当前位置:文档之家› 数字集成电路的发展及未来

数字集成电路的发展及未来

数字集成电路的发展及未来

《数字集成电路基础》试题C

《数字集成电路基础》试题C (考试时间:120分钟) 班级:姓名:学号:成绩: 一、填空题(共30分) 1.三极管有NPN和PNP两种类型,当它工作在放大状态时,发射结____,集电 结______;NPN型三极管的基区是______型半导体,集电区和发射区是______型半导体。 2.把高电压作为逻辑1,低电平作为逻辑0的赋值方法称作_______逻辑赋 值。一种电路若在正逻辑赋值时为与非门,则在负逻辑赋值时为________。 3.四位二进制编码器有____个输入端;____个输出端。 4.将十进制数287转换成二进制数是________;十六进制数是_____ __。 5.根据触发器功能的不同,可将触发器分成四种,分别是____触发器、___ _触发器、____触发器和____触发器。 3=______。 A.发射结和集电结均处于反向偏置 B.发射结正向偏置,集电结反向偏置 C.发射结和集电结均处于正向偏置 2.在下列三个逻辑函数表达式中,____是最小项表达式。 A.B C ) A BC ,B ,A = + Y+ ( A B B ) A B ,A ( C B = B. C Y+ A

C. C AB ABC B C A C B A )D ,C ,B ,A (Y +++??= 3.用8421码表示的十进制数45,可以写成__________ A .45 B. [101101]BCD C. [01000101]BCD D. [101101]2 4.采用OC 门主要解决了_____ A .TTL 与非门不能相与的问题 B. TTL 与非门不能线与的问题 C. TTL 与非门不能相或的问题 5.已知某触发的特性表如下(A 、B 为触发器的输入)其输出信号的逻辑表达式为___ A . Q n+1 =A B. n n 1n Q A Q A Q +=+ C. n n 1n Q B Q A Q +=+ 三、化简下列逻辑函数,写出最简与或表达式:(共20分) 1. BC A C B A C B B A Y 1+?++= 2. Y 2=Σm (0,1,8,9,10,11) 3. Y 3见如下卡诺图

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

印刷技术未来发展趋势预测

印刷技术未来发展趋势预测 网络印刷市场潜力巨大 就网络化印刷本身来说,并不是一个什么新鲜的概念,但附加整合了个性化和市场化元素之后,一个新的应用领域就此诞生了,营销方式也随之发生了变革。为什么要搞网络化印刷, 罗建良认为,最重要的是市场客户的需求在逐步增加,而在商业应用中使用类似FTP类的电子网络方式越来越多。罗建良说,预计到2010年时,所有的印刷活件要求都将缩短至24 小时以内,因此市场需求在呼唤着一种更为创新的商业模式。 赢得一份印刷业务,印刷厂商70%的时候靠的都是'比竞争对手先报价' 。网络 化印刷的优势在于:可为客户或客户的客户增加价值; 减少基于价格的竞争,提升交换的费用,提升利润; 可作为一种有效的竞争回应,减少运营费用。世界上不乏网络化印刷的成功案例,如: 韩国的网络书本印刷、新加坡数码工作室的商业卡片印刷、联邦快递金考的产品简介印刷和泰国的数码直印等。 那么怎样寻找适合自己的方案呢,罗建良建议:' 首先需要定义好你的商业模式; 第二要分清楚哪些是一定要有的哪些是最好能有的,比如说软件就属于是一定要有的;绘制好你的作业流程,做好细致的分析和规划;应用正确的技术; 指定一个合格的系统管理者; 要付出时间和精力不断去评估和调整。' 针对中国市场,他认为做网络印刷要注意三点:一是成功的实现网络化印刷有哪些关键步骤; 二是数码印刷与网络化印刷之间有什么距离;三是对于现在已经有了数码印刷的人来 说如何转变到网络印刷。 用数据监控成本和环境

