当前位置:文档之家› 绝缘漆资料

绝缘漆资料

绝缘漆资料
绝缘漆资料

完整版电力变压器

电力变压器 、电力变压器的结构组成 电力变压器的主要结构是由铁芯、绕组、油箱、附件等这几部分组成。其中铁芯和绕组装在一起构成的整体叫器身。在当今市场中,运用高端技术造就的复杂结构的变压器具有容量大、电压高、重量受到严格限制等优点,这是设计师在数年成功制造电力变压器积累了丰富经验的基础上,对那些不合理的落后的结构进行了改进同时采用新型技术的结晶,使得现在的变压器在结构上更加趋于合理,经济,耐用。 1.电力变压器各部分的结构组成: (1)铁芯 铁芯是电力变压器的磁路部分,也是器身的骨架,由铁芯柱(柱上套装绕组)、铁轭(连接铁芯以形成闭合磁路)组成。为了减小涡流和磁滞损耗,提高磁路的导磁性,铁芯采用0.35mm-0.5mm厚的硅钢片涂绝缘漆后交错叠成。小型变压器铁芯截面为矩形或方形,大型变压器铁芯截面为阶梯形,这是为了充分利用空间。 为缩短绝缘距离,降低局部放电量,在铁芯外面置一层由金属膜复合纸条黏 制而成的金属围屏。金属膜本身厚度很薄,宽度也仅有50mn而已,因此,一方面不会在自身中形成较大的涡流,另一方面对铁芯的尖角产生了较好的屏蔽作用。与此同时,在铁芯的旁轭内侧也置有金属膜围屏,用以保护高压线圈。 夹件则多采用大板式腹板和鱼刺状支板结构,这在很大程度上降低了金属构件垂直线圈顶部的漏磁面积。再配上纸板结构,将大大降低杂散损耗。线圈引线的引出结构也在不断被简化,不仅省去了夹件加强板,还方便中低压引线的排布, 从而可将强油导向循环的导油管和下夹件连为一体。这也促进了杂散损耗值的降低,对大型电力变压器来讲意义更为重大。因为杂散损耗在变压器总损耗中所占比例会随着容量的增大而增大。因此,有效提高了线圈的电流密度,减轻电力变压器的重量。 上铁轭下部用楔形绝缘撑紧,进一步加强器身短路的机械强度;下铁轭垫块分块制造分块安装,在器身装配完成以后,仍能方便地固定在铁轭上均匀分布的夹紧钢带螺栓。 铁芯油道共4层,为提高散热效率,使用6mn厚纸板直接黏在铁芯片上,并在铁芯每隔100mn放置一层0.5mm的纸板,防止铁芯片的相对滑动。 (2)绕组 绕组是电力变压器的电路部分,采用绝缘铜线或铝线绕制而成,一般有两个或两个以上的绕组,其中接电源的绕组叫初级线圈(或原绕组),其余的绕组叫次级线圈(或副绕组),原、副绕组同心套在铁芯柱上。为便于绝缘,一般低压绕组在里,高压绕组在外,但大容量的低压大电流变压器,考虑到引出线工艺困难,往往把低压绕组套在高压绕组的外面。线圈以及匝绝缘高压线圈使用高密度的电缆纸包导线:中压线圈和低压线圈分别采用绝缘强度较好的高密度电缆纸包换位导线、丹尼森纸包换位导线。线圈配置了内外导向隔板,目的是提升油的冷却效率。高压线圈的两端以及中压线圈的首端都安装了 30mn厚、馒头状均压环, 这极大地改善了端部的电场分布。并且所有的线圈端部出头和第

电子变压器浸渍绝缘漆的五大工艺处理

电子变压器浸渍绝缘漆的五大工艺处理 一、连续沉浸工艺 连续沉浸工艺是自动化连续生产和传统的常压浸漆工艺的结合,它是以沉浸的方式进行电子变压器产品绝缘处理的自动化连续作业,具有高效、方便的优点。 二、滴浸工艺 滴浸工艺是将漆滴在转动的工件上,通过重力和毛细管的作用,将漆渗透到产品内部,再加热固化的工艺。滴漆工艺与一般浸漆的工艺相比具有挂漆量大、流失少、能耗低、劳动强度低、产量高、不需挂漆等诸多优点。 三、常压浸漆工艺 工艺准备有二个方面,一是未浸漆产品的净化,去灰尘、去油污;二是配漆,先察看电子变压器浸渍绝缘漆质量是否合格,可使用新大发厂生产的环保浸渍绝缘漆,再根据浸漆工艺规定的粘度,用专用的稀释剂调配好。一般第一道漆要求涂-4粘度计,251℃,20秒左右;第二道浸漆30秒左右。根据不同的气温,各生产厂家大多有本厂用漆的温度-粘度曲线或数据对照表,以供参照。 产品预烘是为了除去铁芯和线圈内的潮气,以利于漆的浸透。预烘温度应在10070℃为宜。工件具有一定的温度,可以使漆的粘度降低,有利于漆的渗透。如果产品的温度低于45℃,产品

又会吸潮。如果产品的温度过高,会影响到漆的使用稳定性。浸漆的时间一般10—20分钟,以产品不冒气泡为好。 四、光热固化浸漆工艺 该工艺是将浸漆工件先经紫外光照射表层固化,内层再加热固化,。这种工艺与普通的浸漆工艺相比,克服了电子变压器浸渍绝缘漆在烘焙固化过程中的流失问题,既节约了材料,又提高了产品的质量,还减少了对环境的污染。 滴漆通常滴至无漆液滴下为好,这既是烘焙安全需要,也利于余漆的回收利用。 五、真空浸漆和真空压力浸漆工艺 对结构紧密的电子变压器产品,为了提高浸漆质量,多采用真空浸漆和真空压力浸漆。该工艺的工序与常压浸漆相仿,区别主要是在浸漆时将常压浸漆调整为真空条件下浸漆或是在真空之后,再加以几个大气压力,使漆更好的浸透到铁芯和线圈的内部,从而达到提高绝缘处理质量的目的。(本文由益阳新大发电子材料科技有限公司王和文撰写)

