当前位置:文档之家› (完整word版)动态规划算法设计与应用

(完整word版)动态规划算法设计与应用

(完整word版)动态规划算法设计与应用
(完整word版)动态规划算法设计与应用

实验报告

课程算法设计与分析实验实验名称动态规划算法设计与应用第 1 页

一、实验目的

1.加深对动态规划算法的基本原理的理解,掌握用动态规划方法求解最优化问题的方法步骤及应用;

2.用动态规划设计整数序列的最长递增子序列问题的算法,分析其复杂性,并实现;

3.用动态规划设计求凸多边形的三角剖分问题的算法,分析其复杂性,并实现。

4.选做题:用动态规划设计求解0/1背包问题的算法,分析其复杂性,并实现。

二、实验内容

(一) 最长递增子序列问题

1.问题描述

求一个由n个整数组成的整数序列的最长递增子序列。一个整数序列的递增子序列可以是序列中非连续的数按照原序列顺序排列而成的。最长递增子序列是其递增子序列中长度最长的。

2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1700题

输入:输入的第一行是一个正整数n,表示测试例个数。接下来几行是n个测试例的数据,每个测试例的数据由两行组成,其中第一行为一个正整数k

(k<=500),表示整数序列的长度,第二行给出整数序列,整数之间用一个空格隔开。(设给出的每个整数序列的最长递增子序列都是唯一的。)

输出:对于每个测试例输出两行,第一行为最长递增子序列的长度,第二行为最长递增子序列,整数之间用一个空格隔开。两个测试例的输出数据之间用一个空行隔开,最后一个测试例后无空行。

3. 测试数据

输入:3

5

3 1

4 2 3

6

1 3 9 5

2 6

20

1 2 7 13 3 5 10 24 12 4 9 16 53 6 83 8 23 11 31 47

输出:3

1 2 3

4

1 3 5 6

10

1 2 3 5 10 12 16 23 31 47

4. 设计与实现的提示

(1) 寻找最优子结构、写出递归方程是问题的关键。

(2) 以A

i

为末元素的最长递增子序列(记为S(i)),等于以使S(j), (j=1~

i), 最大的那个A

j 为末元素的递增子序列最末再加上A

i

;如果这样的元素不存

在,那么A

i 自身构成一个长度为1的以A

i

为末元素的递增子序列。

(3) 最优解的信息在此是以A

i

为末元素的最长递增子序列的前驱元素,应当记录下来。

5. 扩展内容

本题可以采用多种方法求解,可以尝试用不同思路求解。

(二) 凸多边形的三角剖分

1. 问题描述

设P是一个有n个顶点的凸多边形,P中的弦是P中连接两个非相邻顶点的线段。用P中的(n-3)条弦将P剖分成(n-2)个三角形(如下图所示)。使得(n-3)条弦的长度之和最小的三角形剖分称为最优三角剖分。

2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1701题

输入:输入的第一行是一个正整数m,表示测试例个数,接下来几行是m个测试例的数据,每个测试例的数据由两行组成,第一行含一个正整数n (n<=500),表示凸多边形的顶点个数;第二行含2n个实数x1 , y1 , x2 , y2 , …xn , yn ,按顺时针方向依次给出n个顶点的坐标值(xi, yi) i=1, 2, …, n,整数之间用一个空格隔开。

输出:对于每个测试例输出一行,含一个实数(精确到小数点后三位),表示最优三角剖分的n-3条弦的长度之和。两个测试例的输出数据之间用一个空行隔开,最后一个测试例后无空行。

3. 测试数据

输入:

2

6

1 2 2 1.5 2 0.5 1 0 0 0.5 0 1.5

9

723 1220 463 1074 370 842 317 534 524 192 992 87 1378 355 1683 855 1301 1131

输出:

5.606

4928.722

4. 设计与实现的提示

(1) 凸(n+1)边形的最优三角剖分是该凸多边形的所有三角剖分中弦长最短的那个剖分。

(2) 本题与课本7.3节中的矩阵链相乘问题非常相似。寻找最优子结构、写出递归方程是问题的关键,注意递归方程的参数的设置。

(3) 将凸(n+1)边形三角剖分时,注意弦长不要重复计算。

5. 扩展内容

本题只要求计算出最优值。如果要求最优解,在求最优值过程中,要记录下改最优值对应的三角剖分的信息。

(三) 选做题――0/1背包问题

1. 问题描述

设有一个容量为C的背包,n个物品的集合U={u

1, u

2

, …, u

n

},物品u

j

体积和价值分别为s

j 和v

j

,C, s

j

, v

j

都是正整数。在U中选择物品装入背包,

使得装入背包的物品总价值最大。设每种物品或完全装入或完全不装入背包。

2. 具体要求

输入:输入的第一行是一个正整数m,表示测试例个数,接下来几行是m个测试例的数据。每个测试例的数据由三行组成,第一行含两个正整数n和C,其

中, n (n<=100)表示给定的是n个物品的集合U={u

1, u

2

, …, u

n

},C(C<=5000)