在原材料成本不断上涨的今天,印刷人更加关注如何去实现印刷成本的最大节约与印刷品质的最大提高。那么如何做到降低成本并保护环境呢,高桥弘幸把' 在日本已有80多年历史的金羊社' 的经验给与会者分享。 金羊社主要是根据库存数字来进行管理及对公司的废弃物进行分类,通过这两个方面来降低成本及环境的保护。' 首先把物品的位置用数字0到15来标定位置,取用物品就从最大的数字15 开始,例如,对于油墨最少要保证生产三天的用量,当取数到 4 时,正好达到三天的库存量,就需填写订货的卡,然后向货品供应商重新订货,以确保备有 3 天的库存量。其他生产材料都是以这种方法来进行库存管理,只是不同生产材料保证的库存量有些差异。' 此外,金羊社的工厂不断产生的各种废弃物也在进行循环再利用。金羊社2005 年有机溶剂从28 种减少到26 种,2006年有机溶剂从26 种减少到24种,2007年有机溶剂又从24 种减少到10 种,到目前为止还在使用的有机溶剂还有10 种,并且还有几种有机溶剂正在实验当中,以达到不断减少的目的。 在降低成本保护环境的同时确保印刷品质,金羊社实施了' 金字塔形' 管理手法,即:材料的标准化-- 把握印刷材料的特性;印刷机的标准化-- 把握每天工作的操作流程及早发现不 良情况;印刷品的数据管理--正确把握印刷环境的条件;CMS色彩标准--定期对印刷机进行维护和检查。 高桥弘幸最后表示,进行数据管理并不是被数据所管理,而是要对数据进行管理及把握数据的变化。 富士施乐亚太区印艺产品系统总经理罗建良认为,在商业应用中使用类似FTP 类的电子网络方式越来越多。预计到2010 年,所有的印刷活件要求都将缩短至24 小时以内。 CTCP被关注程度越来越高

未来三十年中国城市发展十大新趋势

未来三十年中国城市发展十大新趋势 发布时间:2012-08-16 18:03:05来源:中国产业洞察网 北京国际城市发展研究院院长连玉明十九日在北京举行的“中国城市论坛二00八年北京峰会”上提出,未来三十年,中国城市将呈现出城市人口突破十亿、千万人口的巨型城市将达二十个等十大新的发展趋势。 连玉明认为,改革开放是中国城市综合竞争力提升的重要源泉。未来中国改革开放进程的加速,也必然推进中国城市化的进程。未来三十年中国城市将呈现十大新的发展趋势:一是城市人口突破十亿大关,住房和就业成为城市两大难点。到二0二五年,中国城市化率将接近百分之六十六,城市人口达到九点一五亿。 二是人口超过一千万的巨型城市将达到二十个,北京、上海、广州、深圳、天津、武汉、重庆、成都首先进入巨型城市行列。交通拥堵、资源紧缺、环境污染成为大城市痼疾。 三是城市群成为中国城市化的主导,长三角、珠三角、京津冀三大城市群贡献率超过百分之七十。 四是流动人口成为中国城市化加速发展的主要驱动力。到二0二五年,中国将新增城市人口三点五亿,其中流动人口将超过二点四亿。 五是现代服务业主导城市经济,中国城市将实现从“工业经济”向“服务经济”的战略转型。 六是城乡经济社会发展一体化新格局基本形成。特别是户籍制度、土地制度、社会保障制度、金融制度、公共服务制度改革将成为加速城乡一体化的重要引擎。 七是中产阶级成为城市主流,公民参与意识增强,城市民主化进程加快。 八是临空产业及空航新城建设将成为未来城市发展的重要增长极。二0二0年中国民航

机场将达到二百四十四个,将形成北方、华东、中南、西南、西北五个区域机场群。 九是环保和生态将成为宜居城市的首选。城市宜居还必须解决交通拥堵、环境污染和高房价三大难题。 十是城市可以预见和难以预见的风险和多种安全威胁增多,城市完成多样化应急任务和城市治理任务繁重而艰巨。 连玉明强调,未来三十年不仅是中国城市的加速发展期和成长关键期,也是城市病的多发期和爆发期。特别是当前贫富差距进一步扩大等不稳定因素正在演变为城市的潜在风险,必须引起政府和社会高度重视。(来源:城市规划网)

数字集成电路的分类

数字集成电路的分类 数字集成电路有多种分类方法,以下是几种常用的分类方法。 1.按结构工艺分 按结构工艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四大类。图如下所示。 世界上生产最多、使用最多的为半导体集成电路。半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三大类。 ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能力强,但功耗较大、集成度较低。双极型集成电路主要有 TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。其中TTL电路的性能价格比最佳,故应用最广泛。

