当前位置:文档之家› 线性代数期末测试题及其答案

线性代数期末测试题及其答案

线性代数期末测试题及其答案
线性代数期末测试题及其答案

线性代数期末考试题

一、填空题(将正确答案填在题中横线上。每小题5分,共25分)

1. 若02

2150

1

31=---x ,则=χ__________。 2.若齐次线性方程组???

??=++=++=++0

00321

321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.已知矩阵A 为3?3的矩阵,且3||=A ,则=|2|A 。 5.n 阶方阵

A 满足032=--E A A ,则=-1A 。

二、选择题 (每小题5分,共25分)

6.已知二次型3231212

32

22

14225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-

t B.5454<<-t C.540<

1

54-<<-t 7.已知矩阵B A x B A ~,50060321,340430241且???

?

?

??=????? ??-=,求x 的值( )

A.3

B.-2

C.5

D.-5

8.设A 为n 阶可逆矩阵,则下述说法不正确的是( )

A. 0≠A

B. 01≠-A

C.n A r =)(

D.A 的行向量组线性相关

9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )

A.

14322-=-=-z y x B.24322-=-=z y x C.

14322+=+=-z y x D.2

4

322+=+=z y x 10.已知矩阵???

?

??-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ

三、解答题 (每小题10分,共50分)

11.设,1000110001100011??????

??---=B ??

???

?

?

??=200012003120

4312C 且矩阵X 满足关系式

E

X B C T =-)(, 求X 。 12.问a 取何值时,下列向量组线性相关?123112211

,,221122a a a ααα????-?? ? ?- ? ? ?

? ? ?=-==- ? ? ?

? ? ?- ? ? ?-?? ?

????

13. λ为何值时,线性方程组???

??-=++-=++-=++2

23

321

321321x x x x x x x x x λλλλ有唯一解,无解和有无穷多解?当方程组有无穷多

解时求其通解。

14. 设.77103 ,1301 ,3192 ,01414321????

??

?

??--=??????? ??--=???

???? ??--=??????? ??=αααα 求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示。

15.证明:若A 是n 阶方阵,且,I AA =T

1-=A

证明 0=+I A 。其中I 为单位矩阵 线性代数期末考试题答案

一、填空题 1. 5.

解析:采用对角线法则,由002)5(03)2(51=----++-??x x 有5=x .

考查知识点:行列式的计算.

难度系数:

2.1≠λ

.

解析:由现行方程组有)1(2

2

211

11111

1-=-+==

λλλλλ

D ,要使该现行方程组只有零解,则0≠D ,即1≠λ.

考查知识点:线性方程组的求解 难度系数: 3.??,

解析;由题可知

n

s ij c C ?=)(,则设D CB AC ==,可知D 的行数与A 一致,列数与B 一致,且A 与B 均为方

阵,所以A 为s s ?阶矩阵,B 为n n ?阶矩阵. 考查知识点:n 阶矩阵的性质 难度系数: 4. 24

解析:由题可知,A 为3阶矩阵且3=A ,则24223==A A .

考查知识点:矩阵的运算 难度系数: 解析:由032

=--E A A

有E E A A =-)3(,此时E A A 31-=-.

考查知识点:求解矩阵的逆矩阵 难度系数: 二、选择题 6. A 解析:

由题可知,该二次型矩阵为???

?

? ??--5212111t

t ,而0455

21211

1,0111,1122>--=-->-=>t t t t t t t ,可解得05

4<<-t 。此时,该二次型正定。

考查知识点:二次型正定的判断 难度系数 7. C

解析:由矩阵特征值性质有1-3+3=1+x+5,可解得x=-5。 考查知识点:n 阶矩阵特征值的性质 难度系数: 8. D

解析:由题可知,A 为n 阶可逆矩阵,则A 的行向量组线性无关。 考查知识点:n 阶可逆矩阵的性质 难度系数: 9. A.

解析:由题可知,两平面法向量分别为)3,1,0(),2,0,1(21

-==n n ,则所求直线的方向向量为

k j i n n s ++-=?=3221。所以所求直线为

1

4322-=-=-z y x 。 考查知识点:求空间平面交线平行的直线方程

难度系数: 10. C.

解析:由08215132=--=???? ?

?---=-λλλλ

λE A ,可解得特征值为4,221=-=λλ 考查知识点:求解矩阵的特征值 难度系数: 三、解答题 11. 解:

?????

????

???---==?

????????

???---=?????

??

?????=??

???????

