i e 4 πi e 12 2π - = 2 1z z i i i i e e e e 125)64(64 21212π π ππ π ===+- 3. 解二项方程440z a += )0(>a 解 由440z a +=得44z a =- 则二次方程的根为 k w a = (k=0,1,2,3) =24k i e a ππ+? (k=0,1,2,3) 0w =4 i e a π? =234 4 1(1)2 i i a w e a e a i ππ π+?===-+

54 2(1)2i a w e a i π==-- 74 3(1)2 i a w e a i π==- 4 .设1z 、2z 是两个复数,求证: ),Re(2||||||212221221z z z z z z -+=- 证明:()() 21212 21z z z z z z --=- () 2 12 22 121212 2211 2212 221Re 2z z z z z z z z z z z z z z z z -+=--+=---= 5. 设123z ,z ,z 三点适合条件: 1230z z z ++=及1231z z z === 试证明123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点。 证明:设111z x iy =+,222z x iy =+,333z x iy =+ 因为1230z z z ++= ∴1230x x x ++=,1230y y y ++= ∴123x x x =--,123y y y =-- 又因为1231z z z === ∴三点123z ,z ,z 在单位圆周上,且有222222112233x y x y x y +=+=+ 而()()2 2 22112323x y x x y y +=+=+ ()()2 223231x x y y ∴+++= ()232321x x y y ∴+=- 同理=+)(22121y y x x ()()131********x x y y x x y y +=+=- 可知()()()()()()2 2 2 2 2 2 121223231313x x y y x x y y x x y y -+-=-+-=-+-

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉 (1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。怎么样计算复数的平方根,极坐标与 xy 坐标的转换,复数的模之类的。这些在高中的时候基本上都会学过。 (2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到 复平面里面,从而引出解析函数的定义。那么研究解析函数的性质就是关键所在。最关键的地方就是所谓 的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。 (3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎 是一致的。在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。这 个是复分析的第一个重要定理。 (4)既然是解析函数,那么函数的定义域就是一个关键的问题。可以从整个定义域去考虑这个函数,也可 以从局部来研究这个函数。这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极 点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和

零点极点的性质。与之类似的幅角定理 也展示了类似的关系。 (6)除了积分,导数也是解析函数的一个研究方向。导数加上收敛的概念就可以引出Taylor 级数和 Laurent 级数的概念。除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。 (7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照 定理。这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。研究 Mobius 变换的保角和交比之类的性质。 (8)椭圆函数,经典的双周期函数。这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的 微分方程,以及该函数的性质。 以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

第一章-复数与复变函数

复变函数教案 2012—2013学年度第二学期 任课教师郭城 课程名称复变函数 采用教材高教三版(钟玉泉编) 周课时数 4 数统学院数学教育专业2010 年级1班

引言 数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。 我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac

复变函数总结

第一章 复数的运算与复平面上的拓扑 1.复数的定义 一对有序实数(x,y )构成复数z x iy =+,其中()()Re ,Im x z y z ==.21i =-, X 称为复数的实部,y 称为复数的虚部。 复数的表示方法 1) 模: z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与 arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