ECL,即发射极耦合逻辑电路,也称电流开关型逻辑电路。它是利用运放原理通过晶体管射极耦合实现的门电路。在所有数字电路中,它工作速度最高,其平均延迟时间tpd可小至1ns。这种门电路输出阻抗低,负载能力强。它的主要缺点是抗干扰能力差,电路功耗大。 MOS电路为单极型集成电路,又称为MOS集成电路,它采用金属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造方便、集成度高、功耗低,但速度较慢。 MOS集成电路又分为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)和CMOS(Complement Metal Oxide Semiconductor,复合互补金属氧化物半导体)等类型。 MOS电路中应用最广泛的为CMOS电路,CMOS数字电路中,应用最广泛的为4000、4500系列,它不但适用于通用逻辑电路的设计,而且综合性能也很好,它与TTL电路一起成为数字集成电路中两大主流产品。CMOS数字集成电路电路主要分为4000(4500系列)系列、54HC/74HC系列、54HCT/74HCT系列等,实际上这三大系列之间的引脚功能、排列顺序是相同的,只是某些参数不同而已。例如,74HC4017与CD4017为功能相同、引脚排列相同的电路,前者的工作速度高,工作电源电压低。4000系列中目前最常用的是B系列,它采用了硅栅工艺和双缓冲输出结构。 Bi-CMOS是双极型CMOS(Bipolar-CMOS)电路的简称,这种门电路的特点是逻辑部分采用CMOS结构,输出级采用双极型三极管,因此兼有CMOS电路的低功耗和双极型电路输出阻抗低的优点。 (1)TTL类型 这类集成电路是以双极型晶体管(即通常所说的晶体管)为开关元件,输入级采用多发射极晶体管形式,开关放大电路也都是由晶体管构成,所以称为晶体管-晶体管-逻辑,即Transistor-Transistor-Logic,缩写为TTL。TTL电路在速度和功耗方面,都处于现代数字集成电路的中等水平。它的品种丰富、互换性强,一般均以74(民用)或54(军用)为型号前缀。 ① 74LS系列(简称LS,LSTTL等)。这是现代TTL类型的主要应用产品系列,也是逻辑集成电路的重要产品之一。其主要特点是功耗低、品种多、价格便宜。 ② 74S系列(简称S,STTL等)。这是TTL的高速型,也是目前应用较多的产品之一。其特点是速度较高,但功耗比LSTTL大得多。

未来标签行业数字印刷能取代传统印刷技术吗

未来标签行业数字印刷能取代传统印刷技术吗 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

未来标签行业数字印刷能取代传统印刷技 术吗 随着经济发展和工业技术4.0化,越来越多的传统技术被新技术所取代。传统印刷行业正面临数字印刷技术的挑战,是否真的数字印刷就能完全替代传统印刷技术呢?我们往下看 数字印刷是利用印前系统将图文信息直接通过网络传输到数字印刷机上印刷一种新型印刷技术。 也就是说输入的是图文信息数字流,而输出的也是图文信息数字流,要强调的是它是按需印刷,无版印刷。数字印刷就是电子档案由电脑直接传送到印刷机,从而取消了分色、拼版、制版、试车等步骤。更简单的说,即是利用某种技术或工艺手段将数字化的图文信息记录在纸张或者有形介质上。 数字印刷能够带来什么? 近年来,数字印刷在标签领域的实践已经证明,数字印刷具有以下诸多优点: 1、制作标签的预处理时间短,准备工作少,交货及时。 2、印刷加工周期短,适合小规模订单加工(承印材料长度通常为 200~1500米)。 3、应用范围广,即可用于小批量订单,也可进行二维码等可变信息编码的赋码,用于物流管理、产品追溯、市场营销等。 4、开机准备时间短,而且不会像传统印刷那样使用大量过版纸,物料费用低。 5、原材料用量少,储存保管费用低。

上述优点给标签采购者带来了较高灵活性和更大的利益,如小批量订单具有相对较低的价格,成品标签具有优秀的质量而且稳定可靠等。所以,即使工价高一点,标签采购者也比较容易接受。而对于印刷企业来说,采用数字印刷,订单的平均利润也会高一些。 数字印刷能否替代传统印刷? 虽然数字印刷带来了很多便利和创新性,无疑也是未来的发展趋势之一,然而,相较于传统印刷,目前数字印刷仍存在一些明显的缺点,主要包括以下几点: 1、印刷质量方面,包括分辨率、网点尺寸、色彩空间范围等尚有局限性。 2、系统的可利用性有待提高,主要是因为维护保养费用高,还需要额外的自动化校准及清洁循环系统,整体稳定性也比较差。 3、印刷速度比较低,单色印刷速度还可以匹配传统印刷机,而彩色印刷则达不到。 4、套印精确性一般。对于大面积的CMYK四色印刷,以及再现扩大色域(加上GOV)的PANTONE(彩通)彩色空间来说,套印精确性这个指标是非常重要的。 5、承印材料的选择受到较多限制,例如收缩薄膜、模内标签材料、压纹纸等。 6、墨层附着牢度、耐摩擦性、低迁移特性,以及耐光性等偏低。 7、在线生产(从原材料到成品标签一次走纸完成)容易出问题,目前尚缺乏有价值的数字印刷连线加工解决方案。 所以在未来很长一段时间内,中国标签行业将会是各种传统印刷技术与数字印刷技术并存,各展所长来满足各种细分应用市场的需求。