???=------12

1

012100120001][1210

012100120001

][12

3

4

012300120001

1000

21003210

4321

1

1)()()(B C B C B C T

T T E X B C ,, 考

查知识点:矩阵方程的运算求解 难度系数: 12.解:

当||A =0时即2

1

-=a

或1=a 时,向量组321a a a ,,线性相关。

考查知识点:向量组的线性相关性 难度系数: 13.解:

①当1≠λ

且2-≠λ时,方程组有唯一解;

②当2-=λ时方程组无解

③当1=λ时,有无穷多组解,通解为????

??????-+??????????-+??????????-=X 10101100221c c 考查知识点:线性方程组的求解 难度系数: 14.解: 由题可知

则()34321=a a a a r ,,,,其中321a a a ,,构成极大无关组,且线性关系为 考查知识点:向量组的秩与 最大无关组 难度系数: 15.证明: 由题可知, ∴()02

=+A I ,即()0=+A I

考查知识点:n 阶方阵的性质 难度系数:

线性代数期末试题及答案

工程学院2011年度(线性代数)期末考试试卷样卷 一、填空题(每小题2分,共20分) 1.如果行列式233 32 31 232221 131211 =a a a a a a a a a ,则=---------33 32 31 232221 13 1211222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

同济大学2010-11线性代数B期末考试试卷_A卷_

同济大学课程考核试卷(A 卷) 2010—2011学年第一学期 命题教师签名: 审核教师签名: 课号:122009 课名:线性代数B 考试考查:考试 此卷选为:期中考试( )、期终考试( √ )、重修( )试卷 年级 专业 学号 姓名 任课教师 题号 一 二 三 四 五 六 七 总分 得分 (注意:本试卷共七大题,三大张,满分100分.考试时间为120分钟. 要求写出解题过程,否则不予计分) 一、填空与选择题(均为单选题)(27分) 1、 已知4阶方阵1234 567890 54 a b A c d ????? ? =?????? ,函数()||f x xE A =?,这里E 为4阶单位阵,则函数()f x 中3x 项的系数为_______a+b+c+d____________. 2、 设12312,,,,αααββ均为4维列向量,已知4阶行列式 1231,,,m αααβ=,又 1223,,,n ααβα=,则4阶行列式32112,,,αααββ+=______n m ?_______________. 3、 已知3阶方阵A 满足320A E A E A E +=?=?=,其伴随矩阵为* A ,则行列式 *A =_____36_________. 4、 已知α是3维实列向量,且111111111T αα?????=????????? ,则α=5、设α是3 R 空间中的某一向量,它在基123,,εεε下的坐标为()123,,T x x x ,则α在基 1323,,k εεεε+下的坐标是_________1231(,,)T x x x kx ?________________. 6、 下列关于矩阵乘法的结论中错误的是____________B_________. 1(). ). (). ().n A A A A B C n cE c D ?若矩阵可逆,则与可交换 (可逆阵必与初等矩阵可交换任一个阶方阵均与可交换,这里为任意常数 初等矩阵与初等矩阵乘法未必可交换 7、 设A B 、均为n 阶方阵,且()2 AB E =,则下列式子中成立的是_____D_______. ()2 2 2 (). (). (). ().A AB E B AB E C A B E D BA E ==?== 8、 设Ax b =为n 元非齐次线性方程组,则下面说法中正确的是_____C____ (). 0 (). 0 (). 0 ().() A Ax Ax b B Ax Ax b C Ax b Ax D Ax b R A n =======?=若只有零解,则有唯一解若有无穷多个解,则有无穷多个解若有两个不同的解,则有无穷多个解 有唯一解 9、 下列向量组中线性无关的是_______C__________. ()()()()()()()()()()()()()() (). 1,1,0,20,1,1,10,0,0,0). ,,,,,,,,,,, (). ,1,,0,0,,0,,1,0,,0,,0,1().1,2,1,5,1,2,1,6,1,2,3,7,0,0,0,1A B a b c b c d c d a d a b C a b c d e f D ??,, ( 二、(10分) 已知n 阶行列式1 231 200 1 0301 00n n D n ="""###%#",求第一行各元素的代数余子式之和.

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数期末考试试卷答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号填“√”,错误的在括号填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 £ s £ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示

(完整word版)同济大学线性代数期末试卷全套试卷(1至4套)

《线性代数》期终试卷1 ( 2学时) 本试卷共七大题 一、填空题(本大题共7个小题,满分25分): 1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是 , 则的属于的两个线性无关的特征向量是 (); 2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随 矩阵, 则的行列式(); 3.(4分)设, , 则 (); 4.(4分)已知维列向量组所生成的向量空间为,则的维数dim(); 5.(3分)二次型经过正交变换可化为 标准型,则();

6.(3分)行列式中的系数是(); 7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个 解向量, 其中, , 则该方程组的通解是 ()。 二、计算行列 式: (满分10分) 三、设, , 求。 (满分10分) 四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。