表示背包的容量;第二行含n个整数s

1 , s

2

, …s

n

,表示n个物品的体积;第

三行含n个整数v

1 , v

2

, (v)

n

,表示n个物品的价值,整数之间用一个空格隔

开。

输出:对于每个测试例输出2行数据,其中,第一行含一个整数,表示装入

背包物品的最大总价值;第2行含n个整数x

1 , x

2

, (x)

n

,表示u

1

, u

2

, …, u

n

这n个物品是否放入背包。其中x

i ={1, 0} , (i=1,2, …,n)。如果x

i

=1,表

示物品u

i 放入背包;如果x

i

=0,表示物品u

i

不放入背包。每个x

i

之间用一个空

格隔开,两个测试例的输出数据之间用一个空行隔开,最后一个测试例后无空行。

3. 测试数据

输入:2

5 20

7 13 6 4 3

57 3 2 3

8100

7 13 45 25 16 75 48 32

6 5 20 10

7 32 22 13

输出:13

1 0 1 1

48

1 0 1 0 0 0 1 0

4. 设计与实现的提示

(1) 寻找最优子结构、写出递归方程仍是问题求解的关键。

(2) 对于物品是否装入背包,可以有多种表示方式,这里仅采用0,1的方

式,即x

i =1表示物品u

i

装入背包;x

i

=0表示物品u

i

不装入背包。

(3) 由于在求解最优值时,并非所有的子问题都需要解,因此可以采用自顶向下的递归方法。

(4) 在求解最优值的过程中,注意最优解的相应信息的表示和记录。

5. 扩展内容

(1) 可以练习实现课本第7章的练习7.27可复选的背包问题,并与本题进行比较。

(2) 可以练习实现课本第7章的练习7.26 。

要求:取不同K值,求0/1背包问题的近似最优值,观察分析不同的K 值对最优值的精确性的影响。

(3) 可以将本题与一般背包问题(一个物品可以部分装入背包)相比较,可以问题的复杂性和求解方法上有何不同。

三、实验环境

硬件:Windows XP计算机、鼠标、键盘、显示器

开发环境:Microsoft Visual C++ 6.0

四、实验步骤

(描述实验步骤及中间的结果或现象。在实验中做了什么事情,怎么做的,发生的现象和中间结果)

①、点击开始菜单中的程序-Microsoft Visual C++ 6.0

点击菜单栏中的文件—新建—文件—C++ Source File ,在文件名(N)中写入“实验四(1).cpp”,再点击确定.

②、编写程序如下:

#include

#define MAX 50

/*--------------------------------冒泡排序-----------------------*/ void bubble(int r[],int n,int B[])//使用冒泡排序,将原数组按升序排列{

int i,j,temp;

for(i=0;i

{

for(j=0;j

if(r[j]>r[j+1])

{

temp=r[j];

r[j]=r[j+1];

r[j+1]=temp;

}

}

for(i=0;i

{

B[i]=r[i];

}

}

/*------------------------求序列A和B的最长公共子序列C-------------------*/

void Lcss(int H[MAX][MAX],int n,int A[MAX],int L,int B[MAX])

{

int i=n,j=n,k=L,C[MAX];

while(i>0&&j>0)

{

if(H[i][j]==0)

{

C[k--]=A[i];

i=i-1;

j=j-1;

}

else

if(H[i][j]==1)

i=i-1;

else

j=j-1;

C[0]=B[0];

}

for(i=0;i

{

printf("%4d",C[i]);

}

}

/*-------求A和B的最长公共子序列长度L[n, m]和存储最长公共子序列的有关信息的数组H[1..n, 1..m]-----*/

void Lcs(int A[MAX],int B[MAX],int n,int num)