高低高结构发电机变压器主绝缘结构分析

高低高结构发电机变压器主绝缘结构分析 随着电力行业的飞速发展,500kV电力变压器的市场竞争越来越激烈,发电机变压器的单台容量也越来越大,材料消耗也随之上升,如何在保证可靠性的前提下降低成本,成为保证各厂经济效益的前提。文章以电力变压器的主绝缘结构理论为依据,描述了高低高结构发电机变压器主绝缘结构 标签:高低高结构;发电机变压器;主绝缘 1 概述 目前我公司设计的发电机变压器在保证运输条件的前提下,优先采用高低高结构。以一台单相24万、阻抗为15%的变压器为例,高低高结构要比双柱结构器身轻约8吨左右,可见高低高结构在大容量和大阻抗变压器下的优势。 调查表明,变压器在运行中由于绝缘部件发生故障造成变压器失效占总失效数的一半左右,绝缘性能的良好对运行可靠性具有决定性意义,以电力变压器的主绝缘结构理论为基础,并以DFP-380000/500单相发电机变压器为例,对高低结构变压器的主绝缘结构进行描述,并进行简单分析。 2 电力变压器的主绝缘结构 目前,油浸式电力变压器的主绝缘采用油-隔板结构形式,主绝缘结构中的油隙靠纸筒来间隔。油的耐电强度在理论上是很高的,纯净的油的耐电强度高达4000kV/cm以上,标准油杯中击穿电压一般为40kV/2.5mm。1.0mm纸板的击穿强度为46-50kV/mm,1.5mm纸板的击穿强度为32-45kV/mm,2.0mm纸板的击穿强度为29-35kV/mm。 线圈间的绝缘结构采用薄纸筒小油隙结构。这种结构纸筒厚度为4mm及以下,油隙宽度小于15mm及以下。主绝缘的击穿先发生在油隙中的,而油隙一旦击穿,纸筒也就随着击穿,因此并不要求纸筒能承受住全部试验电压。此外,在电场较均匀的情况下,根据变压器油的体积效应,油隙耐电强度随油隙的减小而增大,因此在同一主绝缘距离,同一纸筒占绝缘距离百分数情况下,油隙分割越小,则耐电强度越高。由于纸筒只起到分割油隙的作用,所以不宜太厚,但由于机械强度的要求,纸筒也不能太薄。 在薄纸筒小油隙结构中,纸筒的总厚度一般占主绝缘的1/5左右。每个纸筒的厚度取决于机械强度。一般来说,最小为1.5mm,靠近线圈的纸筒为3mm,由2张1.5mm厚的纸板组成。紧靠线圈内径侧的纸筒由5mm以上的硬纸板滚压而成,纸板先在两端磨成斜梢,然后沿斜梢粘合成纸筒,线圈直接绕在纸筒上。 薄纸筒小油隙结构的最小击穿电压按下式计算:

大型电力变压器绝缘事故的分析与预防正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 大型电力变压器绝缘事故的分析与预防正式版

大型电力变压器绝缘事故的分析与预 防正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1 概述 变压器的安全运行受到绝缘事故的威胁,因此,在变压器的制造、安装、检修和运行过程中,对变压器绝缘系统的安全十分重视。本文着重分析引起变压器绝缘事故的原因以及对绝缘事故的预防。 2 绝缘事故产生的原因 2.1 绝缘事故概述 变压器的绝缘系统是一个绝缘配合问题。合理的绝缘配合是指变压器绝缘的耐受电场强度(以下简称“场强)大于其受

到的作用场强,并有一定的裕度。当绝缘配合受到破坏,便引起绝缘事故的发生。 2.2 作用场强失控引起的绝缘事故 1)长期工作电压 长期工作电压失控的问题是不存在的,但这不等于作用场强不失控。因为在一定的电压下,如果发生电场畸变,作用场强就会发生变化,引起电场畸变的原因有金属导体悬浮、导体上有尖角毛刺以及导电尘埃的积集等。例如:高压套管均压球安装时未拧紧或在运行中振松,就形成了悬浮导体,产生足以使油隙击穿的作用场强,引起局部放电和使变压器油分解出乙炔。 2)暂时过电压

汽车车身涂装生产线工艺流程

卓科工业汽车车身涂装工艺流程 主要内容; 1涂料和涂装基本知识; 2汽车及零部件涂装工艺; 3涂装工艺方法; 4涂装三废处理;涂料和涂装基本知识 1.1涂料和涂装的概念;涂料:是以高分子材料为主体,以有机溶剂、水或空气;涂装:将涂料均匀地涂布在基体表面并使之形成一层连;?§1涂料和涂装基本知识; 1.2涂料和涂装的作用;1.保护作用;主要是金属防腐蚀; 2.装饰作用;装饰产品表面,主要内容1 涂料和涂装基本知识2 汽车及零部件涂装工艺3 涂装工艺方法4 涂装三废处理涂料和涂装基本知识1.1 涂料和涂装的概念 涂料:是以高分子材料为主体,以有机溶剂、水或空气为分散介质的多种物质的混合物。 涂装:将涂料均匀地涂布在基体表面并使之形成一层连续、致密涂膜的操作工艺称为涂装。 1 涂料和涂装基本知识 1.2 涂料和涂装的作用

1.保护作用:主要是金属防腐蚀。 2.装饰作用:装饰产品表面,美化产品和生活环境。 3.标志作用:做色彩广告标志,起到警告、危险、安全、禁止等信号作用。 4.特殊作用:电气绝缘漆、船底防污漆、超温报警示温涂料、抗红外线涂料 1 涂料和涂装基本知识1.3 涂料的组成 1 涂料和涂装基本知识1.4 涂料的分类和命名 1.分类 一般可以下几种: 1.)根据组成形态分类(溶剂型、无溶剂型、粉末涂料、水性涂料、高固体份等) 2.)按用途分类(建筑涂料、汽车涂料、飞机蒙皮漆、木器漆等) 3.)按涂装方法分类(喷漆、浸漆、烘漆、电泳漆等) 4.)按涂装工序分类(底漆、面漆、腻子、罩光漆) 5.)按效果分类(绝缘漆、防锈漆、防污漆等) 6.)按成膜物质分类 以涂料基料中主要成膜物质为基础。分为18类(17类成膜