(满分15分) 五、设向量组线性无关, 问: 常数满足什么条件时, 向量组 , , 也线性无关。 (满分10分) 六、已知二次型, (1)写出二次型的矩阵表达式; (2)求一个正交变换,把化为标准形, 并写该标准型; (3)是什么类型的二次曲面? (满分15分) 七、证明题(本大题共2个小题,满分15分): 1.(7分)设向量组线性无关, 向量能由线性表示, 向量 不能由线性表示 . 证明: 向量组也线性无关。 2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组 必有非零解。

《线性代数》期终试卷2 ( 2学时) 本试卷共八大题 一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分): 1. 若阶方阵的秩,则其伴随阵 。() 2.若矩阵和矩阵满足,则 。() 3.实对称阵与对角阵相似:,这里必须是正交 阵。() 4.初等矩阵都是可逆阵,并且其逆阵都是它们本 身。() 5.若阶方阵满足,则对任意维列向量,均有 。()

线性代数期末复习题

线性代数 一. 单项选择题 1。设A 、B 均为n 阶方阵,则下列结论正确的是 . (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b )若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d )若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b ) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A )=m 时,则方程组 。 (a ) 可能无解 (b)有唯一解 (c)有无穷多解 (d )有解 4.矩阵A 与对角阵相似的充要条件是 。 (a )A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5。A 为n 阶方阵,若02 =A ,则以下说法正确的是 。 (a ) A 可逆 (b ) A 合同于单位矩阵 (c ) A =0 (d ) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B)CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A |=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

线性代数期末考试试卷答案

枣庄学院线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ????? ???? ???=01 00 10000001 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数期末试题(同济大学第五版)(附答案)

线性代数试题(附答案) 一、填空题(每题2分,共20分) 1.行列式0 005002304324321= 。 2.若齐次线性方程组?? ? ??=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。 3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。 4.A 为n n ?阶矩阵,且ο=+-E A A 232,则1-A 。 5. 321,,ξξξ和321,,ηηη是3R 的两组基,且 32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。 7.设=?? ?? ? ?????---=??????????)(,111012111,321212113AB tr AB B A 之迹则 。 8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--?A A 。 9.二次型x x x x x x f 2 32 22 132123),,(--=的正惯性指数为 。 10.矩阵?? ?? ? ?????1042024λλA 为正定矩阵,则λ的取值范围是 。 二、单项选择(每小题2分,共12分)

1.矩阵()==≠≠???? ? ???????=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。 A 、1 B 、2 C 、3 D 、4 2. 齐次线性方程组???=--=++-020 23214321x x x x x x x 的基础解系中含有解向量的个数是( ) A 、1 B 、2 C 、3 D 、4 3.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( ) A 、-1 B 、-2 C 、0 D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( ) A 、B=E B 、A=E C 、A=B D 、AB=BA 5.已知=?? ?? ? ?????==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或2 6.下列矩阵中与矩阵合同的是??? ? ???? ? ?-50 00210 002 ( ) A 、??????????---200020001 B 、?? ??? ?????-500020003 C 、?? ?? ??????--100010001 D ????? ?????100020002 三、计算题(每小题9分,共63分) 1.计算行列式),2,1,0(00000 022 11 210n i a a c a c a c b b b a i n n n ΛΛ ΛΛΛΛΛΛΛΛ=≠其中

线性代数期末考试试卷

本科生2010——2011学年第 一 学期《线性代数》课程期末考试试卷(B 卷) 草 稿 区 专业: 年级: 学号: 姓名: 成绩: 一 、选择题(本题共 28 分,每小题 4 分) 1.设n 阶方阵A 为实对称矩阵,则下列哪种说法是错误的 ( B ) (A) A 的特征值为实数; (B) A 相似于一个对角阵; (C) A 合同于一个对角阵; (D) A 的所有特征向量两两正交。 2.设n 维列向量组)(,,21n m m <ααα 线性无关,则n 维列向量组m βββ ,,21线性无关的充要条件是 ( D ) (A)向量组m ααα ,,21可由向量组m βββ ,,21线性表示; (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示; (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价; (D) 向量组m ααα ,,21与向量组m βββ ,,21等价。 3.设n 阶方阵A 的伴随矩阵为*A ,则 ( C ) (A) *A 为可逆矩阵; (B) 若0||=A ,则0||*=A ; (C) 若2)(*-=n A r ,则2)(=A r ; (D) 若0||≠=d A ,则d A 1||*= 。 4.设A 为n 阶非零方阵,E 为n 阶单位矩阵,30A =则 ( ) (A)()E A -不可逆,()E A +不可逆; (B) ()E A -不可逆,()E A +可逆; (C) ()E A -可逆,()E A +可逆; (D) ()E A -可逆,()E A +不可逆. 第 1页,共 6 页