{

int i,j,length;

int L[MAX][MAX],H[MAX][MAX];

for(i=0;i

L[i][0]=0;

for(j=0;j

L[0][j]=0;

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

if(A[i]==B[j])

{

L[i][j]=L[i-1][j-1]+1;

H[i][j]=0;

}

else

if(L[i-1][j]>=L[i][j-1])

{

L[i][j]=L[i-1][j];

H[i][j]=1;

}

else

{

L[i][j]=L[i][j-1];

H[i][j]=2;

}

}

}

printf(" %d",L[n][n]);

length=L[n][n];

printf("\n");

printf("第%d个子序列元素:",num+1);

Lcss(H,n,A,length,B);

}

/*---------------------主函数----------------------*/

void main()

{

int m,i,j,A[MAX],B[MAX],C[MAX],D[MAX];

printf("测试例的个数:\n");

scanf("%d",&m);

for(i=0;i

{

printf("第%d个的长度及元素:\n",i+1);

scanf("%d",&C[i]);

for(j=0;j

{

scanf("%d",&A[j]);

D[j]=A[j];

}

bubble(A,C[i],B);//调用函数,使用冒泡排序将A 按升序排列

printf("\n");

printf("第%d个子序列长度: ",i+1);

Lcs(D,B,C[i],i);//调用函数,求输入的元素与已排序的元素的最长公共子序列

printf("\n\n");

}

}

③、点击开始菜单中的程序-Microsoft Visual C++ 6.0

点击菜单栏中的文件—新建—文件—C++ Source File ,在文件名(N)中写入“实验四(2).cpp”,再点击确定.

④、编写程序如下:

#include

#include

float distance[100][100];

#define MAX 100

/*-------------求凸边形的各个顶点与其它顶点的距离------------------*/ void dis(int count,float x[MAX],float y[MAX])

{

int i,j;

for(i=0;i

{

for(j=0;j

{

distance[i][j]=0;

}

}

for(i=0;i

{

for(j=0;j

{

distance[i][j]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j ]));

}

}

}

/*-------------------------最优三角剖分的弦长之和-----------------------*/

float triangle(int zero,int num)

{

int k,m=0;

float s=40000,a[MAX];//设置一个较大的数s与弦长之和比较

if(num-zero==2)//若凸边形为三角形时,不存在剖分

{

return 0;

}

else

{

for(k=zero+1;k

{

if(k==zero+1)//假设第一个三角形的边的两个点是原点和点zero+1,那么剩下的还是一个凸多边形

{

a[m]=triangle(k,num)+distance[zero+1][num];

}

else if(k==num-1)//假设第一个三角形的边的两个点是原点和点num,那么剩下的还是一个凸多边形

{

a[m]=triangle(zero,k)+distance[zero][num-1];

}

else

{

a[m]=triangle(k,num)+distance[k][num]+triangle(zero,k)+distance[z ero][k];

}

m++;

}

for(m=0;m

{

if(s>a[m])

{

s=a[m];

}

}

return s;

}

}

/*-----------------------主函数----------------------*/

void main()

{

int m,i,j,A[MAX];

float x[MAX],y[MAX],length[MAX];

printf("输入测例个数:\n");

scanf("%d",&m);

for(i=0;i

{

printf("输入第%d测例数的顶点数为:\n\n",i+1);

scanf("%d",&A[i]);

for(j=0;j

{

scanf("%f",&x[j]);

scanf("%f",&y[j]);

}

dis(A[i],x,y);//调用函数求各个顶点间的距离

length[i]=triangle(0,A[i]-1);//调用函数求n个顶点的凸多边形的n-3条弦的长度之和

printf("\n\n");

}

printf("结果如下:\n\n");

for(i=0;i

{

printf("%.3f",length[i]);

printf("\n\n");

}

}

五、实验结果

实验四.(1).cpp

按照实验要求输入测试例,得到的实验结果是:

实验四.(2).cpp

按照实验要求输入测试例,得到的实验结果是:

