当前位置:文档之家› 解含有绝对值的方程四种方法

解含有绝对值的方程四种方法

解含有绝对值的方程四种方法

解含有绝对值的方程四种方法

以下介绍几种含绝对值的方程的解法,给出的这四种方法都是常用的方法。

一、定义法:

根据绝对值的定义把绝对值号去掉,把一个方程变成两个方程来解。这种方法只适用于较简单的含绝对值的方程。

二、平方法:

对于较简单的含绝对值的方程,去掉绝对值符号的又一个简单方法是方程两边平方。;三、零点分区法:

这种方法适合于稍微复杂一些的情况,首先令各绝对值号内的式子等于零。由此解得几个X的值把整个褛分为几个区间,解题时要按这几个区间逐一讨论,特别是解得的值要研究是否落在所给的区间。

四、数轴法

X-A的绝对值的几何意义是,在数轴上表示数A的点到X点的距离,根据这个几何意义解某些绝对值方程,具有直观简捷等特点。

各种类型的微分方程及其相应解法教程文件

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

小学解方程经典50题

小学解方程(经典50题) 35 3141=+ x x 2、45 9 4=- x )( 3、 18 5 1=+ x x 4、8 516 5=+ x 5、15 84 3 = ÷x 6、185 1=+x x 7、2753=x 8、 14 17 2= - x x 9、 9 88 9= ÷ x 10、33 211 3=-x 11、 0.4x=0.72 12、 3212 5=-x 13、283 11(=+x ) 14、 40 )7 21(=- x 15、 365 2=- x x 16、5574=+ x x 17、 16 5 4=÷ x 18、 6 53 2= x

19、10 495 13 2= - x x 20 5)4 18 3( =- x 21、 4 92 14 3= + x x 22、8 35 4= -x x 23、 9 55 68= ÷ x 24、 16 510 9=- x x 25、3 216 34 12 1? = - x x 26、 10 95 14 1= + x x 27、 6 53 510 15 3= ? + x 28、40 7)4 13 1(= + ?x 29、 10 1489 1÷ =- x x 30、 18 59 5= x 31、5 412=x 32、 156 5=x 33、 3 28 3= ÷ x

34、9 84 3= +x 35、 5 215 4= - x 36、 20 74 3= + x x 37、3 27 6= ÷x 38、 2 74 72 3= - x 39、 8 9 44 3÷= ÷ x 40、56 1=-x x 41、 214 3=+ x x 42、 12 )3 11(=+ x 43、15 5 25 1=+ x x 44、10 )4 18 3( =+ x 45、 24)7 11(=- x 46、4 36 1= ÷x 47、 5 215 7= ? x 49、 3 17 6= ÷ x 50、25 1852= x 51、6x+4(50-x)=260 52、 8x+6(10-x)=68 53、5x+2(20-x)=82 54、 4x+2(35-x)=94

谈谈如何解含绝对值的方程

谈谈如何解含绝对值的方程 施静忠 绝对值概念在初中代数,乃至初等数学中,均占有相当重要的地位。解含绝对值的方程在初中数学竞赛中经常出现,同学们往往感到困惑,难于解答。下面举例说明解这类方程的几种常用方法。 一. 运用基本公式:若,则解方程 例1. 解方程 解:去掉第一重绝对值符号,得 移项,得或 所以 所以原方程的解为: 例2. 解方程 解:因为 所以 即 或 解方程(1),得 解方程(2),得 又因为,所以 所以原方程的解为

二. 运用绝对值的代数意义解方程例3. 方程的解的个数是() A. 1 B. 2 C. 3 D. 4或4以上 解:方程可化为 所以 所以方程的解有无数个,故选(D)。 三. 运用绝对值的非负性解方程 例4. 方程的图像是() A. 三条直线: B. 两条直线: C. 一点和一条直线:(0,0), D. 两个点:(0,1),(-1,0) 解:因为 而 所以 所以原方程的图象为两个点(0,1),(-1,0) 故选(D)。