电子变压器浸渍绝缘漆的五大工艺处理

电子变压器浸渍绝缘漆的五大工艺处理 通常电子变压器浸渍绝缘漆工艺处理有以下几种: 一、连续沉浸工艺 连续沉浸工艺是自动化连续生产和传统的常压浸漆工艺的结合,它是以沉浸的方式进行电子变压器产品绝缘处理的自动化连续作业,具有高效、方便的优点。 二、滴浸工艺 滴浸工艺是将漆滴在转动的工件上,通过重力和毛细管的作用,将漆渗透到产品内部,再加热固化的工艺。滴漆工艺与一般浸漆的工艺相比具有挂漆量大、流失少、能耗低、劳动强度低、产量高、不需挂漆等诸多优点。 三、常压浸漆工艺 工艺准备有二个方面,一是未浸漆产品的净化,去灰尘、去油污;二是配漆,先察看电子变压器浸渍绝缘漆质量是否合格,可使用新大发厂生产的环保浸渍绝缘漆,再根据浸漆工艺规定的粘度,用专用的稀释剂调配好。一般第一道漆要求涂-4粘度计,25±1℃,20秒左右;第二道浸漆30秒左右。根据不同的气温,各生产厂家大多有本厂用漆的温度-粘度曲线或数据对照表,以供参照。 产品预烘是为了除去铁芯和线圈内的潮气,以利于漆的浸透。预烘温度应在100—130℃,预烘的时间应考虑到产品的吸热量和预烘产品的多少,一般为1小时。 浸漆要等产品的温度自然冷却到50—70℃为宜。工件具有一定的温度,可以使漆的粘度降低,有利于漆的渗透。如果产品的温度低于45℃,产品又会吸潮。如果产品的温度过高,会影响到漆的使用稳定性。浸漆的时间一般10—20分钟,以产品不冒气泡为好。 四、光热固化浸漆工艺 该工艺是将浸漆工件先经紫外光照射表层固化,内层再加热固化,。这种工艺与普通的浸漆工艺相比,克服了电子变压器浸渍绝缘漆在烘焙固化过程中的流失问题,既节约了材料,又提高了产品的质量,还减少了对环境的污染。 滴漆通常滴至无漆液滴下为好,这既是烘焙安全需要,也利于余漆的回收利用。 五、真空浸漆和真空压力浸漆工艺 对结构紧密的电子变压器产品,为了提高浸漆质量,多采用真空浸漆和真空压力浸漆。该工艺的工序与常压浸漆相仿,区别主要是在浸漆时将常压浸漆调整为真空条件下浸漆或是在真空之后,再加以几个大气压力,使漆更好的浸透到铁芯和线圈的内部,从而达到提高绝缘处理质量的目的。

变压器的主绝缘和纵绝缘

4.14 变压器的主绝缘和纵绝缘 线圈的绝缘分为主绝缘和纵绝缘。 主绝缘是指线圈对它本身以外的其他结构部分的绝缘,包括它对油箱、铁心、夹件和压板的绝缘,对同一相内其他线圈的绝缘,以及对不同相线圈的绝缘(相间绝缘)。纵绝缘是指线圈本身内部的绝缘。它包括匝间绝缘、层间绝缘、线段间的绝缘等。 图4-23 干式变压器主绝缘 表4-16 干式变压器主绝缘尺寸

455R +δ= 表4-17 圆筒式线圈层绝缘 4.15 变压器绝缘半径计算 图4-24 圆筒式绕组绝缘半径 (1).圆筒式绕组绝缘半径计算(如图4-24所示) R 0——铁芯半径 ——铁芯对绕组绝缘距离 ——低压绕组内半径 ——低压绕组气道内侧绕组辐向厚度 ——低压绕组中气道宽度 ——低压绕组气道外侧绕组辐向厚度 ——低压绕组外半径 ——高低压绕组之间的气道宽度 ——高压绕组内半径 ——高压绕组气道内侧绕组辐向厚度 11S R +=L22B R +=233R +δ=L14 B R +=H26 B R +=

——高低压绕组之间的气道宽度 ——高压绕组气道外侧绕组辐向厚度 — 高压绕组外半径 ——高压绕组外直径 ——两铁芯柱中心距离 低压绕组DY2平均半径 12 122R R R += 低压绕组DY1平均半径 34 342R R R += 高压绕组GY2平均半径 56 562R R R += 高压绕组GY1平均半径 78 782 R R R += 高低压间漏磁空道平均半径 45 2HL R R Y += 低压气道平均半径 23 2L R R Y += 高压气道平均半径 67 2 H R R Y += (2).饼式(含螺旋式、连续式)绕组绝缘半径计算 R 0——铁芯半径 ——铁芯对绕组绝缘距离 ——低压绕组内半径 图4-25 ——低压绕辐向厚度 H1 8B R +=2D ?=6 0S M +=677R +δ=11S R +=L 2B R +=233 R +δ=

电力变压器绝缘在线监测研究状况

电力变压器绝缘在线监测研究状况 【摘要】在现代电力设备的运行和维护中,电力变压器是不仅属于电力系统中最重要的和最昂贵的设备之列,而且是故障多发设备。这就要求研制出可靠的智能的变压器在线检测装置。目前,变压器油中溶解气体分析是诊断变压器故障的重要方法之一,而离线的变压器油中溶解气体分析(DGA),由于操作复杂、试验周期长、人为影响的误差大,所以无法做到实时地了解变压器的内部绝缘状况。而在线监测可以克服传统方法的不足,实现真正的在线检测、分析和诊断一体化。由于变压器发生故障时,其油中含有气体的成分及含量与变压器的故障类型和严重程度密切相关,因此在线监测变压器油中气体变化及其发展趋势,是在线发现变压器故障的最常用方法。 【关键词】电力变压器;在线监测;油中气体分析 1 绪论 1.1变压器绝缘在线诊断技术的目的和意义 目前全国跨区联网日益紧密,局部故障有可能引发大范围的电网事故,变压器、断路器等电气主设备的故障将会严重影响到电力系统的安全运行。对变压器故障的在线监测,可以及时地掌握变压器设备内部绝缘的真实状况,尽早地发现变压器内部存在的故障隐患,将故障消灭于萌芽状态。 1.2国内外变压器在线监测技术研究状况 1.2.1 变压器在线监测技术的发展阶段 变压器在线监测技术的发展,大体经历了以下三个阶段: (1)带电测量阶段。这一阶段起始于二十世纪70 年代左右,当时人们仅仅是为了不停电而对设备的某些绝缘参数如变压器泄露电流、介损等进行直接测量,所采用的仪器多为机械式和模拟式的设备。 (2)80 年代至90 年代初,出现了各种专用的测试仪器,使在线监测技术开始从传统的模拟式设备转变为微机式的数字测量仪器,自动化程度有所提高。 (3)从90 年代开始,随着传感器技术、电子计算机技术、数字信号处理以及光纤技术的发展,在线监测、分析和诊断一体化的在线监测技术也得到了迅速地提高。 2 油浸式变压器在线监测方法 2.1 电力变压器的故障类型