六、总结

1.主要要注意实验中的细节

2.在写算法的时候要注意时间复杂性。

3.本人在做第一个实验时,曾多次遇到下标过界问题。

4.在做第二个实验的时候,最好要先求出最优子结构、写出递归方程。

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

分治、贪心、动态规划算法要点复习

分治法 1 分割成独立的子问题 2 递归解决子问题 3 合并求得初始问题的解 动态规划算法 1.描述最优解的结构特征 2.定义最优解决方案的递归形式 3.以自底向上的方式计算最优解决方案的值 4.从计算信息构造出最优解决方案 贪婪算法步骤 1.确定问题的优化结构 2.得到递归解 3.证明某个最优选择是贪婪选择 4.贪婪选择将产生唯一一个非空子问题 5.用递归算法实现贪婪策略 6.将递归算法转换为迭代算法 贪婪算法设计 1. 通过作出某种贪婪选择,将初始优化问题转换为唯一的一个子问题来求解 2. GREEDY CHOICE(证明贪婪选择) 作出该贪婪选择后,可以保证初始优化问题存在最优解3.OPTIMAL SUBSTRUCTURE(证明优化基础) 贪婪选择+唯一子问题=最优解 贪婪算法正确性 1. 贪婪选择特性(局部最优导致全局最优) 2. 优化基础的特性(贪婪选择+唯一子问题的最优解?初始问题的最优解) 作业选择 ?贪婪选择特性 存在最优解包含贪婪选择,即Sij在选择最先完成的作业am ?优化基础 If an optimal solution to subproblem Sij includes activity ak ? it must contain optimal solutions to Sik and Skj Solution to Sij=(Solution to Sik)∪{ak}∪(Solution to Skj)动态规划解) Similarly, am + optimal solution to Smj ? optimal sol. Solution to Sij = {am} ∪(Solution to Smj) (贪婪选择解) 动态规划与贪婪算法比较 ?Dynamic programming –每步选择–选择与子问题解相关 –自底向上,即从规模下的子问题逐步求解规模大的子问题?Greedy algorithm –首先作出贪婪选择–求解贪婪选择后产生的唯一子问题–后续贪婪选择与前面的选择有关,但与子问题的解无关 –自顶向下,问题规模逐步缩小 动态规划和分治法 ?子问题非独立 –子问题求解依赖其子问题的解 –分治法通过递归方式解决性质相同的子问题 –动态规划每次解决一个子问题,并将结果存储在表格中4 ?适合优化问题 –通过适当的选择来获得问题的最优解 –找到具有最优解决方案及其最优值:装配线排程方案以及该方案的生产时间 –导致最优的解决方案可能不止一个 ? (允许负权值边) –如果从源顶点s没有可抵达的负权值回路,返回‘真’)(其余的返回‘假’,无解 –遍历所有的边|V–1|次,每次对每条边执行一次缩短运算–对图进行拓扑排序)(依据拓扑排序对边进行缩短操作 于每一个顶点, 对始于该顶点的每条边进行缩短操作) (DGA中没有负权值回路, 因此存在最短路径) – (不存在负权值边界) – (S: 集合中顶点的最短路径已经确定) (Q: V – S, 极小优先队列) ? (d[v]) (Q中的值是最短路径的估计) ?重复的从Q中选择具有最短估计距离的顶点进行处理 The Ford-Fulkerson Method(不断的增大流, 直到达到流的极大值)(通过剩余流和剩余流图实现) 增量算法(An Incremental Algorithm) Alg.: GREEDY-ACTIVITY-SELECTOR(s, f, n) 1. A ← {a1} 2. i ← 1 3. for m ← 2 to n 4. do if sm ≥ fi ? activity am is compatible with ai 5. then A ← A ∪ {am} 6. i ← m ? ai is most recent addition to A 7. return A 动态规划: 装配线排程 e1 + a1,1 if j = 1 f1[j] = min(f1[j - 1] + a1,j ,f2[j -1] + t2,j-1 + a1,j) if j ≥ 2 矩阵链相乘 m[i,j]=0 if i = j min{m[i,k]+m[k+1,j]+pi-1pkpj} if i < j Matrix-Chain-Order(p) 1. n ←length[p]-1; 2. for i ←1 to n 3. m[i, i] ←0; 4. for l ←2 to n 5. for i ←1 to n –l +1 6. j ←i + l -1; 7. m[i, j] ←∞; 8. for k ←i to j -1 9. q ←m[i, k] + m[k+1, j] + pI-1pkpj; 10. if q < m[i, j] 11. m[i, j] ←q; 12. s[i, j] ←k; 13. return m and s 最长共同子序列 LCS-Length(X,Y) 1. m ←length[X]; 2. n ←length[Y]; 3. for i ←1 to m 4. c[i, 0] ←0; 5. for j ←0 to n 6. c[0, j] ←0;