4)若 12 1122,i i z z e z z e θθ==, 则 () 121212i z z z z e θθ+=; ()121122 i z z e z z θθ-= 5.无穷远点得扩充与扩充复平面 复平面对内任一点z , 用直线将z 与N 相连, 与球面相交于P 点, 则球面上除N 点外的所有点和复平面上的所有点有一一对应的关系, 而N 点本身可代表无穷远点, 记作∞.这样的球面称作复球面 这样的球面称作复球面. 扩充复平面---引进一个“理想点”: 无穷远点 ∞ 复平面的开集与闭集 复平面中领域,内点,外点,边界点,聚点,闭集等概念 复数序列的极限和复数域的完备性 复数的极限,,柯西收敛定理,魏尔斯特拉斯定理,聚点定理等从实数域里的推广,可以结合实数域中的形式来理解。 第二章 复变量函数 1.复变量函数的定义 1)复变函数的反演变换(了解) 2)复变函数性质 反函数 有界性 周期性, 3)极限与连续性 极限: 连续性 2.复变量函数的形式偏导 1)复初等函数 ). ( ),( , , , , . z f w z w iv u w z G iy x z G =+=+=记作复变函数简称的函数是复变数那末称复变数之对应与就有一个或几个复数每一个复数中的对于集合按这个法则个确定的法则存在如果有一的集合是一个复数设. )( )(,)0(0 )( ,0 , , 0 )( 0000时的极限趋向于当为那末称有时使得当相应地必有一正数对于任意给定的存在如果有一确定的数内的去心邻域定义在设函数z z z f A A z f z z A z z z z f w ερδδεδερ<-≤<<-<><-<= . )( , )( . )( ),()(lim 000 内连续在我们说内处处连续在区域如果处连续在那末我们就说如果D z f D z f z z f z f z f z z =→

《复变函数论》试题库及答案

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 }{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________.

第一章复数复变函数

第一章复数与复变函数 (Complex number and function of the complex variable) 第一讲 授课题目:§1.1复数 §1.2 复数的三角表示 教学内容:复数的概念、复数的四则运算、复平面、复数的模和辐角、复数的三角不等式、复数的表示、复数的乘方与开方. 学时安排:2学时 教学目标:1、掌握复数的乘方、开方运算及它们的几何意义 2、切实理解掌握复数的辐角 3、掌握复数的表示 教学重点:复数的乘方、开方运算及它们的几何意义 教学难点:复数的辐角 教学方式:多媒体与板书相结合. P思考题:1、2、3.习题一:1-9 作业布置: 27 板书设计:一、复数的模和辐角 二、复数的表示 三、复数的乘方与开方 参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社. 2、《复变函数与积分变换学习辅导与习题全解》,高 等教育出版. 课后记事:1、基本掌握复数的乘方、开方运算 2、不能灵活掌握复数的辐角(要辅导) 3、能灵活运用复数的三角表示进行复数的运算

教学过程:

引言 复数的产生和复变函数理论的建立 1、1545年,意大利数学家Cardan在解三次方程时,首先产生了负数开平方的思想.后来,数学家引进了虚数,这在当时是不可接受的.这种状况随着17、18世纪微积分的发明和给出了虚数的几何解析而逐渐好转. 2、1777年,瑞士数学家Euler建立了系统的复数理论,发现了复指数函数和三角函数之间的关系,创立了复变函数论的一些基本定理,并开始把它们应用到水力学和地图制图学上.用符号i表示虚数单位,也是Euler首创的. 3、19世纪,法国数学家Cauchy、德国数学家 Riemann 和Weierstrass经过努力,建立了系统的复变函数理论,这些理论知直到今天都是比较完善的. 4、20世纪以来,复变函数理论形成了很多分支,如整函数与亚纯函数理论、解析函数的边值问题、复变函数逼近论、黎曼曲面、单叶解析函数论等等,并广泛用于理论物理、弹性物理和天体力学、流体力学、电学等领域. 5、复变函数课程主要任务为研究复变数之间的相互依赖关系.其中许多概念、理论和方法是实变函数在复变函数领域内的推广和发展,在学习过程中要注意它们相似之处和不同之处的比较.

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

复变函数积分方法总结

复变函数积分方法总结 [键入文档副标题] acer [选取日期]

复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作 x=Re(z),y=Im(z)。 arg z=θ?θ?称为主值 -π<θ?≤π, Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点ξk并作和式S n=ξ(z k-z k-1)=ξ?z k记?z k= z k- z k-1, 弧段z k-1 z k的长度=,n),当0时,不论对c的分发即ξk的取法如何,S n有唯一的极限,则称该极限值为函数f(z) 沿曲线C的积分为: =ξ?z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作 (C圆周正方向为逆时针方向) 例题:计算积分 ,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0.