绝缘漆注意事项样本

水溶性绝缘漆常用问题及其解决办法 1、未开封漆液久置后表面会浮现少量白色油状物汇集,影响质量吗? 答:为了提高水与树脂之间相容性,漆液中添加了少量表面活性剂,由于其自身亲水亲油特性,久置后其中某些成分容易发生团聚而浮到表面,经实验验证,稍微搅拌至表面无浮油后,漆液略有点发白,按正常工艺生产,完全不影响使用性能。 2、定子烘烤后,热态时,铁芯表面发粘或线圈中漆拉丝发粘,如何解决? 答:阐明没有完全。应提高烘烤温度或者延长烘烤时间。 3、定子烘烤后,线圈中漆不拉丝也不发粘,但感觉粘结性不强,如何提高粘结性? 答:如果挂漆量充分,应当延长烘烤时间(详细时间根据工件大小而定),使漆膜交联固化更完全。如果挂漆量局限性,应在漆液中加新漆,增长漆液粘度,从而提高挂漆量,保证烘烤时间即可提高粘结性。 4、定子烘烤后,发现下边线圈中夹杂某些气泡,如何消除气泡? 答:在漆液中加入少量干净自来水,搅拌均匀即可减少粘度从而减少挂漆量,滴漆盘上继续滴漆,时间普通不少于5分钟,正常烘烤。 5、工件浸漆烘干后,发现上面线圈粘结不牢固,是什么因素? 答:也许因素有:(1) 线圈绕线松散;(2) 绝缘漆烘干固化时间稍短,固化交联不完全,因而强度不高;(3) 绝缘漆粘度较低,线圈挂漆量偏少。解决办法:将线圈绕线紧凑,向漆缸中加入一定量新漆,将粘度提高,延长烘烤时间或者提高烘烤温度。 6、漆液长期使用过程中,发现粘度略有增长,对性能有影响吗? 答:持续使用过程中,水挥发速度相对较慢,可直接加入配制好新漆调节粘度。如果漆液长期敞口放置,应加入干净自来水搅拌均匀,将粘度调节至正常使用范畴即可。 7、对于月用量较小真空罐顾客,长期抽真空后浮现漆液略有发白,透明性下降,什么因素,如何解决? 答:这个有两方面因素。一是长期以来工件浸漆时带入大量灰尘、铁锈和其她杂物等,铁芯上冲压油、防锈油混入漆液中,相容性不好;此外水溶性绝缘漆与油溶性绝缘漆相比,不是真正水与树脂之间相容,而是水溶性树脂与有机胺形成不稳定盐在助溶剂作用下稳定分散于水中,长期抽真空过程中,有

浸绝缘漆的选择原则

浸绝缘漆的选择原则 (1)耐热等级:不同种类,用途的电子变压器产品的耐热要求是不一样的,各有一定的耐热等级。这些产品在选用浸渍漆时,浸渍漆的耐热等级必须要能满足相应的电子变压器的耐热要求。例如:耐热等级为B级的电子变压器选择的浸渍漆必须是B级以上的漆,低级别的漆承受不了高的耐热温度。高一些级别的漆却可以提高产品耐热的可靠性和延长使用寿命。对用几种不同耐热等级浸渍漆的用户,有时通用高等级的一种漆,还可以减少浸启槽,方便管理。 (2)相容性:电子变压器产品一般是由槊料骨架,铁心和漆包线的绕组等构成的,选用的浸渍漆与漆包线应当有良好的相容性,且不会浸蚀骨架。一般讲脂肪族溶剂的浸渍漆,溶剂的溶解力较次,相容性不会有问题。芳香族溶剂和混合溶剂的溶解力较强,相容性应引起重视。一般讲,除油性漆包线不能耐苯类溶剂外,其他的漆包线耐溶剂性都还是可以,甚至是很好的,关于槊料骨架的相容性,一般试一试,不变形就可以了。 (3)技术要求:电子变压器产品选择浸渍漆,必须要能满足产品的技术要求。如有的产品要具有耐变压器油的性能,有的要阻燃性,有的讲究黏结力,有的要求使用时无噪声等等,根据这种种不同的技术要求,就要分别选择个具性能的漆种。 (4)工艺性:工艺性分二个方面,一是明确是浸渍漆还是涂复漆;二是分清是自干漆还是烘干漆。对浸渍漆来讲,一般是不可选用自干漆的,因为自干漆外层自行干燥了,浸到里面的漆,溶剂挥发不了,无法干燥。另外,设备条件和绝缘漆处理工艺要求均是选择漆种的重要依据。如大浸漆槽就必须选用稳定性好的漆种,生产线上用漆就必须选择快干型的浸渍漆。(5)经济性:电子变压器浸渍漆绝缘漆的选择在满足以上四项原则的前提上,还必须考虑经济性。所谓经济性,就是是在满足功能要求的基础上,价格越便宜越好。这就需要我们了解.熟悉行情,不仅做到按功能选材,而且要选择价格便宜的,以节约开支,降低成本。 另外,在选择绝缘漆时,还应注意环境保护,力求选择无污染或少污染的漆种,力求选择低温且快干型的节能

变压器绝缘设计

材料 商品名称 初始磁导率 i 饱和磁通密度r /T B 典型工作频率 /Hz f 硅钢 3-97SiFe 1500 1.5-1.8 50-2k 铁氧体 MnZn 0.75-15k 0.3-0.5 10k-2M 铁氧体 NiZn 0.2-1.5k 0.3-0.4 0.2M-100M 镍铁磁性合金 50-50NiFe 2000 1.42-1.58 50-2k 玻莫合金 80-20NiFe 25000 0.66-0.82 1-25k 非晶材料 2605SC 1500 1.5-1.6 250k 非晶材料 2714A 200000 0.5-0.65 250k 铁基超微晶 Finemet FT-3M 3000000 1.0-1.2 20~100K 脉冲变压器绝缘设计 1. 设计要求 初级边主电容充电电压为1000V ,初级线圈需220匝,线径需大于0.38mm ;脉冲变压器次级边,需输出至少3000V 空载电压,至少500V 负载电压,次级线圈需660匝,线径需大于0.18mm 。初级、次级线圈间需耐受幅值60kV 、脉宽约几百μs 的冲击电压。设计此脉冲变压器的绝缘结构(铁芯可自选)。 2. 绝缘要求 本次设计采用油浸式封装,变压器绝缘主要包括原副边各绕组的纵绝缘(匝间绝缘和层间绝缘),两绕组间的主绝缘,高压绕组对铁轭的绝缘,高压绕组对油箱外壳绝缘,出线端绝缘等。 3. 具体设计选型过程 3.1 铁芯材料分析 表1 铁芯材料性能 如表1所示,铁基超微晶具有初始磁导率高并且饱和磁密相对较高的特点,由此选择该材料作为本次变压器设计所采用的铁芯。这种材料铁芯不宜切口,所以可用于小容量的手工绕组的变压器。 超微晶磁芯可向磁芯厂家定制特定的尺寸。 3.2 铁芯几何参数的选择 由于使用的是超微晶进行手工绕组,本次设计不同于一般的先选铁芯在确定绕组绝缘的过程,首先对绕组和绝缘的尺寸进行计算,然后确定铁芯尺寸,这样有利于充分使用窗口面积,方便绕组。经过绝缘设计后可得到如下

