当前位置:文档之家› 功能陶瓷材料

功能陶瓷材料

功能陶瓷材料
功能陶瓷材料

功能陶瓷材料

功能陶瓷材料是指对电、磁、光、热、化学、生物等现象或物理量有很强反应,或能使上述某些现象或量值发生相互转化的陶瓷材料。功能陶瓷是一类颇具灵性的材料,它们或能感知光线,或能区分气味,或能储存信息……因此,说它们多才多能一点都不过分.它们在电、磁、声、光、热等方面具备的许多优异性能令其他材料难以企及,有的功能陶瓷材料还是一材多能呢!而这些性质的实现往往取决于其内部的电子状态或原子核结构,又称电子陶瓷。

功能陶瓷材料是陶瓷材料的一种,与大多数陶瓷材料的制备工艺步骤基本相似,一般包括以下步骤:配料→混合→预烧→粉碎→成型→排塑→烧结→后处理(极化、磁化等)。

1、配料:

根据配方(化学反应的配比)和生产需要的数量计算出各种原料所需的质量。用天平称取各原料。为使后面的化学反应顺利进行,原料的颗粒尽量小些(不要超过2 m,.最好为纳米粉),纯度要高。对于配料中用量多的原料,最好先清除其中的有害杂质。

2、混合:

通常使用转动球磨机或振动球磨机进行,有用干法的,也有用湿法的,所用的球大多是玛瑙球。用球磨法不但可以混合,同时还可以使原料颗粒进一步被粉碎。球磨要足够长时间以使各成分原料均匀混合,最大限度地彼此接触,以利于后面的化学反应。当然,混合也可以采用其它方法,只要达到各原料的均匀混合就行。

3、预烧:

混合好的料进行预烧,目的是让各成分间进行化学反应,生成目标化合物。不同的化学反应有不同的条件(温度、压力、气氛等)要弄清这些条件。

4、粉碎、成型:

将预烧后的材料粉碎是为了成型。成型是按使用要求将材料做成某种特定形状的坯体。成型根据不同要求可以采用模压、轧膜等方式。为便于成型,成型前通常要在粉碎的料中加入某种粘合剂。常用粘合剂的配方及重量比为:聚乙烯醇15%,甘油7%,酒精3%,蒸馏水75%;在90℃下搅拌溶化。对模压、粘合剂一般是料粉重量的5%,而对轧膜,则粘合剂要达

料粉重量的15~20%。

5、排塑:

去除成型坯体中的水分、粘合剂的过程称排塑或排胶,一般采取加温办法。在粘合剂中,聚乙烯醇的挥发温度最高(200~500℃),为使排塑彻底,要达到合适的排塑温度,并保温一定时间。在排塑的升降温中,速度不要太快,一般小于100℃/h。

6、烧结:

这一过程是晶体结构形成和扩大的过程,可称为晶化过程。在预烧后粉碎成型的坯体中,已经存在着许多细小的晶粒,在一定的高温下,通过原子的扩散运动实现材料的晶化过程:一方面,在晶粒内部自由能较高的区域和晶界处生成新的晶核,不断长大;另一方面,由于晶粒表面张力的作用,一部分晶粒依靠“吞噬”另一部分晶粒而长大,这种长大常通过晶界的移动实现。

7、后处理:

极化、磁化等后处理是一些专用功能陶瓷烧成后的必要处理过程,目的是使各晶粒中的某性能尽可能按同一方向排列,以达到块材整体具有较强的性能。

大名鼎鼎的压电陶瓷是功能陶瓷中的重要代表。1946年美国麻省理工学院绝缘研究室发现,在钛酸钡铁电陶瓷上施加直流高压电场,使其自发极化沿电场方向择优取向,除去电场后仍能保持一定的剩余极化,使它具有压电效应,从此诞生了压电陶瓷。所谓压电效应即为某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。反之,施加激励电场,介质将产生机械变形,称逆压电效应。这种奇妙的效应已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控制等功能。压电陶瓷的制造特点是在直流电场下对铁电陶瓷进行极化处理,使之具有压电效应。一般极化电场为3~5kV/mm,温度100~150°C,时间5~20min。这三者是影响极化效果的主要因素。性能较好的压电陶瓷,如锆钛酸铅系陶瓷,其机电偶合系数可高达0.313~0.694。