∵f(z)=1 S n=ξ(z k-z k-1)=b-a ∴ =b-a,即 =b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设ξk=z k-1,则 ∑1= ( )(z k-z k-1) 有可设ξk=z k,则 ∑2= ( )(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得: = - vdy + i + udy 再设z(t)=x(t)+iy(t) (≤t≤) = 参数方程书写:z=z0+(z1-z0)t(0≤t≤1);z=z0+re iθ,(0≤θ≤2π) 例题1:积分路线是原点到3+i的直线段 解:参数方程 z=(3+i)t =′ =(3+i)3 =6+i 例题2:沿曲线y=x2计算( )

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

复变函数论文

复变函数论文复变函数与积分变换在自动控制原理中的应用 姓名:何缘鸽学号:092410101 学院(系):电气与电子工程系 专业:自动化 指导教师:秦志新 评阅人:

复变函数与积分变换在自动控制原理中的 应用 【摘要】: 复变函数与积分变换的理论和方法在数学、自然科学和工程技术中有着广泛的应用,是解决诸如流体力学、电磁学、热学、弹性理论中的平面问题的有力工具。而自然科学和生产技术的发展又极大地推动了复变函数的发展,丰富了它的内容。我们在学习的过程中,要正确理解和掌握复变函数中的数学概念和方法,逐步培养利用这些概念和方法解决实际问题的能力。文中简单地介绍了该门课程在自动控制理论中的应用。 【关键词】:线性系统 Z变换卷积拉普拉斯变换 【正文】: 提出问题: 众所周知,复变函数中的许多概念、理论和方法是实变函数在复数领域内的推广和发展,因而它们之间有许多相似之处。但由于其自身的一些特殊的性质而显得不同,特别是当它引进了taylor级数展开laplace变换和fourier变换后而使其显得更加重要了。 随着教育事业的不断发展与更新,一些新的处理数据的方法越来越多的应用于我们的日常专业学习中。当然复变函数在自动控制原理方面的应用也更大的加快了自动化的发展,自动控制与信号处理也更加离不开一套有效的处理方法。但是常规的Fourier变换的运算的范围还是有限的,如何去解决一些不能展开成Fourier级数的信号成了

我们的首要问题。 分析问题: 虽然常规的Fourier 变换的运算的范围是有限的,,但Laplace 变换、Z 变换等填补了Fourier 变换的不足之处,究竟其有什么好处呢?下面就介绍一些例子,从中就能看出。 例1: 如图1所示电路,原处于稳态,开关S 于t=0时由1端转向 2端,R=10 Ω ,L=1H,C=0.004F,求换路后电流i(t)。 解:因换路前电路已达稳态,故可知 ()=-0i 0, ()V u c 20=- 换路后,电路的微分方程为 ()()()+ ++-0c u dt t di L t Ri ?- t d i C 0)(1ττ=10)(t ε 对上式进行拉普拉斯变换,得

复变函数论第四版第一章练习

复变函数论 第一章 练习题 2014-03 一、复数的表示、运算------充分掌握非零复数的三种表示及其互相转换(要善于根据不同问题选用适当的表示以简化计算);熟悉掌握复数运算,与共轭有关的等式,模的性质等,并能灵活运用。 1. 设(1)(2)(3)(3)(2) i i i z i i +--=++,求||.z 2. 将复数2 3(cos5sin 5)(cos3sin 3) i i θθθθ+-和复数tan ()2z i πθθπ=-<<分别化为指数形式和三角形式. 3. 设0,2x π <<试求复数1tan 1tan i x z i x -=+的三角形式,其中x 为实数. 4.求复数(1cos sin )n i θθ++()πθπ-<<的模和辐角. 5. 设3||),4z z i π=-= 求z . 6.已知210x x ++=,求1173x x x ++值. 7.若0,z ≠∈证22||2.z z zz -≤ 8. 试证:(1)1Re 0||1;1z z z -≥?≤+ (2)设||1,z =则|| 1.az b bz a +=+ 9. 设0,arg ,z z ππ≠-<≤ 证明|1|||1||arg z z z z -≤-+. 10.试证:满足||||2||z z ααβ-++=的复数z 存在的充要条件为||||αβ≤;求满足条件时||z 的最大值和最小值. 11. 设(1)(1)n n i i +=-,求整数n 之值. 12. 一个向量顺时针旋转 3π后对应的复数为1,求原向量对应的复数. 13. 24(49)0.z iz i ---=解方程 二、复数在几何上的应用 1. 设,x y 为实数,12,z x yi z x yi ==且有1212z z +=,则动点(,)x y 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线