中国城市发展的现状与未来

中国城市发展的现状与未来 (一)中国城市发展历程 中国城市化经历了漫长曲折的过程。1950年代由于国内外政治经济形势,特别是农业生产能力的相对落后,国家采取了“积极推进工业化,相对抑制城市化”的政策导向,实行城乡分治,限制农村人口向城市迁移。1950~1978年中,虽然工业化水平增加了27个百分点,但城市化水平仅增加了7个百分点。 改革开放后,中国城市进入稳定发展时期,城市化明显加速。改革开放初期,返城人口激增,城市化提速,1978~1985年的8年间城镇人口所占比重提高了5个百分点,1984年城市经济体制改革开启了城市发展的新时代,大量城市就业机会的增长吸引了巨大数量的农民工群体,15年中城市人口所占比重又提高了12个百分点。进入21世纪,国家通过户籍、社会保障一系列改革,城市化进一步加速,至2006年城镇化率达到43.9%,6年间提高了6.28个百分点。 1.城市空间结构的演变 受殖民地半殖民地和封建制度的影响,中国近代城市主要分布于东部沿海、沿江地区,1949年东部地区城市人口占城市总人口比重达67%。中华人民共和国成立以后,国家调整城市区域布局政策,工业和城市布局向中西部地区倾斜,东部地区城市人口占总城市人口比重1978年下降到47.9%,19851985年进一步下降到47%。改革开放以后,东部地区发展优势突出,也得到了更多的优惠政策倾斜,城市发展迅速,至2004年东部城市人口所占比重达到52.1%。21世纪初,中央提出西部大开发政策,西部地区城市发展加速,其城市人口占城市总人口比重由1998年的15.8%上升到2004年的18.3%。 2.城市规模结构的变化 中华人民共和国成立初期,特大城市发展迅速,其人口占全国城市人口比重由1949年的36%上升到1965年的44.9%,小城市人口所占比重则由25.5%下降为15.6%。文化大革命十年,特大城市服务业功能萎缩,人口相对减少,到1978年其人口所占比重下降到37.5%。 改革开放以后,随着上山下乡人员返城,特大城市人口出现了恢复性增长,所占城市总人口比重到1985年达到39.3%。与此同时,由于农村经济活跃,与农村连接紧密的小城市也出现了快速增长趋势,其占城市总人口比重由1978年的14.1%上升到1985年的17.0%。但是由于贯彻限制大城市规模、积极发展中小城镇方针,到1998年特大城市人口所占比重下降到36.6%。21世纪以来,国家对大城市的限制政策放松,大城市和特大城市再次成为城市发展的重心。1998~2004年大城市、特大城市占城市总人口比重分别提高了3.3和2.9个百分点。 3.城市产业结构的演进 旧中国城市多为封建统治的政治文化中心或殖民半殖民地经济中心,共同特点是生产能力低下,寄生性和消费性强,新中国成立初期为发展生产,国家对部分城市产业结构进行了调整,上海等特大城市过剩的消费服务功能被转移到内地城市,其他城市也加强了生产性建设,城市工业生产加强。1950年代后期,城市建设受“左倾”思想影响,城市的生产性功能进一步被强调,消费功能被进一步削弱或取缔,城市工业也进一步重工业化,形成畸形的产业结构;各城市之间也追求“大而全”、“小而全”,纷纷建立独立、完善的工业体系,以达到自我供给、自我平衡,导致城市功能单一、产业结构趋同。 改革开放以后,城市各行各业都获得了巨大的发展,市场作用日益扩大,城市经济也逐渐由