在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。

压电陶瓷主要用于制造超声换能器、水声换能器、电声换能器、陶瓷滤波器、陶瓷变压器、陶瓷鉴频器、高压发生器、红外探测器、声表面波器件、电光器件、引燃引爆装置和压电陀螺等。

大名鼎鼎的超导陶瓷材料也是功能陶瓷的杰出代表。1987年美国科学家发现钇钡铜氧陶瓷在98K时具有超导性能,为超导材料的实用化开辟了道路,成为人类超导研究历程的重要里程碑。电容器陶瓷能储存大量的电能,目前全世界每年生产的陶瓷电容器达百亿支,在计算机中完成记忆功能。而敏感陶瓷的电性能随湿、热、光、力等外界条件的变化而产生敏感效应:热敏陶瓷可感知微小的湿度变化,用于测温、控温;而气敏陶瓷制成的气敏元件能对易燃、易爆、有毒、有害气体进行监测、控制、报警和空气调节;而用光敏陶瓷制成的电阻器可用作光电控制,进行自动送料、自动曝光、和自动记数。磁性陶瓷是部分重要的信息记录材料。

此外,功能陶瓷材料的用途还有半导体陶瓷、绝缘陶瓷、介电陶瓷、发光陶瓷、感光陶瓷、吸波陶瓷、激光用陶瓷、核燃料陶瓷、推进剂陶瓷、太阳能光转换陶瓷、贮能陶瓷、陶瓷固体电池、阻尼陶瓷、生物技术陶瓷、催化陶瓷、特种功能薄膜等,在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。

在奇妙的材料世界里还有许多未知的现象有待于我们去探究,相信随着科学技术的进一步发展,人类也必然会发掘出功能材料的新功能,并将其派上新用场。

关于材料导论的论文范文

篇一:关于材料导论的论文范文 虽然我已经进大材料专业两个多月,却由于种种原因,不能对材料这门基础学科有清楚的认识,甚至对于别人问我材料是干什么的,我也是尴尬地不能回答。在这10来次的课程中,我终于进一步认识到了材料学科的优势和发展前景,对于自己的未来也有了更多自信和期许。 材料共分为金属材料,无机非金属材料和高分子材料三大类。在这些课程中,教授们着重强调了无机非金属材料中的陶瓷材料。以前,我总认为陶瓷无非就是瓷碗,花瓶之类,却没想到它还会有那么多的化学特性和功能。实际上,陶瓷是瓷器和陶器的统称,它采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压的绝缘器件。陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。此外,它在防辐射方面也发挥着至关重要的作用在所有的材料中,最令我感兴趣的是功能材料。功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,有着十分广阔的市场前景和极为重要的战略意义。 其中,太阳能电池材料是新能源材料研究开发的热点。随着能源日益紧缺和环保压力的不断增大,石油的枯竭几乎像一个咒语,给人类带来了不安。各国都开始力推可再生能源,其中开发和利用太阳能已成为可再生能源中最炙热的“新宠”,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能资源丰富,而且免费使用,又无需运输,对环境无任何污染。正是因为这些优点,太阳能光伏产业才蓬勃发展起来。相信在未来,太阳能电池会发挥越来越重要的作用。 尽管我国非常重视功能材料的发展取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地,却依旧和发达国家存在着、较大的差距。因此发达国家企图通过功能材料领域形成技术垄断,并试图占领中国广阔的市场。例如,高铁的一些关键材料还需从国外进口,每年都得花高达千亿的资金去购买这些材料,还必须满足他们各种要求,这对拥有万千专家学者的中国来说,这不能不说是一种悲哀。特别是我国国防用关键特种功能材料是不可能依靠进口来解决的,必须要走独立自主、自力更生的道路。如军事通信、航空、航天、激光武器等,都离不开功能材料的支撑。 如何在毕业后成为一位优秀的材料人,这是我们每个人都需要思考的问题,未来充满着未知,这一切都有待于我们的努力。首先,我们要有勤勉、认真、踏实的学习作风,我们所学的基础课程都是很朴实无华的内容,这就要求我们能静下心来,从一砖一瓦打基础做起,不可心浮气躁。其次,我们需要动手实验的实 践能力,任何的成果都要依靠理论和实验,用实验来验证理论,这就要求我们要有一定的动手能力,对于实验的操作、各种仪器的使用要有相当的了解。而且我们一定要有举一反三的创新能力,我们的目标就是在于如何研发出不同于前人的材料,制作新工艺和新方法,这样人类才能更好地利用科学来造福众生,才能使我们的世界越来越丰富多彩。另外,我们还要学习一定的软件知识。课上,老师教我们如何用软件来模拟物质结构,引起了我们极大的兴趣,如果我们将想要在材料方面大展身手,软件将是我们研究学习不可或缺的帮手。