复变函数与积分变换重要学习知识重点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数学习心得体会

复变函数学习心得体会 数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,Cauchy,Riemann,Weierstrass 等数学家分别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一个重要分支。 复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的! 复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。 由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。 在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和 分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。 难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足Cauchy-Riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习Cauchy-Goursat 基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和

复变函数论文(DOC)

复变函数论文 《复变函数与积分变换》与《信号系统》的相互联系和运用 系别: 专业名称: 学号: 姓名: 指导老师: 年月日

《复变函数与积分变换》与《信号系统》的相互联系和运用 摘录:随着现代科学技术理论的发展,学课间的联系越来越紧密,通过相互协助,使复杂的问题能够利用较简单的方法方便,快捷的解决。由于复变函数与积分变换的运算是实变函数运算的一种延伸,且由于其自身的一些特殊的性质而显得不同,特别是当它引进了“留数”的概念,以及Taylor级数展开,Laplace变换和Fourier变换之后而使其显得更为重要,因此学习复变函数与积分变换对学习信号与系统具有很大的促进作用。文章主要介绍了:1,Fourier变换是怎样在信号系统的频域分析中进行运用的;2,怎样利用复变函数中的“留数定理”对Laplace反变换进行计算; 3,复变函数中的Z变换是怎样解决信号系统中离散信号与系统复频域问题分析的;4,复变函数与积分变换中的各种运算是怎样通过信号系统中的MATLAB来实现的。 关键词:留数,Laplace变换,Z变换, Fourier变换,Taylor级数,MATLAB。 1,Fourier变换是怎样在信号系统的频域分析中进行运用的; 当对一个信号系统进行分析和研究时,首先应该知道该信号系统的数学模型,即建立该信号系统的数学表达式,例如:根据Fourier 级数的理论,连续时间周期信号的频域分析的数学表达式即为无限项

虚指数序列的线性叠加;而且信号的Fourier 变换建立了信号的时域与频域之间的一一对应的关系,并揭示了其在时域域频域之间的内在联系,因此为信号和系统的分析提供了一种新的方法和途径。 例1:已知描述某稳定的连续时间LTI 系统的微分方程为 ''''()3()2()2()3(),y t y t y t x t x t ++=+ 系统的输入激励3()()t x t e u t -=,求该系统的零状态响应()zs y t 。 解:由于输入激励()x t 的频谱函数为 1 ()3 x j j ωω= +, 根据微分方程可得到该系统的频率响应为 2 2()32()3 ()()3()2(1)(2) j j H j j j j j ωωωωωωω++= =++++, 故该系统的零状态响应()zs y t 的频谱函数()zs Y j ω为 2()3 ()()()(1)(2)(3) zs j Y j X j H j j j j ωωωωωωω+== +++, 将()zs Y j ω表达式用部分分式法展开,得 13 122()23 zs Y j j j j ωωωω- =++ ++, 由Fourier 反变换,可得系统()zs y t 的零状态响应为 2313 ()()()22 t t t zs y t e e e u t ---=+- 例2:已知某连续时间LTI 系统的输入激励()()t x t e u t -=,零状态 响应2()()()t t zs y t e u t e u t --=+,求该系统的频率响应()H jw 和单位冲 激响应()h t 。 解:对()x t 和()zs y t 分别进行Fourier 变换,得

相关主题
文本预览
相关文档 最新文档