5.实数二次型T f X AX =为正定二次型的充分必要条件是 ( ) (A) 负惯性指数全为零; (B) ||0A >; (C) 对于任意的0X ≠,都有0f >; (D) 存在n 阶矩阵U ,使得T A U U =. 6.设12,λλ为A 的不同特征值,对应特征向量为12,αα,则112,()A ααα+线性无关的充要条件为 ( ) (A)10λ≠; (B) 20λ≠; (C) 10λ=; (D) 20λ=. 7.设211100121,010112000A B --???? ? ? =--= ? ? ? ?--???? ,则 ( ) (A) A 与B 合同,但不相似;(B) A 与B 相似,但不合同; (C) A 与B 既合同又相似; (D) A 与B 既不合同也不相似. 二 、填空题(本题共 24分,每小题 4 分) 1.二次型2221231231213(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是 . 2.设01000 01000010 000A ?? ? ? = ? ? ?? ,则3A 的秩3()r A 为 . 3.设三阶矩阵A 的特征值为,2,3λ,若|2|48A =-,则λ= . 4.设向量123(1,2,1,0),(1,1,0,2),(2,1,1,)T T T a ααα=-==,若123,,ααα构成的向量组的秩为2, 则a = . 5.设3阶矩阵123(,,)A ααα=,123123123(,24,39)B ααααααααα=++++++,且已知||1A =,则||B = . 第 2页,共 6 页

线性代数期末试题及参考答案

线性代数期末试卷及参考答案 一、单项选择题(每小题3分,共15分) 1.下列矩阵中,( )不是初等矩阵。 (A )001010100?????????? (B)100000010?? ?? ?? ???? (C) 100020001????????? ?(D) 100012001????-?????? 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。 (A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+ 3.设A 为n 阶方阵,且2 50A A E +-=。则1(2)A E -+=( ) (A) A E - (B) E A + (C) 1()3A E - (D) 1() 3A E + 4.设A 为n m ?矩阵,则有( )。 (A )若n m <,则b Ax =有无穷多解; (B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量; (C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。 5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则 () (A )A 与B 相似(B )A B ≠,但|A-B |=0 (C )A=B (D )A 与B 不一定相似,但|A|=|B| 二、判断题(正确填T ,错误填F 。每小题2分,共10分) 1.A 是n 阶方阵,R ∈λ,则有A A λλ=。() 2.A ,B 是同阶方阵,且0≠AB ,则 111)(---=A B AB 。()

厦门大学线性代数期末试题及答案

一、填空题(每小题2分,共20分) 1.如果行列式2333231232221131211=a a a a a a a a a ,则=---------33 32 31 232221 13 1211 222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。 9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 322 2166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n =

线性代数期末考试题及答案

(2011 至 2012学年 第__2_学期) 课程名称:线性代数A 考试时间:110分钟 课程代码:7100059试卷总分:100分 考试形式:闭卷 学生自带普通计算器: 否 一、单项选择题(每小题3分,共15分) 1、A 和B 均为n 阶矩阵,且222()2A B A AB B -=-+,则必有( ) A A E =; B B E =; C A B =. D AB BA =。 2、设A 是方阵,如有矩阵关系式AB=AC ,则必有( ) A. A =0B. B ≠C 时A=0C. A ≠0时B=CD. |A|≠0时B=C 3、设A 是s n ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是( ) A.A 的行向量组线性无关 B.A 的列向量组线性无关 C.A 的行向量组线性相关 D.A 的列向量组线性相关 4、若1x 是方程=AX B 的解,2x 是方程=AX O 的解,则()是方程=AX B 的解(c R ∈) A.12x cx + B. 12cx cx + C.12cx cx - D.12cx x + 5 、设矩阵A 的秩为r ,则A 中( ) A.所有r -1阶子式都不为0 B.所有r -1 阶子式全为0 C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为0 二、填空题(每小题3分,共15分) 1、已知向量T )4,2,3,1(=α与T k k )2,3,1,(--=β正交,则=k _. 2、1 1101-?? ??? =. 3、设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为. 4、如果21,X X 都是方程O X A n n =?的解,且21X X ≠,则=?n n A ; 5、设向量组123100130121T T T (,,),(,,),(,,)==-=-ααα线性 (填相关或无关)

大一线性代数期末考试试卷+答案

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321321321x x x x x x x x x λλ只有零解,则λ应满足。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ①n 2②1 2 -n ③1 2 +n ④4 2. n 维向量组s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ①s ααα,, , 21中任意两个向量都线性无关 ②s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关

线性代数期末考试试卷+答案(单美静)

2008年线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2?② 1 2 -n ?③ 1 2 +n ?④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n)线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

相关主题
文本预览
相关文档 最新文档