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发展现状与趋势

电子陶瓷材料的发展现状与趋势 材料学院080201班李金霖 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域[1]。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 2.1.1高导热、电绝缘陶瓷的研究现状 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 AlN于1862年首次合成[2],20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN 陶瓷的研究热点是提高热传导性能,应用对象是电路基板和封装材料。最新研究通过采用有效的烧结助剂如CaO和Y203生产出了高纯度、高热导率的AlN。 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出了巨大的贡献,但因其有剧毒,已逐渐被停止使用[3]。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO[4];另一方面,独立开发新材料,正在开发中的有氮氧化硅(Si2ON2)、SiC纤维、氮化硅系列纤维等[5~6]。 (2)除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann 和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 2.1.2高导热、电绝缘陶瓷的应用前景 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗低等特性,使其成为高密度集成电路基板和封装的理想材料。同时也可用作电子器件的封装材料、散热片以及高温炉的发热件等。

信息材料

1.根据信息材料的功能,可把信息材料主要分为信息收集材料,信息存储材料,信息处理材料,信息传递材料,信息显示材料2还有一类重要的信息材料是半导体激光器材料。 光信息的存储、处理、传递和显示并不是基于半导体激光材料在外场作用下发生某种物理或化学变化来实现,但这些功能都必须有半导体激光器产生的激光参与才得以实现。 3.半导体激光器是信息功能器件的核心器件和通用器件,半导体激光材料也是信息材料中重要的部分。 4.信息收集材料是指用于信息传感和探测的一类对外界信息敏感的材料。 在外界信息如力、热、光、磁、电、化学或生物信息的影响下,这类材料的物理或化学性质(主要是电学性质)会发生相应变化,通过测量这些变化可方便精确地探测、接收和了解外界信息变化。 5.信息传感材料主要包括力敏传感材料、热敏传感材料、光敏传感材料、磁敏传感材料、气敏材料、湿敏材料、压敏材料、生物传感材料等。 6.力敏传感材料是指在外力作用下电学性质会发生明显变化的材料,主要分为金属应变电阻材料和半导体压阻材料两大类。金属应变电阻材料主要有康铜系合金、锰铜合金、镍铁铝铁合金、镍铬合金、铁铬铝合金等。半导体压阻材料主要是单晶硅。(半导体压阻材料便于力敏传感器件的微型化和集成化,在常温下有大量应用,逐步取代金属型应变计。金属应变电阻材料的电阻温度系数、温度灵敏度系数等都比半导体好,具有很高的延展性和抗拉强度,在耐高温、大应变、抗辐射等场合得到广泛使用。) 7.热敏传感材料是指对温度变化具有灵敏响应的材料,主要是电阻随温度显著变化的半导体热敏电阻陶瓷。根据电阻温度系数的正负,可分为正温度系数(BaTiO3、V2O5为基的热敏陶瓷)和负温度系数(过渡金属氧化物为基的热敏陶瓷)热敏材料两类。 8.光敏传感材料在光照下会因各种效应产生光生载流子,用于制作光敏电阻、光敏三极管、光电耦合器和光电探测器。最常用的光学敏感材料是锗、硅和II-VI族、IV-VI族中的一些半导体化合物等,如CdS、CdSe和PbS等半导体化合物,9.磁敏电阻材料是指具有磁性各向异性效应的磁敏材料。这类材料在磁化方向平行电流方向时,阻值最大;在磁化方向垂直于电流方向时,阻值较小。改变磁化方向与电流方向夹角,即可改变磁敏电阻材料的阻值。强磁性簿膜磁敏电阻材料主要是NiCo和NiFe合金薄膜,可制备磁敏二极管或三极管,灵敏度高、温度特性好,可用于磁场测量。 10.巨磁阻效应是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象(巨磁阻效应读出磁头,磁头存储密度迅速提高到3Gb/in2,磁盘记录从4Gb提升到600Gb或更高) 11.气敏材料是对气体敏感,电阻值会随外界气体种类和浓度变化的材料,如SnO2、ZnO、Fe2O3、ZrO2、TiO2和WO2等n 型或p型金属氧化物半导体。气敏材料用于制作气敏传感器,吸附气体后载流子数量变化将导致表面电阻率变化,进而对气体的种类和浓度进行探测。 12.湿敏材料是指电阻值随环境湿度增加而显著增大或降低的一些材料。陶瓷湿敏材料主要有MgCr2O3系、ZnCr2O3系和MnWO4、NiWO4等。高分子湿敏材料是指吸湿后电阻率或介电常数会发生变化的高分子电解质膜,如吸湿性树脂、硝化纤维系高分子膜。 13.信息存储材料是指用来制作各种信息存储器的一些能够记录和存储信息的材料。 在外加物理场(如电场、磁场、光照等)的影响下,信息存储材料发生物理或化学变化,实现对信息的存储。 14.磁记录材料 磁记录材料可方便地进行数据的存储和读取工作。磁性存贮器具有容量大、成本低等优点; 磁记录装置可将记录下来的信号进行放大或缩小,使科研中的数据处理更为方便灵活;磁卡可用于存取款、图书保存以及乘坐交通工具的票证等,方便人们生活。 15.颗粒涂布型磁记录介质是将磁粉、非磁性胶粘剂和少量添加剂等形成的均匀磁性浆料,涂布于聚酯薄膜上制成。 磁粉包括γ-Fe2O3、BaO-Fe2O3、金属粉等。 16.金属磁粉特点是具有较高的磁感应强度和矫顽力。纯铁磁化强度达1700emu/cm3,可在较薄的磁层内得到较大的读出信号;小针状铁粒子可提供较高矫顽力,使磁记录介质承受较大的外场作用。金属磁粉缺点是稳定性差,易氧化或发生其它反应,常用表面钝化或合金化等办法控制表面氧化,但降低粒子的磁化强度 17.钡铁氧体来源丰富,成本低,有较高的矫顽力和磁能积,抗氧化能力强,是一种应用广泛的永磁材料。钡铁氧体矫顽力高达398kA/m,本不适于作磁记录介质,以下特点使其可成为理想高密度磁记录材料:六方形平板结构和垂直于平板