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

贪心算法与动态规划的比较

贪心算法与动态规划的比较 【摘要】介绍了计算机算法设计的两种常用算法思想:贪心算法与动态规划算法。通过介绍两种算法思想的基本原理,比较两种算法的联系和区别。通过背包问题对比了两种算法的使用特点和使用范围。 【关键字】动态规划;贪心算法;背包问题 1、引言 为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。虽然设计一个好的求解算法更像是一门艺术而不像是技术,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。本文针对部分背包问题和0/ 1 背包问题进行分析,介绍贪心算法和动态规划算法的区别。 2、背包问题的提出 给定n种物品( 每种物品仅有一件) 和一个背包。物品i的重量是w i,其价值为p i,背包的容量为M。问应如何选择物品装入背包,使得装入背包中的物品的总价值最大,每件物品i的装入情况为x i,得到的效益是p i*x i。 ⑴部分背包问题。在选择物品时,可以将物品分割为部分装入背包,即0≤x i≤1 ( 贪心算法)。 ⑵0/ 1背包问题。和部分背包问题相似,但是在选择物品装入时要么不装,要么全装入,即x i = 1或0。( 动态规划算法) 。 3、贪心算法 3.1 贪心算法的基本要素 能够使用贪心算法的许多例子都是最优化问题,每个最优化问题都包含一组限制条件和一个优化函数,符合限制条件的问题求解方案称为可行解;使优化函数取得最佳值的可行解称为最优解。此类所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到(这是贪心算法与动态规划的主要区别) 。 3.2贪心策略的定义 贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值( 或较优解) 的一种解题方法。贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

动态规划算法和贪心算法的比较与分析

动态规划算法和贪心算法的比较与分析 1、最优化原理 根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。解决这类问题的最优化原理:一个过程的最优决策具有这样的性质,即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略。简而言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。 2、动态规划 2.1 动态规划算法 动态规划是运筹学的一个分支,与其说它是一种算法,不如说它是一种思维方法更贴切。因为动态规划没有固定的框架,即便是应用到同一道题上,也可以建立多种形式的求解算法。许多隐式图上的算法,例如求单源最短路径的Dijkstra算法、广度优先搜索算法,都渗透着动态规划的思想。还有许多数学问题,表面上看起来与动态规划风马牛不相及,但是其求解思想与动态规划是完全一致的。因此,动态规划不像深度或广度优先那样可以提供一套模式,需要的时候,取来就可以使用。它必须对具体问题进行具体分析、处理,需要丰富的想象力去建立模型,需要创造性的思想去求解。 动态规划算法的基本思想是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。值得注意的是,用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的。 最优化原理是动态规划的基础。任何一个问题,如果失去了这个最优化原理的支持,就不可能用动态规划方法计算。能采用动态规划求解的问题都要满足两个条件:①问题中的状态必须满足最优化原理;②问题中的状态必须满足无后效性。 所谓无后效性是指下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前的状态是对以往决策的总结。 2.2 动态规划算法的基本要素

算法分析复习题目及答案

一、选择题 1、二分搜索算法是利用 (A)实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是(A)。 A、找出最优解的性 质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是 ( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4、在下列算法中有时找不到问题解的是(B)。 A、蒙特卡罗算 法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5.回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 6.下列算法中通常以自底向上的方式求解最优解的 是(B)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 7、衡量一个算法好坏的标准是(C)。 A运行速度快B 占用空间少C时间复杂度低D代码短 8、以下不可以使用分治法求解的是 ( D )。 A棋盘覆盖问题 B 选择问题C归并排序D0/1背包问题 9.实现循环赛日程表利用的算法是(A)。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 10、下列随机算法中运行时有时候成功有时候失败的是(C) A数值概率算法B舍伍德算法C拉斯维加斯算法D蒙特卡罗算法 11.下面不是分支界限法搜索方式的是(D)。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 12.下列算法中通常以深度优先方式系统搜索问题解的是(D)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 13.备忘录方法是那种算法的变形。(B) A、分治法 B、动态规划法 C、贪心法 D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为 (B)。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是(B)。 A、最小堆 B、最大堆 C、栈 D、数组16.最长公共子序列算法利用的算法是 (B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法17.实现棋盘覆盖算法利用的算法是(A)。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 18.下面是贪心算法的基本要素的是(C)。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 19.回溯法的效率不依赖于下列哪些因素 (D) A.满足显约束的值的个 数 B. 计算约束函数的时间C.计算限界函数的时间 D. 确定解空间的时间