1140绝缘漆工艺

1140环氧聚酯无溶剂树脂使用说明书(通用) 【组成】耐热不饱和聚酯树脂、环氧树脂、固化剂、活性稀释剂等。 【特点及用途】F 级绝缘材料。该产品具有优越的电气性能、防湿热性能和机械性能。适用于F 级电机、电气、发电机组、变压器绕组的快干浸渍绝缘处理。在使用过程中本产品具有粘度低、渗透性强、固化速度快等特点。 【使用方法】 一、普通沉浸参考工艺 1、准备工作:取适量该产品倒入漆缸搅匀就可使用。 2、预烘:将工件预烘(120℃烘1小时),然后将工件温度降到35℃左右后再浸入漆缸,漆液需没过工件200mm 以上。 3、浸漆:工件沉浸时间一般为3~10分钟(视工件大小而定),至无气泡溢出为止。 4、滴漆:将工件吊出滴漆,滴干时间不少于30分钟。 5、固化条件:烘箱温度140℃,烘焙时间2~5小时。 6、工艺稳定性:定期补充新配树脂,使用效果更好。春、秋、冬季停车50天以内,夏天停车30天以内,仍能正常使用。 7、在生产过程中必须严格控制漆的粘度,当树脂粘度增高时,必须使用本厂提供的1140-X 专用稀释剂调整粘度。 二、连续沉浸自动流水线参考工艺 1、常见工艺流程: 2、调配树脂:将1140树脂按工艺要求倒入漆槽,调整好粘度后,即可使用。 3、工艺参考: 3.1节拍时间:3~6分钟,常用5分钟。 3.2预热温度:120~130℃。因国内现有连续沉浸设备,一般预热段与最后固化段都在同一箱体内,因此预热温度不宜过低。 3.3固化温度:视工件大小,120~140℃。 4、工艺质量控制及管理: 4.1 1140树脂的使用粘度一般控制在15±0.5秒/23℃,粘度过高时只能用1140-X 专用稀释剂稀释。 4.2每天树脂的消耗量应不少于漆槽中树脂贮量的5%。在连续停车不用时,应定期检查漆的粘度及贮存状态,如有异常应及时清理,清洗漆槽和管路。 4.3漆槽宜配冷却装置,设备运行时浸渍树脂温度不高于45℃,停车时不高于25℃。 4.4若连续停车超过7天,则停车前应尽量减少漆槽内树脂的贮量,必要时可加入适量的1140-X 稀释剂。 4.5漆槽及输漆管路应定期清理(1~3个月一次),用100目左右滤网过滤,以除去杂质。 三、复合真空浸渍烘干使用参考工艺 1、预烘:升温到50~60℃后保温30分钟,抽真空到0.06~0.09Mpa ,保持5分钟后输漆。 2、真空浸漆:关闭真空阀,输漆至工件上方至少50mm ,关闭进漆阀,抽真空至真空度0.06Mpa 亚安技术YAJS —030 下 机 固化 14~16节拍 滴干 3节拍 沉浸 1节拍 自动 冷却 2节拍 预热 3节拍 上 机

电子变压器浸渍绝缘漆

电子变压器浸渍绝缘漆

一、电子变压器浸渍绝缘漆的目的 1.提高电子变压器的电气绝缘性能 电子变压器浸渍绝缘漆可提高变压器绝缘系统的抗电强度和绝缘电阻,以提高其电气绝缘性能,满足变压器的电气绝缘性能要求。 2.增强电子变压器的环境适应性能 电子变压器浸渍绝缘漆可增强变压器绝缘系统的防潮性、防霉性、防腐蚀性、防盐雾性、防紫外线和其他有害物质侵袭的性能,以增强电子变压器对环境的适应性。 3.增强电子变压器的机械强度 电子变压器浸渍绝缘漆可增加变压器机械强度,满足运输和使用过程中产生的振动和冲击作用的要求。同时,还能降低使用中由电磁力的作用所产生的噪声。 4.改善电子变压器的导热性 电子变压器浸渍绝缘漆,铁芯和绕组的空隙被漆膜填充,可改善变压器整体的导热性,降低变压器的温升。 5.改善电子变压器的外观 二、电子变压器对绝缘漆的要求 1.绝缘性能优良; 2.附着力好,机械强度高; 3.收缩应力小; 4.耐热性应满足变压器的不同要求; 5.对户外或特殊环境应满足其特殊要求,如防辐射,防腐蚀,防紫外线等; 6.工艺性良好,如操作性好,无毒或低毒,干燥时间短等。