数字集成电路--电路、系统与设计(第二版)复习资料

第一章 数字集成电路介绍 第一个晶体管,Bell 实验室,1947 第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。(随时间呈指数增长) 抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。这一模型含有用来在下一层次上处理这一模块所需要的所有信息。 固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。 可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。 一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。 一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。 理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。 传播延时、上升和下降时间的定义 传播延时tp 定义了它对输入端信号变化的响应有多快。它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。 上升和下降时间定义为在波形的10%和90%之间。 对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。功耗-延时积(PDP)----门的每次开关事件所消耗的能量。 一个理想的门应当快速且几乎不消耗能量,所以最后的质量评价为。能量-延时积(EDP) = 功耗-延时积2 。 第三章、第四章CMOS 器件 手工分析模型 ()0 12' 2 min min ≥???? ??=GT DS GT D V V V V V L W K I 若+-λ ()DSAT DS GT V V V V ,,m in min = 寄生简化:当导线很短,导线的截面很大时或当 所采用的互连材料电阻率很低时,电感的影响可 以忽略:如果导线的电阻很大(例如截面很小的长 铝导线的情形);外加信号的上升和下降时间很慢。 当导线很短,导线的截面很大时或当所采用的互 连材料电阻率很低时,采用只含电容的模型。 当相邻导线间的间距很大时或当导线只在一段很短的距离上靠近在一起时:导线相互间的电容可 以被忽略,并且所有的寄生电容都可以模拟成接 地电容。 平行板电容:导线的宽度明显大于绝缘材料的厚 度。 边缘场电容:这一模型把导线电容分成两部分: 一个平板电容以及一个边缘电容,后者模拟成一 条圆柱形导线,其直径等于该导线的厚度。 多层互连结构:每条导线并不只是与接地的衬底 耦合(接地电容),而且也与处在同一层及处在相邻层上的邻近导线耦合(连线间电容)。总之,再多层互连结构中导线间的电容已成为主要因素。这一效应对于在较高互连层中的导线尤为显著,因为这些导线离衬底更远。 例4.5与4.8表格 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 例4.1 金属导线电容 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线,计算总的电容值。 平面(平行板)电容: ( 0.1×106 μm2 )×30aF/μm2 = 3pF 边缘电容: 2×( 0.1×106 μm )×40aF/μm = 8pF 总电容: 11pF 现假设第二条导线布置在第一条旁边,它们之间只相隔最小允许的距离,计算其耦合电 容。 耦合电容: C inter = ( 0.1×106 μm )×95 aF/μm2 = 9.5pF 材料选择:对于长互连线,铝是优先考虑的材料;多晶应当只用于局部互连;避免采用扩散导线;先进的工艺也提供硅化的多晶和扩散层 接触电阻:布线层之间的转接将给导线带来额外的电阻。 布线策略:尽可能地使信号线保持在同一层上并避免过多的接触或通孔;使接触孔较大可以降低接触电阻(电流集聚在实际中将限制接触孔的最大尺寸)。 采电流集聚限制R C , (最小尺寸):金属或多晶至n+、p+以及金属至多晶为 5 ~ 20 Ω ;通孔(金属至金属接触)为1 ~ 5 Ω 。 例4.2 金属线的电阻 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线。假设铝层的薄层电阻为0.075Ω/□,计算导线的总电阻: R wire =0.075Ω/□?(0.1?106 μm)/(1μm)=7.5k Ω 例4.5 导线的集总电容模型 假设电源内阻为10k Ω的一个驱动器,用来驱动一条10cm 长,1μm 宽的Al1导线。 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 使用集总电容模型,源电阻R Driver =10 k Ω,总的集总电容C lumped =11 pF t 50% = 0.69 ? 10 k Ω ? 11pF = 76 ns t 90% = 2.2 ? 10 k Ω ? 11pF = 242 ns 例4.6 树结构网络的RC 延时 节点i 的Elmore 延时: τDi = R 1C 1 + R 1C 2 + (R 1+R 3) C 3 + (R 1+R 3) C 4 + (R 1+R 3+R i ) C i 例4.7 电阻-电容导线的时间常数 总长为L 的导线被分隔成完全相同的N 段,每段的长度为L/N 。因此每段的电阻和电容分别为rL/N 和cL/N R (= rL) 和C (= cL) 是这条导线总的集总电阻和电容()()()N N RC N N N rcL Nrc rc rc N L DN 2121 (22) 22 +=+=+++?? ? ??=τ 结论:当N 值很大时,该模型趋于分布式rc 线;一条导线的延时是它长度L 的二次函数;分布rc 线的延时是按集总RC 模型预测的延时的一半. 2 rcL 22=RC DN = τ 例4.8 铝线的RC 延时.考虑长10cm 宽、1μm 的Al1导线,使用分布RC 模型,c = 110 aF/μm 和r = 0.075 Ω/μm t p = 0.38?RC = 0.38 ? (0.075 Ω/μm) ? (110 aF/μm) ? (105 μm)2 = 31.4 ns Poly :t p = 0.38 ? (150 Ω/μm) ? (88+2?54 aF/μm) ? (105 μm)2 = 112 μs Al5: t p = 0.38 ? (0.0375 Ω/μm) ? (5.2+2?12 aF/μm) ? (105 μm)2 = 4.2 ns 例4.9 RC 与集总C 假设驱动门被模拟成一个电压源,它具有一定大小的电源内阻R s 。 应用Elmore 公式,总传播延时: τD = R s C w + (R w C w )/2 = R s C w + 0.5r w c w L 2 及 t p = 0.69 R s C w + 0.38 R w C w 其中,R w = r w L ,C w = c w L 假设一个电源内阻为1k Ω的驱动器驱动一条1μm 宽的Al1导线,此时L crit 为2.67cm 第五章CMOS 反相器 静态CMOS 的重要特性:电压摆幅等于电源电压 → 高噪声容限。逻辑电平与器件的相对尺寸无关 → 晶体管可以采用最小尺寸 → 无比逻辑。稳态时在输出和V dd 或GND 之间总存在一条具有有限电阻的通路 → 低输出阻抗 (k Ω) 。输入阻抗较高 (MOS 管的栅实际上是一个完全的绝缘体) → 稳态输入电流几乎为0。在稳态工作情况下电源线和地线之间没有直接的通路(即此时输入和输出保持不变) → 没有静态功率。传播延时是晶体管负载电容和电阻的函数。 门的响应时间是由通过电阻R p 充电电容C L (电阻R n 放电电容C L )所需要的时间决定的 。 开关阈值V M 定义为V in = V out 的点(在此区域由于V DS = V GS ,PMOS 和NMOS 总是饱和的) r 是什么:开关阈值取决于比值r ,它是PMOS 和NMOS 管相对驱动强度的比 DSATn n DSATp p DD M V k V k V V = ,r r 1r +≈ 一般希望V M = V DD /2 (可以使高低噪声容限具有相近的值),为此要求 r ≈ 1 例5.1 CMOS 反相器的开关阈值 通用0.25μm CMOS 工艺实现的一个CMOS 反相器的开关阈值处于电源电压的中点处。 所用工艺参数见表3.2。假设V DD = 2.5V ,最小尺寸器件的宽长比(W/L)n 为1.5 ()()()()()()()() V V L W V V V V k V V V V k L W L W M p DSATp Tp M DSATp p DSATn Tn M DSATn n n p 25.125.55.15.35.320.14.025.1263.043.025.10.163.01030101152266==?==----?-???----=---= 分析: V M 对于器件比值的变化相对来说是不敏感 的。将比值设为3、2.5和2,产生的V M 分别为 1.22V 、1.18V 和 1.13V ,因此使PMOS 管的宽度小于完全对称所要求的值是可以接受的。 增加PMOS 或NMOS 宽度使V M 移向V DD 或GND 。不对称的传输特性实际上在某些设计中是所希望的。 噪声容限:根据定义,V IH 和V IL 是dV out /dV in = -1(= 增益)时反相器的工作点 逐段线性近似V IH = V M - V M /g V IL = V M + (V DD - V M )/g 过渡区可以近似为一段直线,其增益等于 在开关阈值V M 处的增益g 。它与V OH 及V OL 线的交点 用来定义V IH 和V IL 。点。