启发式优化算法综述

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题

时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。

算法设计动态规划(编辑距离)

《算法设计与分析》课程报告 课题名称:动态规划——编辑距离问题 课题负责人名(学号): 同组成员名单(角色):无 指导教师:左劼 评阅成绩: 评阅意见: 提交报告时间:2010年 6 月 23 日

动态规划——编辑距离问题 计算机科学与技术专业 学生指导老师左劼 [摘要]动态规划的基本思想与分治法类似,也是将待求解的问题分解成若干份的子问题,先分别解决好子问题,然后从子问题中得到最终解。但动态规划中的子问题往往不是相互独立的,而是彼此之间有影响,因为有些子问题可能要重复计算多次,所以利用动态规划使这些子问题只计算一次。将字符串A变换为字符串所用的最少字符操作数称为字符串A到B的编辑距离。 关键词:动态规划矩阵字符串操作数编辑距离

一、问题描述 1、基本概念:设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。字符串操作包括: (1) 删除一个字符; (2) 插入一个字符; (3) 将一个字符改为另一个字符。 将字符串A变换为字符串B所用的最少字符操作数称为字符串A 到B的编辑距离,记为d(A,B)。 2、算法设计:设计一个有效算法,对于给定的任意两个字符串A 和B,计算其编辑距离d(A,B)。 3、数据输入:输入数据由文件名为input.txt的文本文件提供。文件的第1行为字符串A,第二行为字符串B。 4、结果输出:将编辑距离d(A,B)输出到文件ouput.txt的第一行。 输入文件示例输出文件示例 input.txt output.txt fxpimu 5 xwrs 二、分析 对于本问题,大体思路为:把求解编辑距离分为字符串A从0个字符逐渐增加到全部字符分别想要变为字符串B该如何变化以及变化的最短距离。 具体来说,首先选用数组a1存储字符串A(设长度为n),a2存储字符串B(设长度为m),d矩阵来进行具体的运算;这里有两个特殊情况比较简单可以单独考虑,即A的长度为0而B不为0还有A不为0B为0,这两种情况最后的编辑距离分别为m和n;讨论一般情况,d矩阵为d[n][m],假定我们从d[0][0]开始一直进行以下操作到了d[i][j]的位置,其中删除操作肯定是A比B长,同理,插入字符操作一定是A比B短,更改字符操作说明一样长,我们所要做的是对d[i][j-1]

背包问题-贪心法和动态规划法求解

实验四“0-1”背包问题 一、实验目的与要求 熟悉C/C++语言的集成开发环境; 通过本实验加深对贪心算法、动态规划算法的理解。 二、实验内容: 掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。 三、实验题 1.“0-1”背包问题的贪心算法 2.“0-1”背包问题的动态规划算法 说明:背包实例采用教材P132习题六的6-1中的描述。要求每种的算法都给出最大收益和最优解。 设有背包问题实例n=7,M=15,,(w0,w1,。。。w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。。。,p6)=(10,5,15,7,6,18,3)。求这一实例的最优解和最大收益。 四、实验步骤 理解算法思想和问题要求; 编程实现题目要求; 上机输入和调试自己所编的程序; 验证分析实验结果; 整理出实验报告。 五、实验程序

// 贪心法求解 #include #include"iomanip" using namespace std; //按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序 void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量 float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u); int main(){ float w[7]={2,3,5,7,1,4,1}; //物品重量数组 float p[7]={10,5,15,7,6,18,3}; //物品收益数组 float avgp[7]={0}; //单位毒品的收益数组 float x[7]={0}; //最后装载物品的最优解数组 const float M=15; //背包所能的载重 float ben=0; //最后的收益 AvgBenefitsSort(avgp,p,w); ben=GetBestBenifit(p,w,x,M); cout<