陶瓷材料论文

湖南科技大学专业课程论文 论文题目:对介电功能陶瓷性能的研究 学生姓名:付国良 学院:机电工程学院 专业班级:09级金属材料工程二班 学号:0903050201 指导教师:徐红梅 2011年12月20日

对介电功能陶瓷性能的研究 付国良 (09级金属材料工程二班学号:093050201) 【摘要】随着材料科学技术的飞速发展,电功能陶瓷材料的低位变得日益重要,其特性方面发挥的优越性是其他材料不可代替的。电功能材料作为一种精细陶瓷,采用高度精选的原料,通过精密调配的化学组成和严格控制的制造工艺合成的陶瓷材料。近年来,电子元件随科技发展和市场需求不断向片式化、小型化、多功能化等趋势发展,其中,片式化是小型化、多功能化发展的基础。因此,片式化材料和器件的研究成为热点。在片式化多层结构中,为了使用银、铜内电极,降低元件制作成本,低温共烧陶瓷技术成为近年来兴起的一种令人瞩目的多学科交叉的整合组件技术。从介电材料的低温烧结和掺杂改性入手,通过调节成型压力,成型方式,叠层结构,以及采用零收缩技术,零收缩差技术,加入中间层等工艺技术和结构的改变,来研究层状共烧体的收缩率匹配,界面反应,界面扩散和介电性能,最终解决两种材料之间的共烧兼容问题,获得可低温烧结的无翘曲变形,无开裂等缺陷且界面结合良好的叠层共烧体。介电陶瓷和绝缘陶瓷在本质上属于同一类陶瓷,但是与绝缘陶瓷不同的是,主要利用介电性能的陶瓷称为介电陶瓷或者说,介电陶瓷是通过控制陶瓷的介电性质,使之具有较高的介电常数、较低的介质损耗和适当的介电常数温度系数的一类陶瓷。 【关键词】陶瓷功能系数介电 【引言】介电陶瓷对人类的生活影响涉及方方面面,但是人类对功能陶瓷的利用在一些方面的利用还是个空白,我设想如果我们把介电陶瓷用在谐振器、耦合器、滤波器、电容器、半导体、变压器等生活电器中时,这些电器将在工作效率和工作寿命上有很大的提高。为了加强对介电功能陶瓷的功能的广泛利用,我对介电功能陶瓷材料的介电特性做了深入研究。通过对材料性质的分析,我采用实验分析法,设计了周密的实验方案,同时我对介电功能陶瓷的理论基础做了研究设想,设计了研究方法和实验设计。如果电功能陶瓷得到很好的利用,我们的电器和各种电子设备间的工作效率将大大提高,设备制造成本也将大大降低。所以,研究介电功能陶瓷有很深远的意义。 【正文】 一、节电功能陶瓷的定义。 陶瓷材料特有的高强度、耐热性、稳定性等特点,被人们普遍看好用作集成电路板的制造材料。目前作为集成电路基板的陶瓷材料主要有氧化铝、氧化铍、碳化硅及氮化铝等,其中以氧化铝应用最为普遍。