三、绝缘漆分类 1.按有无溶剂分 绝缘漆按有无溶剂分类,分为有溶剂绝缘漆和无溶剂绝缘漆。 (1)有溶剂绝缘漆有溶剂绝缘漆一般由成膜树脂和有机溶剂等组成,溶剂的含量通常为漆的总量的50%左右。如果溶剂的含量少于30%,这种有溶剂绝缘漆通常又称为少溶剂绝缘漆,或叫做高固体份绝缘漆。 (2)无溶剂绝缘漆无溶剂绝缘漆一般由成膜树脂和活性稀释剂等组成,活性稀释剂能同成膜树脂一道进行固化反应。大多数的无溶剂绝缘漆在固化成膜的过程中,活性稀释剂还是有不少要挥发掉的,真正没有溶剂挥发的无溶剂绝缘漆是很少的。 2.按固化方式分 绝缘漆按固化方式分类,分为自干型绝缘漆、烘干型绝缘漆和紫外光固化绝缘漆。 (1)自干型绝缘漆自干型绝缘漆是指涂复后能自己干燥成膜的绝缘漆。自干的机理一般分为三类:一类是挥发干燥,即高分子量的固体树脂溶解在适当的溶剂里,涂复后溶剂挥发掉,留下固体成膜树脂。这类绝缘漆应用方便,干燥快。但耐溶剂性能差,受热易软化。第二类是氧化干燥。这类绝缘漆含有干性植物油,干性植物油分子结构中的不饱和双键在空气中氧的作用下,会自行氧化交链,从而达到干燥的目的。一般的油性、酚醛树脂和干性油醇酸树脂绝缘漆都属于氧化干燥类绝缘漆。这类绝缘漆由于植物油含量较多,耐热性能较低,为A级、E级绝缘材料,干燥时间较长,一般要一天。第三类是常温固化干燥,这类绝缘漆是在常温下、经化学反应而交链固化。这类漆都是双组分或是多组分的,现用现配。这类漆常用的如聚酰胺树脂固化环氧树脂漆和双组分的聚氨酯漆等。这类漆因是化学交链,耐热、耐溶剂和耐化学性能均比较好。 (2)烘干型绝缘漆烘干型绝缘漆是指需经加热烘焙至一定温度才能反应固化的绝缘漆。大多数的绝缘漆都是烘干型的绝缘漆,如氨基醇酸树脂漆、环氧酯漆、聚酯树脂漆和有机硅树脂漆等。这类漆是化学交链型,又经过加热烘焙,因此,性能较好,具有用途的多样性。 烘干型绝缘漆根据烘焙温度的高低和固化速度的快慢可分为常规的烘干漆、快干烘干漆、低温烘干漆和低温快干烘漆。固化速度的快慢是个相对的概念,没有明确的标准,温度也影响到固化的快慢。一般将产品指标中干燥时间小于1小时的浸渍漆称为快干漆,产品能在100℃以干燥的,成为低温烘漆。 (3)紫外光固化绝缘漆这是一类用紫外光来固化的绝缘漆。这类漆是在不

绝缘漆浸渍工艺

绝缘漆浸渍工艺 时间:2011-08-18 16:01来源:JUBON油漆作者:admin 点击:次 在电机结构中绕组是最脆弱的部件,我们要尽量提高绕组的耐潮防腐性和绝缘强度,并提高机械强度、导热性和散热效果与延缓老化等。对重绕后的电机绕组进行浸漆处理是必不可少的重要步骤。为了保证绝缘漆的渗透性好、漆膜表面光滑和机械强度高,使定子绕组粘结成为一个结实的整体,浸漆与烘干严格也必须要严格按绝缘处理工艺进行。E、B级绝缘的电机定子绕组的浸漆处理,现在一般采用1032三聚氰胺醇酸树脂漆,溶剂为甲苯或二甲苯,浸漆次数为二次,将其统称为普遍二次浸漆热沉浸工艺。其工艺过程由预烘、浸漆两个主要工序组成。 预烘以后,潮气排出,可将定子立起,然后用毛刷,沾漆,顺着槽口滴入,然后调过来再滴一次,以漆从下端流出为准。最后过桥线都刷上漆。然后烘干即可。大车间是将定子完全浸入漆内,待气泡排出,吊出定子控干,进入烘干箱。 把电机翻转90o,让绕组与地面垂直; 对于Φ小于500mm内腔的电机用灯泡烘烤,Φ大于500mm的电机用相适应的电炉烘烤,将电机定子整体加热至80Co并保持两小时,注意控制温度,不要把线圈烤糊了; 去除烘烤热源,在电机底部设一托盘接过剩的绝缘漆; 用毛刷子沾上绝缘漆顺绕组线圈淋下,整个圆周都要均匀,待绕组下端有漆滴出再把电机翻转180o,让原来的底朝上同样的方法再浇淋,直至认为绝缘漆已复满绕组,等多余的绝缘漆滴得差不多时,移去托盘; 继续用上面方法烘烤10-12小时,直至绝缘漆干透。 把电机翻转90o,让绕组与地面垂直; 首先要进行预烘 1.预烘的目的 绕组在浸漆前应先进行预烘,通过预烘来驱除绕组中的潮气和提高工件浸漆时的温度,以提高浸漆质量和漆的渗透能力。 2.预烘的方法 预烘加热要逐渐增温,温升速度以不大于20~30℃/h为宜。预烘温度视绝缘等级来定,对E级绝缘应控制在120~125℃;B级绝缘应达到125~130℃,在该温度下保温4~6小时,然后将预烘后的绕组冷却到60~80℃开始浸漆。

变压器绝缘结构设计课程设计(哈理工)

220 kV电力变压器绝缘设计 专业:电气工程及其自动化 班级: 学号: 姓名: 指导教师:

一.设计任务 1. 对一台双绕组220 kV级电力变压器进行绝缘结构设计,并进算绝缘结构在雷电冲击电压(全波),1min工频电压试验下的主、纵绝缘裕度。 2. 技术条件: a、全波雷电冲击试验电压945 kV b、1min工频试验电压400 kV(感应耐压试验)。 3. 变压器结构及其它条件: a、低压绕组外表面半径360mm,高压绕组内表面半径434mm,绕组间绝缘距离74mm b、高压绕组匝绝缘厚度1.95mm 低压绕组匝绝缘厚度0.45mm c、高压绕组为纠结式,高压绕组中部进线 d、高压绕组段间油道尺寸1,3,5向外油道为8mm;7,9,11向外油道为6mm;8,10,12向内油道为10mm;其他油道均为6mm;中断点为15mm e、全波梯度1,3,5油道为10;7,9,11油道为8;中断点为15. 4. 要求完成的内容: a、确定变压器主绝缘尺寸 b、计算主、纵绝缘在各种试验电压下的绝缘裕度 c、画出变压器绝缘装配图