四. 运用绝对值的几何意义解方程 例5. 解方程 解:设,由绝对值的几何意义知 所以 又因为 所以 从数轴上看,点落在点与点的内部(包括点与点在内),即原方程的解为。 五. 运用方程的图象研究方程的解 例6. 若关于x的方程有三个整数解,则a的值是() A. 0 B. 1 C. 2 D. 3 解:作的图象,如图1所示,由于方程解的个数就是直 线与的图象的交点个数,把直线平行于x轴上、下移动,通过观察得仅当时方程有三个整数解。故选(B)。 图1 同时,我们还可以得到以下几个结论: (1)当时,方程没有解; (2)当或时,方程有两个解; (3)当时,方程有4个解。

解方程练习题【经典】

解方程测试题 请使用任意方法解下列方程,带*的必须检验。 x-104=33.5 x+118=11.9 26.4×x=40 62.2-x=70.7 x÷31=21.0 69.4+x=87.4 94.8+x=48.2 37.3x=84.1 91.1x=38.7 x÷13.3=14.5 31.4x=59.8 41.7x=69.9 105x=82.6 x×7.1=10.7 x+75.4=16 x÷63=42.2 x-8=32.8 64.2x=78 14÷x=21 59.9-x=40 9.8+x=99.3 44.2-x=86.1 x÷35.0=9.0 52.6-x=52.0 x×63.4=62.7 2.8-x=52 x÷41.0=139 9.6x=97.2 51x=42.9 x-48.8=95 x×6.8=25.4 118+x=35 56.6x=54.0 23x=145 x+50.3=28.1 54.6+x=96.2 x+89.2=59.1 45x=48 28.7x=83.5 17.3x=60.8 x+101=20.8 55.9x=75.2 59.7-x=23 x÷61.6=55.0 45.3÷x=79.5 x-48.2=85 x×43.6=62.6 5.9x=6.1 80.3x=11.7 104x=47.7 x×100.7=70 92.1x=27.3

56x=56 x÷16.8=88.3 95x=90.8 49.6x=125 2.1+x=73.4 16.7÷x=76.8 x+99=37.9 33÷x=56.6 48.5÷x=61.8 x÷3.6=96.5 68.0÷x=73 x×16.8=5.0 26.9x=88.0 45.5x=87 x×82=48.1 88.5+x=20.8 53.3x=21.3 95x=42.1 68÷x=139 x+34.7=135 x-63.1=43 19.5÷x=116 1.6x=5.7 2.3x=68.1 55.6+x=99.4 94.8÷x=28.9 100.3÷x=101 x+21.0=128 17-x=6.6 x-51=95.5 33.7×x=126 1.8x=111 48.4x=56 x×43.3=93.6 65.6x=100.9 6.8÷x=78.7 38.7-x=90.8 100x=143 64+x=31.9 x×122=28.7 x-55.1=95 17-x=92.8 x+20.8=53.1 90.9x=80.1 30.6x=58 43.9-x=37.2 6x=25.6 66.6x=113 x×21.0=65.6 x×30.6=51.1 58x=88.5 86.1x=89.5 x÷19.2=22.3 8.9×x=55 94.5+x=36.4 129x=86.3

含绝对值的一元一次方程解 法

含绝对值的一元一次方程解法 一、绝对值的代数和几何意义。 值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。 用字母表示为 绝对值的几何意义:表示这个数的点离开原点的距离。因此任何数 的绝对值是非负 数。 1、求下列方程的解: (1)| x | = 7;(2)5 | x | = 10;(3)| x | = 0;(4)| x | = – 3; (5)| 3x | = 9. 解: 二、根据绝对值的意义,我们可以得到: 当 > 0时 x =± | x | =当 = 0时 x = 0 当 < 0时方程无解. (三) 例1:解方程: (1) 19 – | x | = 100 – 10 | x | (2) 解:(1) 例2、思考:如何解 | x – 1 | = 2 分析:用换元(整体思想)法去解决,把 x – 1 看成一个字母y,则原方 程变为: | y | = 2,这个方程的解为 y = ±2,即 x – 1 = ±2,解得 x = 3或x = –