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

陶瓷材料的力学性能检测方法

陶瓷材料力学性能的检测方法 为了有效而合理的利用材料,必须对材料的性能充分的了解。材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。 1.弯曲强度 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。 图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为: z I My = σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =??? ? ???= z I y a P max max 21σ???? ?圆形截面 16矩形截面 332D Pa bh Pa π

其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为: =??? ? ???= z I y a P l max max 4σ???? ?圆形截面 8矩形截面 2332D Pl bh Pl π 式中l 为两个支点之间的距离(也称为试样的跨度)。 上述的应力计算公式仅适用于线弹性变形阶段。脆性材料一般塑性变形非常小,同弹性变形比较可以忽略不计,因此在断裂前都遵循上述公式。断裂载荷所对应的应力即为试样的弯曲强度。 需要注意的是,一般我们要求试样的长度和直径比约为10,并且在支点的外伸部分留足够的长度,否则可能影响测试精度。另外,弯曲试样下表面的光洁度对结果可能也会产生显著的影响。粗糙表面可能成为应力集中源而产生早期断裂。所以一般要求表面要进行磨抛处理。当采用矩形试样时,也必须注意试样的放置方向,避免使计算中b 、h 换位得到错误的结果。 2.断裂韧性 应力集中是导致材料脆性断裂的主要原因之一,而反映材料抵抗应力集中而发生断裂的指标是断裂韧性,用应力强度因子(K )表示。尖端呈张开型(I 型)的裂纹最危险,其应力强度因子用K I 表示,恰好使材料产生脆性断裂的K I 称为临界应力强度因子,用K IC 表示。金属材料的K IC 一般用带边裂纹的三点弯曲实验测定,但在陶瓷材料中由于试样中预制裂纹比较困难,因此人们通常用维氏硬度法来测量陶瓷材料的断裂韧性。 陶瓷等脆性材料在断裂前几乎不产生塑性变形,因此当外界的压力达到断裂应力时,就会产生裂纹。以维氏硬度压头压入这些材料时,在足够大的外力下,压痕的对角线的方向上就会产生裂纹,如图2-1所示。裂纹的扩展长度与材料的断裂韧性K IC 存在一定的关系,因此可以通过测量裂纹的长度来测定K IC 。其突出的优点在于快速、简单、可使用非常小的试样。如果以P C 作为可使压痕产生雷文的临界负荷,那么图中显示了不同负荷下的裂纹情况。 由于硬度法突出的优点,人们对它进行了大量的理论和实验研究。推导出了各种半经

功能陶瓷材料研究进展综述

功能陶瓷材料的应用 研究 姓名:刘军堂___________ 学号: 23122837________ 班级: 机械1201_________ 任课老师:张志坚__________