数字集成电路必备考前复习总结

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路 或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦 之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys版权): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

数字印刷技术现状与创新发展

数字印刷技术现状与创新发展 时至今日,以高效快捷、节能环保和按需印刷为特点的数字印刷技术逐渐发展起来,并在印刷市场占有一席之地。它所带来的经济效益和社会效益有目共睹,已被当今社会广泛接受。虽然数字印刷技术在很多方面的优势是传统制版印刷不能企及的,但仍然存在一些难以解决和克服的问题,这也是今后数字印刷技术有待研究和发展的方向。在此笔者主要讨论数字印刷的技术特点,并重点对数字印刷现状及存在问题、数字印刷的创新与发展进行探讨。 数字印刷的技术特点 从狭义上讲,数字印刷指的是与传统大批量、大规模、生产型传统制版输出印刷对应的新型印刷方式。传统制版印刷在经过印前图文处理后,需要照排制版或CTP直接制版后才可传输至印刷机印刷,过程繁琐且生产量大,对制版和印刷废液对环境的污染较为严重,难以适应实时的、急需的以及小批量的印刷需求。数字印刷克服传统印刷的缺陷,省去中间的制版环节,图文信息经印前系统处理好后可直接从数字印刷机中输出,同时能够按需输出,避免资源浪费,具有全数字化、高效可变、节能环保、异地印刷等特点。 1.全数字化