d、攥写课程设计报告 5. 参考文献: a、路长柏等编著:电力变压器计算第五章; b、刘传彝:电力变压器设计计算方法与实践; c、路长柏:电力变压器绝缘技术; d、“电机工程手册”第二十五篇。 二.综述 针对上述设计要求对220 kV电力变压器绝缘结构设计如下:对于主绝缘,高低压线圈间主空道为了利用变压器油的体积效应,采用薄纸板小油隙的设计思想,线圈间主绝缘距离为74mm,变压器油与绝缘纸板交替排布,具体结构为(8+4+10+4+10+2+10+4+10+4+8),即∑Dy=60mm,∑Dz=14mm,靠近高压线圈的第一个绝缘纸筒厚度取为4意在增加其机械强度,以保证高压线圈能够稳固的固定于其上;低压线圈外半径r1=360mm,高压线圈内半径 r2=434mm;低压线圈(35 kV)与铁心间采用厚纸板大油隙的设计思想,其绝缘距离定为27mm;由于220 kV级电力变压器的高压线圈采用中部出线的出线方式,所以端部绝缘结构设计可按110 kV级绝缘水平设计,其结构为:端部设静电环,静电环采用1/4圆曲率半径,S值取为5,曲率半径取为10。静电环金属上表面距离压板为90mm,期间设一个端圈、两个角环和三个隔板,并加垫块以填充,期中为了增加沿面爬电距离,至上而下三个隔板 在高压线圈一侧分别探出50、30、15的长度。由于中部出线,上下端部的绝缘结构相似,下端部结构不再进行详细说明。具体结构尺寸见绝缘结构装配图。

电力变压器绝缘故障的分析与诊断

电力变压器绝缘故障的分析与诊断 在经济不断发展过程中,能源的消耗量也出现了不但增长的情况,在这种情况下,我国的电力系统正在实施着大范围输电的任务,在电能调度过程中,电力变压器是非常重要的电力设备,同时也是保证电网安全稳定运行的重要设备。电力变压器中主要的绝缘材料是绝缘油和绝缘纸,在长时间使用的情况下会出现老化情况,这样就非常容易出现电力变压器运行故障,导致更大的电力事故发生。为了避免电力变压器故障对绝缘事故的出现原因要进行必要的分析,这样能够更好的找到解决的措施。 标签:电力变压器;绝缘故障;故障诊断 在经济不断发展的情况下,电能的消耗量出现了越来越大的情况,在这种情况下,输电的电压等级也出现了不断提高的情况,变压器的容量和电压等级也要进行相应的升高,这样才能更好的保证变压器的可靠运行。为了更好的确保变压器的安全运行,对变压器的故障进行诊断是非常重要的,这样能够及时的对出现的潜在问题进行解决,避免出现更大的安全事故,保证电力系统的安全稳定运行。 1 电力变压器故障诊断的意义 近年来,我国的电力系统在经济不断发展的情况下,电压等级也在不断的提高,实现了大电网和电网自动化的发展情况,为了更好的保证电能的供应,我国新建了很多的变电站,电力工业的快速发展使得越来越多的电气设备投入使用,这样能够更好的保证电力系统的运行安全性和稳定性,同时也能对电力系统运行过程中的各个状态进行监测,对电气设备的故障诊断也要进行重视。发电机的单机容量出现了不断增加的情况,电力变压器在等级方面也要进行不断的增大,这样才能更好的保证电力系统的运行可靠性。在电气设备中,电力变压器是非常重要的组成部分,也是经常容易出现事故的部分,对电力系统的运行有非常大的影响,因此,对电力变压器出现事故的原因要进行更好的分析,这样能够保证电力系统的运行安全。电力变压器在使用过程中一旦出现不正常运行的情况会导致电网出现停电情况,在这种情况下对电力设备进行修复是非常困难的。我国的很多变电站在建设年限上都是比较久远的,这样就使得很多的电力变压器在使用的时候已经出现了报废使用的情况,在报废的情况下继续使用,会导致电力变压器的绝缘性能出现下降,同时,在故障承受方面也非常薄弱,因此,对电力变压器进行故障诊断是非常重要的。 2 电力变压器绝缘故障产生的原因 不同的变压器在绝缘材料组成方面也有一定的不同,因此,在变压器运行的过程中受到的影响因素也存在着不同,变压器在使用过程中会受到环境以及机械设备使用产生的热量影响,因此,在绝缘材料出现不断恶化的情况下,变压器也会出现故障,很多的变压器出现故障都是由于绝缘系统引起的。绝缘材料的性能对变压器的使用寿命有很大影响,变压器的绝缘系统出现故障,主要和以下几个

浸渍漆

使用范围绝缘漆可以分为浸渍漆、漆包线漆、覆盖漆、硅钢片漆、防电晕漆等五类。 1、浸渍漆 浸渍漆分有溶剂漆和无溶剂漆两大类,主要用于浸渍电机、电器的线圈,以填充其间隙和微孔,且固化后能在被浸渍物的表面形成连续平整的漆膜,并使之粘结成一个坚硬的整体。对浸渍漆的基本要求为: 1、粘度低,流动性好,固体含量高,便于渗透和填充被浸渍物。 2、固化快,干燥性能好,粘结力强,有热弹性,固化后能经受电机转动时的离心力。 3、具有优异的电气性能和化学稳定性,耐潮、耐热、耐油。 4、对导体和其他材料具有良好的相容性。 2、漆包线漆 漆包线漆主要用于漆包线芯的涂覆绝缘。由于导线在绕制线圈、嵌线等过程中,将经受热、化学和多种机械力的作用,因此要求漆包线漆具有良好的涂覆性(即能均匀涂覆),漆膜附着力强,表面光滑柔软有韧性,有一定的耐磨性和弹性,电气性能好,耐热,耐溶性,对导体无腐蚀等特性。 3、覆盖漆 覆盖漆用于涂覆经浸渍处理的线圈和绝缘零部件,在其表面形成厚度均匀的绝缘保护层,以防止设备绝缘受机械损伤以及大气、化学药品的侵蚀,提高表面绝缘强度。因此,要求覆盖漆具有干燥快、附着力强、漆膜坚硬、机械强度高、耐潮、耐油、耐腐蚀等特性。覆盖漆按树脂类型分为醇酸漆、环氧漆和有机硅漆。环氧漆比醇酸漆具有更好的耐潮性、耐霉性、、内干性和附着力,漆膜硬度高,广泛用于潮热地区电机电器设备部件的表面涂覆。有机硅漆耐热性高,可作为H级电机电器的覆盖漆。 覆盖漆按填料又可以分为两种:不含填料和颜料的清漆和含填料和颜料的磁漆。同一树脂制成的磁漆比清漆漆膜硬度大,导热、耐热和耐电弧性能好,但其他电气性能稍差,多用于线圈和金属表面涂覆,而清漆则多用于绝缘零部件表面的电器内表面涂覆。 覆盖漆按干燥方式有晾干和烘干两种,同一树脂的晾干漆较烘干漆性能差,贮存不稳定,仅适用于大型设备和不宜烘培的部件涂覆。 使用覆盖漆时应严格控制漆的粘度和均匀性、通风、烘培温度以及环境的清洁度,以保证漆膜的干燥和质量。磁漆在调和使用前必须充分搅拌,以消除沉淀块、粘度不均或变色等现象。