功能陶瓷材料的应用研究 1.选择一个课题进行相关检索,要求对课题作简要分析,并在分析的基础上确定检索词,准确描述检索过程。(10分)(可选择其他课程中以论文方式考核的科目,如无此类题目,可自选或用备选题目) 功能陶瓷 功能陶瓷材料是具有特殊优越性能的新型材料,各国在基础与应用研究以及工程化方面,均给予了特殊重视,特别是在信息、国防、现代交通与能源产业中均将其置于重要地位。根据功能陶瓷材料的应用前景,本文介绍了功能陶瓷新材料的性能、应用范围,市场的开发应用现状和开发应用新领域,以及正在研发的高性能陶瓷材料;同时介绍了功能陶瓷材料今后的发展趋势。 关键词:功能陶瓷材料;应用现状;趋势 检索过程 第一步:进入“中国知网”主页,网址是“https://www.doczj.com/doc/f61278173.html, 第三步:登录成功后会进入操作界面, 第四步:选择要检索的文献数据库。在操作界面上,中国知网将其文献分成了不同的库,我们根据自己的文献范围属性进行选择。 第五步:检索参数设置。在操作界面的上部,有搜索参数设置对话框。最好逐一填写。(1)检索项,系统对文献进行了检索编码,每一个文献都有一一对应的编码,一个编码就是一种检索项。点击检索项框右边的向下箭头,就能弹出所有检索项,选中一个就好。(2)检索词,填入要求系统搜索的内容。没有明确严格要求,不一定是词语。但是需要考虑到它应当与你选中的检索项相一致。如检索项用了“关键词”,就不能用一个长句等作检索词了。(3)文献时间选择,根据文献可能出现的年代,点击对话框右边的小三角就可以选了。需要说明的是,中国知网建立时间是1994年,所以1994年及其后的数据才是最全的。现在他们在逐渐补充1994年以前的文献数据,但是,全面性可能要差些。(4)排序,提示系统将找到的文献按什么顺序呈现。(5)匹配,即要求系统按自己的检索要求进行哪种精确程度的检索。如果你确定你的文献参数,那么选择“精确”,如果不确定,就选择“模糊”。 第六步:点击“搜索”就完成了第一阶段的操作了。然后就进入检索结果呈现的界面:中国知网2.rar(点击打开查看),中国知网的结果呈现表中,对文献的基本信息:文献题目、文献的载体、发表时间及在中国知网中的收藏库名进行了说明。

lv功能陶瓷材料论文

功能陶瓷材料研究论文 苏州科技学院 化学生物与材料工程学院 材料学专业 题目:锰锌铁氧体材料的性能研究与制备 姓名:吕岩 学号: 1411093004 指导老师:钱君超

锰锌铁氧体材料的性能研究与制备 摘要:铁氧体材料是当今一种重要的磁性材料。二十世纪三十年代以来,由于该种材料固有的特性,人们对这种材料产生了浓厚的兴趣,并开展了广泛的研究。本文主要从锰锌铁氧体入手,介绍了高磁导率锰锌铁氧体的研究历史及其在信息产业发展过程中的意义和作用,同时从配方优化、烧结工艺、测试方法等方面综述了国内外的研究与发展现状。 关键词:锰锌铁氧体;高磁导率;配方;烧结工艺 Abstract:Ferrite materials is a very important magnetic materials at present.For the inherent characteristics of this materials,people had a strong interesting in it and extensive research carried out since the 1930s.This article is mainly about MnZn ferrite,introducing the background,the significance and current state of manufacturing high permeability MnZn ferrite was summed up and at the same time the investigation status about composition,sintering process and methods of analysis was reviewed. Key words:MnZn ferrite;high permeability;composition;sintering process