数字印刷过程是从计算机到纸张或印刷品的过程(Computer to Paper/ Print),即直接把数码文件、页面(Digital File/Page)转换成印刷品的过程。这是全数字化生产过程, 工序间不需要胶片和印版,无传统印刷工序的繁琐工序。 2.高效可变 印刷中间环节的省略必然能够实现高效输出,传统印刷方式从任务下单到获得最终产品往往需要数天时间,而数字印刷能够实现立等可取。数字印刷流程中传递的信息可以是100%可变信息,即相邻输出的两张印刷品可具有不同的信息载负、内容和品质,使得印刷过程更灵活多变。 3.节能环保 传统制版印刷很大一个弊端就是制版废液和印刷废料 对环境的污染,同时形成大量废张浪费资源。数字印刷则根据客户需求直接获得指定数量的印刷产品,节省资源,且没有制版环节的污染。简单地说,数字印刷可以将印刷输出精确到单张样品,无须像传统制版印刷那样一次性大批量输出,从而最大限度地节省纸张和油墨。 4.异地印刷 与传统制版印刷孤立单一的模式相比,数字印刷除单一生产外,还可纳入互联网、局域网等大中型网络,客户可以在任何地点制作原稿,通过互联网选择商家后将原稿远程发送至商家印刷获得产品,还可以在任何客户端实现实时下载

解析中国城市未来发展的九大趋势(精)

解析中国城市未来发展的九大趋势 【2010年10月上下半月VIP 会员免费更新下载】454份 5.2G 解析中国城市未来发展的九大趋势中国城市化是中国也是全球21世纪最重要的事件之一,中国城市未来发展无疑将为全球和中国的诸多领域同时带来机遇与挑战。分析未来中国城市化发展的关键影响因素,了解未来中国城市发展的基本趋势,无论对于区域、国家或是国际,政府、企业或是非营利机构,投资者、旅游者或是居民,未来进行前瞻性的决策,都具有重要意义。 一、未来城市化的主要影响因素 1、经济发展及其布局:内需比重扩大,服务业比重增加。经过30多年的改革开放和高速发展,中国已经基本实现小康。按照国际一般规律,当人均收入超过3000美元,进入中下发展水平阶段,国民消费需求将迅速增长,中国正处在工业化的中期和城市化的加速期,以消费为主体的内需增长正在释放,正像外部需求为沿海地区发展提供巨大市场一样,国内巨大的需求为全国发展提供了巨大的市场。同时,随着中国工业化外向型解析中国城市未来发展的九大趋势、外延式扩张发展模式走到尽头,中国正在面临外需和工业“双难依赖”的新形势,加快城市化进程必将成为推进国民经济发展的战略选择,不仅可以有力地释放被结构扭曲压抑的潜在生产力,有效地提高国名经济的整体效益,更是新阶段国民经济发展的带动力量。 2、资源环境状况及布局:资源稀缺,空间分布不均。中国水资源时空分布不均匀,南北自然环境差异大。以水资源为例,北方地区缺水严重,有9个省市人均水资源不到500立方米,实属少水地区。目前,中国内地现有的661座城市中,约有600座城市供水不足,420多座城市缺水,110座城市严重缺水,30座特大城市长期缺水。就土地资源而言,世界范围来看,中国是土地人均占有量于较小的国家,国家内人均土地面积从东南向西北逐步增加。2008年中国耕地为18.26亿亩,到2020年将减少到18.05亿亩。这也就是说,在未来11年里能够农转非的耕地是2074万亩,平均每年不足190万亩。

《数字集成电路基础》试题D

《数字集成电路基础》试题D (考试时间:120分钟) 班级: 姓名: 学号: 成绩: 一、填空题(共30分) 1. 当PN 结外加正向电压时,PN 结中的多子______形成较大的正向电流。 2. NPN 型晶体三极管工作在饱和状态时,其发射结和集电结的外加电压分别处于_ _____偏置和_______偏置。 3. 逻辑变量的异或表达式为:_____________________B A =⊕。 4. 二进制数A=1011010;B=10111,则A -B=_______。 5. 组合电路没有______功能,因此,它是由______组成。 6. 同步RS 触发器的特性方程为:Q n+1 =______,其约束方程为:______。 7. 将BCD 码翻译成十个对应输出信号的电路称为________,它有___个 输入端,____输出端。 8. 下图所示电路中,Y 1 Y 3 =______。 二、选择题(共 20分) 1. 四个触发器组成的环行计数器最多有____个有效状态。 A.4 B. 6 C. 8 D. 16 2. 逻辑函数D C B A F +=,其对偶函数F * 为________。 A .( )()D C B A ++ B. ()()D C B A ++ C. ()()D C B A ++ 3. 用8421码表示的十进制数65,可以写成______。 A .65 B. [1000001]BCD C. [01100101]BCD D. [1000001]2 1 A B 3

4. 用卡诺图化简逻辑函数时,若每个方格群尽可能选大,则在化简后的最简表达式 中 。 A .与项的个数少 B . 每个与项中含有的变量个数少 C . 化简结果具有唯一性 5. 已知某电路的真值表如下,该电路的逻辑表达式为 。 A .C Y = B. A B C Y = C .C AB Y += D .C C B Y += 三、化简下列逻辑函数,写出最简与或表达式:(共20分) 1. 证明等式:AB B A B A B A +?=+ 2. Y 2=Σm (0,1,2,3,4,5,8,10,11,12) 3. Y 3=ABC C AB C B A C B A +++? 四、分析设计题 (共 30分)