电力变压器的绝缘试验和诊断技术 陈海霞

电力变压器的绝缘试验和诊断技术陈海霞 发表时间:2020-04-09T16:28:51.463Z 来源:《电力设备》2019年第23期作者:陈海霞[导读] 摘要:电力变压器在运行过程中会出现绝缘故障,为了最大程度避免因绝缘故障造成的供电不稳定等影响电力企业经济效益的问题出现,在设备运行前工作人员将会对设备进行绝缘试验,本文在此背景下介绍绝缘试验的相关知识,并依据绝缘故障的影响因素总结应该注意的实现和诊断步骤。 (哈尔滨变压器有限责任公司 150000)摘要:电力变压器在运行过程中会出现绝缘故障,为了最大程度避免因绝缘故障造成的供电不稳定等影响电力企业经济效益的问题出现,在设备运行前工作人员将会对设备进行绝缘试验,本文在此背景下介绍绝缘试验的相关知识,并依据绝缘故障的影响因素总结应该注意的实现和诊断步骤。关键词:电力变压器;绝缘试验;诊断技术一、电力变压器的绝缘试验和故障损害(一)电力变压器的绝缘试验分类通常情况下我们将电力变压器的绝缘试验分为两类,一类是依据试验性质进行的分类,为了避免对设备产生较大损伤,我们在试验过程中会选用较低电压对设备在试验过程中发生的物理现象进行预判,给出相应的测试参数,进而进行数据分析,这个过程中还可以有效判断出设备的绝缘性能大小,依据参数来总额出其变化趋势规律,进而得到影响绝缘性能的因素,这种是小电压情况下的试验。相反的,还会有大电压的试验,给予设备较强电压,我们会发现设备在试验过程中的物理现象又呈现不一样的效果,这样能判断出该设备的绝缘最佳水平和最强状态,但不得不说这种试验存在的最大弊端就是会对设备造成损伤,减少其使用寿命。第二类是依据试验范围进行的分类,电力变压器的具体性能大小与其使用时间有密切的关系,所以我们可以以时间作为参考值设定绝缘试验,这样一来能直观地发现电力变压器存在的缺陷和隐患,方便对设备统一维修,还能根据试验过程中发生的异常整理归类后再次进行鉴别性试验,二次维护故障点后重新测定有关数据。(二)故障损害带来的影响一般电力变压器出现故障的主要原因还是由于绝缘物质老化而造成的,这也是我们工作人员需要高度关注的重点,因为其老化程度将直接影响到整个电网系统的运行效果,使得电网中的所有绝缘设备工作能力都下降,一旦出现这种情况,电力传输过程中抵抗较强电流能力较弱,会引起电压不稳定,引发短路等故障出现,虽然这类问题不会对人造成较大的危害,但也会给日常生活工作造成极大地不便。此外电力变压器绝缘故障让电网不定时放电,这也会加快电力变压器的损害程度,减少其使用寿命。 二、电力变压器的绝缘试验方法(一)介质损失角法使用这种方法的最大优点就是灵敏度非常好,有利于控制设备,快速查找局部故障点,我们在试验时会测定角质总回路量,判定设备是否收到潮湿等因素而影响到绝缘效果,虽然这种故障发生概率较低,但我们也常用这种方法来排查。(二)吸收系数测定法当电力变压器的绝缘部件受到损坏或是潮湿影响下,很容易饱和,这时我们采用吸收系数测定法可以直接确定损害部位,而且也能得知电力变压器当前状态是否处于绝缘状态,需要提倡的是我们不单独采用本法,而是与其他方法结合使用会短时间内快速确定绝缘部件局部受损位置。(三)绝缘电阻测定法这种方法的优点具有全面性,电力变压器内部主要发挥作用的关键点就是电阻、电容和转换器来工作的,绝缘电阻能抵制强电力进而转化,我们可以多个角度检查后检测出故障点并维护,然后通过绝缘电阻来检查其他部位是否处于正常状态。 三、影响绝缘故障的因素分析(一)突发性短路电力变压器出现故障的大多数情况都是短路,短路部位不同造成的影响也不同,一旦出现短路故障后其他设备会受到很大的机械力,一旦承受能力达到极限就会发生形变,从而降低甚至失去绝缘效果,这种损伤很多时候是无法完全修复的,首先就是绝缘距离发生变化,如果继续使用会影响到绝缘器的使用寿命。(二)温度影响电力变压器内部结构是绝缘的,温度变化对其影响比较大,温度决定了使用寿命或是老化时间,温度过高边缘器超负荷使用会改变绝缘器绝缘性能,影响整个电力系统的稳定运行。(三)湿度影响正如上文所说,变压器在受潮的情况下也会影响其绝缘性能,绝缘油中存在水分,少量的水分能保证必要的湿度,降低绝缘油的放电效果。但如果水分过多,就会让变压器内部环境越来越潮湿,这会加快绝缘器的老化,大大缩减其使用寿命,甚至继续严重下去会威胁到工作人员的生命安全。 四、电力变压器的绝缘故障诊断技术电力变压器的发生故障后要及时进行诊断来减少不必要的损害,一般我们对变压器的诊断分为三方面,第一个是诊断前的维护保养工作,当电力变压器发生故障前就要定期排查找到问题隐患点进行维护,以保证变压器能正常工作,很大程度上能减少因故障发生而产生的经济费用。第二个是电力变压器发生故障后的故障点查找,这个过程要遵循快速、准确的原则,为了不影响电力系统生产效率,要快速找到问题所在,所以科学定制故障点查找流程和手法非常重要,不仅能保证工作人员的生命安全也能保证电力系统的平稳运行。第三个是故障点检修,高质量检修是对电力系统检修人员人身安全的保障,经过快速检修和更新后的电力变压器能立马投入到运行中,确保整个系统的正常使用。所以工作人员还要制定一整套诊断体系,快速查找快速检修,进一步完善系统漏洞。 五、结语

相关主题
文本预览
相关文档 最新文档