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

信息功能材料学

信息功能材料学 第一章:半导体材料 1,本征半导体的能带结构课分为:直接带隙半导体,间接带隙半导体。 2,半导体掺杂工艺主要有:扩散,离子注入等。 3,向半导体中掺杂高价杂质时,杂质原子提供的价电子数目多于半导体原子,多余的价电子很容易进入导带而成为电子载流子,半导体的电导率也随之增加,这种提供多余价电子的掺杂称为施主掺杂。 向半导体中掺杂低价杂质时,杂质原子提供的价电子数目少于半导体原子,很容易在价带形成空穴,半导体的电导率也随之增加,这种掺杂称为施主掺杂。4,np=Ne*Nv*exp(-Eg/k B T);Eg=Ec-E V;Eg------半导体的禁带宽度 5,非平衡载流子主要影响少子。 当半导体承受外界作用时,除热平衡载流子外,还将产生非平衡载流子。 非平衡载流子的复合过程分为直接复合和间接复合。 直接复合是指电子直接从导带跃迁至价带的过程。 6,半导体的电导率是由载流子浓度和载流子迁移率共同决定的。 7,对于本征半导体来说,载流子浓度仅与温度有关;对于杂质半导体而言,载流子浓度由半导体掺杂浓度和温度共同决定。 8,半导体光吸收的机制:本征吸收,激子吸收,杂质吸收,自由载流子吸收,声子吸收。 9,半导体光吸收机制中,除声子吸收外,都将产生额外的载流子,由于半导体的电导率与载流子浓度成正比,所以光照可以引起半导体电导率的增加,这部分增加的电导率称为光电导。 10,如果磁场方向与电流方向垂直,导体中就会在磁场和电流方向上产生电场,这就是霍尔效应。 11,半导体置于磁场中,半导体的电阻会增加,这种效应称为半导体的磁阻效应。 磁阻效应分为物理磁阻效应和几何磁阻效应。 理磁阻效应主要是由于载流子在磁场作用下做螺旋运动,导致载流子散射概率增加二引起的电阻增加现象。 几何磁阻效应主要是由于样品的形状引起的电阻增加的现象。 12,块状半导体单晶制备技术中,广泛应用的是:切克劳斯基法(提拉法);布里奇曼法(坩埚下降法)。 13,半导体薄膜制备方法:磁控溅射;分子束外延,金属有机化学气象沉积。14,GaAs半导体的应用: ①砷化镓的禁带宽度达工作温度大,适合制作大功率器件。 ②电子迁移率高,有效质量小,用GaAs制作的半导体器件工作速度快, 噪声低。 ③GaAs为直接带隙半导体,光电转换效率和发光效率都很高,适合制作太 阳能电池,发光二极管,半导体激光器。 ④GaAs光吸收系数高,适合制作红外探测器件。 15,半导体的四种效应: ①光照下产生电压——光生伏特效应 ②导电方向性——整流效应

陶瓷材料论文:电子陶瓷材料的发展现状与趋势

陶瓷材料论文:电子陶瓷材料的发展现状与趋势 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域[1]。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 AlN于1862年首次合成[2],20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN 陶瓷的研究热点是提高热传导性能,应用对象是电路基板和封装材料。最新研究通过采用有效的烧结助剂如CaO和Y203生产出了高纯度、高热导率的AlN。 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出了巨大的贡献,但因其有剧毒,已逐渐被停止使用[3]。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO[4];另一方面,独立开发新材料,正在开发中的有氮氧化硅(Si2ON2)、SiC纤维、氮化硅系列纤维等[5~6]。 (2)除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann 和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗低等特性,使其成为高密度集成电路基板和封装的理想材料。同时也可用作电子器件的封装材料、散热片以及高温炉的发热件等。 2.2 介电陶瓷 钛酸钡陶瓷由于具有高介电常数、良好的铁电、介电及绝缘性能,主要用于制备电容器、多层基片、各种传感器等。钛酸钡粉体的制备方法很多,其中液相合成法因具有高纯、超细、均匀等优点而倍受青睐。美国主要以草酸盐法和其它化学合成法为主[8~10];日本则主要采用350℃以下的水热法来合成[11];朱启安用氢氧化钡和偏钛酸为原料,制备了纯度高、粒径小的钛酸钡粉体,能满足电子工业对高质量钛酸钡粉体的需求。此外,以偏钛酸、氯化钡、碳