集成电路发展史

集成电路发展史 姚连军 120012009323 管理学院09财务管理 苏世勇 120012009222 管理学院09市场营销 傅彩芬 110012009023 法政学院09公共管理类 陈凯 120012009015 管理学院09工商管理 集成电路对一般人来说也许会有陌生感,但其实我们和它打交道的机会很多。计算机、电视机、手机、网站、取款机等等,数不胜数。除此之外在航空航天、星际飞行、医疗卫生、交通运输、武器装备等许多领域,几乎都离不开集成电路的应用,当今世界,说它无孔不入并不过分。 在当今这信息化的社会中,集成电路已成为各行各业实现信息化、智能化的基础。无论是在军事还是民用上,它已起着不可替代的作用。 1 集成电路概述 所谓集成电路(IC),就是在一块极小的硅单晶片上,利用半导体工艺制作上许多晶体二极管、三极管及电阻、电容等元件,并连接成完成特定电子技术功能的电子电路。从外观上看,它已成为一个不可分割的完整器件,集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。[1] 2 集成电路发展及其影响 2.1集成电路的发展 集成电路的发展经历了一个漫长的过程,以下以时间顺序,简述一下它的发展过程。1906年,第一个电子管诞生;1912年前后,电子管的制作日趋成熟引发了无线电技术的发展;1918年前后,逐步发现了半导体材料;1920年,发现半导体材料所具有的光敏特性;1932年前后,运用量子学说建立了能带理论研究半导体现象;1956年,硅台面晶体管问世;1960年12月,世界上第一块硅集成电路制造成功;1966年,美国贝尔实验室使用比较完善的硅外延平面工艺制造成第一块公认的大规模集成电路。[2]1988年:16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路阶段的更高阶段。1997年:300MHz 奔腾Ⅱ问世,采用0.25μm工艺,奔腾系列芯片的推出让计算机的发展如虎添

常用基本数字集成电路应用设计

课程设计题目:常用基本数字集成电路应用设计 学生姓名: 学号: 院系: 专业班级: 指导教师姓名及职称: 起止时间: 课程设计评分: 常用基本数字集成电路应用设计 1.多谐振荡器概述 多谐振荡器是一种自激振荡器,它不需要输入触发信号,接通电源后就可自动输出矩形脉冲。由于矩形脉冲含有丰富的谐波分量,因此,常将矩形脉冲产生电路称为多谐振荡器。 1.1非门电路构成的多谐振荡器设计

1.1.1基本原理 门电路构成多谐振荡器 非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。电路的基本工作 原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT 时,门的输出状态即发生变化。因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。 (1)不对称多谐振荡器 非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度 tw1=RC, tw2=1.2RC, T=2.2RC 调节 R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改 变电位器R实现输出频率的细调。 图1为不对称多谐振荡器,为了使电路产生振荡,要求U1A和U1B两个反向器都工作在电压传输特性的转折区,即工作在放大区。 (2)对称型多谐振荡器 电路完全对称,电容器的充放电时间常数相同, 故输出为对称的方波。改变R和C的值, 可以改变输出振荡频率。非门3用于输出波形整形。 一般取R≤1KΩ?,当R1=R2=1KΩ,C1=C2=100pf~100μf时,f可在几Hz~MHz 变化。

脉冲宽度tw1=tw2=0.7RC,T=1.4RC. 图2中,U1A和U1B两个反向器之间经电容C1和C2耦合形成正反馈回路。 (3) 石英晶体稳频的多谐振荡器 当要求多谐振荡器的工作频率稳定性很高时,上述几种多谐振荡器的精度已不能满足要 求。为此常用石英晶体作为信号频率的基准。用石英晶体与门电路构成的多谐振荡器常用来 为微型计算机等提供时钟信号。 图3所示为常用的晶体稳频多谐振荡器。(a)、 (b)为TTL器件组成的晶体振荡电路;(c)、 (d)为CMOS器件组成的晶体振荡电路,一般用于电子表中,其中晶体的f0=32768Hz。 图3(c)中,门1用于振荡,门2用于缓冲整形。Rf是反馈电阻,通常在几十兆欧之 间选取,一般选22MΩ。R起稳定振荡作用,通常取十至几百千欧。C1是频率微调电容器, C2用于温度特性校正。

相关主题
文本预览
相关文档 最新文档