浅谈我国动态规划算法研究与应用

动态规划算法研究与应用 1.引言 动态规划被认为是组成运筹学其中的一部分,也被当成为进行运算决定时最好的一种数学方式。在1950年左右,美国相关方面的几位数学家,对阶段决策期间关于优化的问题做了大量的研究,并发布著名的最优化理论,将众多的阶段变成了一个一个单一的问题,并分别进行解答,最后,发明了能够处理这种相关优化方面事情新的解决措施——动态规划。到了1957年,创造出了Dynamic Programming这一名著,被称为该领域创作第一人[1]。 在数学和计算机科学领域,动态规划算法对于求解最优解的问题方便快捷。动态规划方法经常用来解决生活中的实际问题,这些问题往往可以分解为很多个子问题,每个子问题都有一个对应解,其中的临界值就是我们所要求得的最优解。动态规划并非一种数学算法,而是用于最优化解题的一种技巧和方法。它非但不具有一个标准的数学方程式,不能够推导出清晰明确的解题步骤,更不具备万能性。对于要解决的若干问题,一定要建立在正确理解的基础上具体问题具体分析,用我们现有的数学知识和丰富的想象力创建模型,结合日常的技巧分析求解。客观人为的介入时间和空间因素,只要可以分为若干子问题的多状态过程,就可以用此方法快速求解。 2.动态规划算法简介 动态规划诞生之后,很快就在在工业生产、金融管理、工程技术、和资源最大化利用等领域得到了好评。在处理路线规划、物品进出库管理、资源最优化利用、更换设备、顺序、装载等问题,动态规划算法相比于其他算法更有优势而且更加便捷。 2.1基本原理 其主要的理论可以被理解成是将求解的划分成若干个子问题,并将其称作为N,然后这些子问题又有N个解的情况,其中这些可行解之中一定会有一个最优解,研究动态规划也就是希望能够找到最优解[2]。 如何能够合理的推导出基本的最优化方程式和找出唯一的临界值是研究动

常见动态规划算法问题策略分析

常见动态规划算法问题 策略分析

目录 一、动态规划策略 (1) 1.动态规划介绍 (1) 2.求解动态规划问题步骤 (1) 二、几种动态规划算法的策略分析 (1) 1.装配线调度问题 (1) 2.矩阵链乘问题 (2) 3.最长公共子序列(LCS) (3) 4.最大字段和 (4) 5.0-1背包问题 (4) 三、两种解决策略 (5) 1.自底向上策略 (5) 2.自顶向上(备忘录)策略 (5) 3.优缺点分析 (5) 四、总结 (6)

一、动态规划策略 1.动态规划介绍 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多 阶段最优化决策解决问题的过程就称为动态规划。 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的 求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部 解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。 依次解决各子问题,最后一个子问题就是初始问题的解。 由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在 一个二维数组中。 与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建 立在上一个子阶段的解的基础上,进行进一步的求解)。 2.求解动态规划问题步骤 (1)确定最优解结构 (2)递归定义最优解的值 (3)自底向上计算最优解的值 (4)重构最优解 二、几种动态规划算法的策略分析 1.装配线调度问题 分析:首先确定最优解结构,分析问题可知大致分为两种情况:

实验项目三 用蛮力法、动态规划法和贪心法求解背包问题

实验项目三 用蛮力法、动态规划法和贪心法求解0/1 背包问题 实验目的 1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同; 2、对0-1背包问题的算法设计策略对比与分析。 实验内容: 0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。 在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。根据问题的要求,有如下约束条件和目标函数: 于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。 背包的数据结构的设计: typedef struct object { int n;//物品的编号 int w;//物品的重量 int v;//物品的价值 }wup; wup wp[N];//物品的数组,N 为物品的个数 int c;//背包的总重量 1、蛮力法 蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。 用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。 所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法: ?????≤≤∈≤∑=)1(}1,0{1n i x C x w i n i i i (式1) ∑=n i i i x v 1max (式2)

动态规划和贪心的区别

动态规划和贪心算法的区别 动态规划法的基本思路: 动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。此算法常用于求解某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案,消除递归过程中产生的大量重叠子问题。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。 贪心算法的基本思想: 在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,贪心算法所得出的解是一系列局部最优的选择。 把求解的问题分成若干个子问题,对每一子问题求解,得到子问题的局部最优解,把子问题的解局部最优解合成原来解问题的一个解。为了解决问题,需要寻找一个构成解的候选对象集合,起初,算法选出的候选对象的集合为空。接下来的每一步中,根据选择函数,算法从剩余候选对象中选出最有希望构成解的对象。如果集合中加上该对象后不可行,那么该对象就被丢弃并不再考虑;否则就加到集合里。每一次都扩充集合,并检查该集合是否构成解。 由以上可知:在贪心算法中,作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留。并且,每一步的最优解一定包含上一步的最优解。 而在动态规划算法中,全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解。动态规划的关键是状态

相关主题
文本预览
相关文档 最新文档