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

功能材料选修作业

功能材料之生态环境材料简述 功能材料发展前景 我国非常重视功能材料的发展,在国家攻关、“ 863”、“973”、国家自然科学基金等计划中,功能材料都占有很大比例。在“九五”“十五”国防计划中还将特种功能材料列为“国防尖端”材料。这些科技行动的实施,使我国在功能材料领域取得了丰硕的成果。在“863”计划支持下,开辟了超导材料、平板显示材料、稀土功能材料、生物医用材料、储氢等新能源材料,金刚石薄膜,高性能固体推进剂材料,红外隐身材料,材料设计与性能预测等功能材料新领域,取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地。镍氢电池、锂离子电池的主要性能指标和生产工艺技术均达到了国外的先进水平,推动了镍氢电池的产业化;功能陶瓷材料的研究开发取得了显著进展,以片式电子组件为目标,我国在高性能瓷料的研究上取得了突破,并在低烧瓷料和贱金属电极上形成了自己的特色并实现了产业化,使片式电容材料及其组件进入了世界先进行列;高档钕铁硼产品的研究开发和产业化取得显著进展,在某些成分配方和相关技术上取得了自主知识产权;功能材料还在“两弹一星”、“四大装备四颗星”等国防工程中作出了举足轻重的贡献。 世界各国功能材料的研究极为活跃,充满了机遇和挑战,新技术、新专利层出不穷。发达国家企图通过知识产权的形式在特种功能材料领域形成技术垄断,并试图占领中国广阔的市场,这种态势已引起我国的高度重视。我国在新型稀土永磁、生物医用、生态环境材料、催化材料与技术等领域加强了专利保护。但是,我们应该看到,我国功能材料的创新性研究不够,申报的专利数,尤其是具有原创性的国际专利数与我国的地位远不相称。我国功能材料在系统集成方面也存在不足,有待改进和发展。 国外 根据预测, 2001年新材料技术产业在世界市场的销售额将超过4000亿美元,,其中功能材料约占75~80%。某些特种功能材料就其单项而言,其市场也是巨大的。1995年信息功能陶瓷材料及其制品的世界市场销售额已达210亿美元,预期到2010年将达到800亿美元;2000年超导材料销售额已达80亿美元,预测2010年的年销售额预计将达到600亿美元,其中高温超导电力设备的全球销售额可达50-60亿美元,到2020年,全球与超导相关的产业的产值(按1995年的价格估算)可能达到1500亿到2000亿美元,其中高温超导占60%;2010年全球钕铁硼永磁材料的市场需求量将达万吨,产值达80亿美元,带动相关产业产值700 亿美元;生物医用材料是一个正在迅速发展的高技术领域,全球生物医用材料及制品的产值超过700亿美元,美国约为400亿美元,与半导体产业相当,是美国经济中最活跃、出口量最大的6个产业之一,一直保持每年20%以上的速率持续增长,预计到本世纪前十年左右,生物医用材料产业将达到药物市场的份额;随着可持续发展政策被各国政府的广泛采纳,生态环境材料的市场需求也将迅速增加,估计2010年的社会需求将高于500亿美元。可见,在全球经济中,特种功能材料无论是需求的规模,还是需求的增长速度,都是相当惊人的。

陶瓷材料科学论文

学号: 1004230213 专业素质教育 2012 ~ 2013 学年秋季学期 学院:材料学院 专业班级:无机10—02班 姓名:宋海彬 透明陶瓷的研究现状与发展展望 摘要:陶瓷具有广大的发展前景,透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。 关键词:性能透明材料前景组成陶瓷透光性制备工艺应用 前言:1962年RLC首次报导成功地制备了透明氧化铝陶瓷材料以来,为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用。 透明陶瓷的分类 透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。 1氧化物透明陶瓷

对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。到目前为止,已经先后研发出了多种材料:Be()、ScZ()3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。)仁’0,”】、铝镁尖晶石(Mg()·A一2()。)〔’2,’3]和透明铁电陶瓷pLZ子川等。其中AiZ姚、M四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。2非氧化物透明陶瓷 对非氧化物透明陶瓷的研究是从20世纪80年代开始的。非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。但经过各国研究人员的共同努力和深人研究,现已经成功地制备出了多种透明度很高的非氧化物透明陶瓷,其中最典型的是AIN、GaAS、MgFZ、ZnS、CaFZ等透明陶瓷。 与氧化物透明陶瓷相比,大多数的非氧化物透明陶瓷不仅室温强度高,而且高温力学性能好,此外,还具有优良的抗急冷急热冲击性能。这些都使得对非氧化物透明陶瓷的研究势在必行。 透明陶瓷的制备工艺 透明陶瓷的制备过程包括制粉、成型、烧结及机械加工的过程。为了达到陶瓷的透光性,必须具备以下条件〔4〕:(1)致密度高;(2)晶界没有杂质及玻璃相,或晶界的光学性质与微晶体之间差别很小;(3)晶粒较小而且均匀,其中没有空隙;(4)晶体对入射光的选择吸收很小; (5)无光学各向异性,晶体的结构最好是立方晶系;(6)表面光洁度高。因此,对制备过程中的每一步,都必须精确调控,以制备出良好的透明陶瓷材料。

相关主题
文本预览
相关文档 最新文档