1. 解: 例3:解方程:| 2x – 1 | – 3 = 0 解方程: 解: 三:形如的绝对值的一元一次方程可变形为:且才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1:解方程: 练习:(1)解方程: (2)解方程:

四:“零点分段法”解含多个绝对值的代数问题 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:化简下列各式 1、 2、 练习:化简: 例2:解下列方程 1、 2、 练习: 1、 2、

含参数的一元一次方程.含绝对值的一元一次方程

含参数的一元一次方程、含绝对值的一元一次方程 一. 含有参数的一元一次方程 1. 整数解问题 2. 两个一元一次方程同解问题 3. 已知方程解的情况求参数 4. 一元一次方程解的情况(分类讨论) 二: 解含有绝对值的一元一次方程 一. 含有参数的一元一次方程 1. 整数解问题(常数分离法) 例题1:⑴ 【中】 已知关于x 的方程9314x kx +=+有整数解,求整数_____k = 答案:(9)11k x -= 119x k =- ∵,x k 均为整数 ∴91,11k -=±± ∴2,8,10,20k =- ⑵ 【中】 关于x 的方程()2 (1)130n x m x -+--=是一元一次方程 (1)则,m n 应满足的条件为:___m ,____n ; (2)若此方程的根为整数,求整数=____m 答案:(1)1,1≠=; (2)由(1)可知方程为(1)3m x -=, 则31 x m = - ∵此方程的根为整数.

∴31 m -为整数 又∵m 为整数,则13,1,1,3m -=-- ∴2,0,2,4m =- 测一测1: 【中】 关于x 的方程143+=+x ax 的解为正整数,则整数a 的值为( ) A.2 B.3 C.1或2 D.2或3 答案:D 方程143+=+x ax 可化简为:()24-=-x a 解得4 2--=a x 解为正整数,()214--=-或a 32或=a 测一测2: 【中】 关于x 的方程917x kx -=的解为正整数,则k 的值为___________ 答案:917x kx -=可以转化为(9)17k x -= 即:179x k = -,x 为正整数,则88k =或- 测一测3: 【中】m 为整数,关于x 的方程 6x mx =- 的解为正整数,求_____m = 答案: 由原方程得:61 x m =+ ,x 是正整数,所以1m + 只能为6的正约数, 11,2,3,6m += 所以0,1,2,5m = 2. 两个一元一次方程同解问题 例题2:⑴ 【易】若方程29ax x -=与方程215x -=的解相同,则a 的值为_________ 【答案】第二个方程的解为3x =,将3x =代入到第一个方程中,得到369a -= 解得 5a =

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1) 即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2 5.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ①f(x)=P m(x)eλx型 令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数 ②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型 令y*=x k eλx[Q m(x)cosωx+R m(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m(x)和R m(x)的m+1个系数

五年级数学简易方程典型练习题

简易方程 【知识分析】 大家在课堂上已经学了简单的解方程,现在我们学习比较复杂的解方程。首先,我们要对方程进行观察,将能够先计算的部分先计算或合并,使其化简,然后求出X的值。 【例题解读】 例1解方程:6X+9X-13=17 【分析】方程左边的6X与9X可以合并为15X,因此,可以将原方程转化成15X-13=17,从而顺利地求出方程的解。 解:6X+9X-13=17, 15X-13=17 15X=30 X=2。 例2解方程:10X-7=4.5X+20.5 【分析】方程的两边都有X,运用等式的性质,我们先将方程的两边同时减去4.5X,然后再在两边同时加上7,最后求出X. 解:10X-7-4.5X=4.5X+20.5-4.5X, 5.5X-7=20.5 5.5X-7+7=20.5+7 5.5X=27.5, X=5. 【经典题型练习】解方程:7.5X-4.1X+1.8=12 解方程:13X+4X-19.5=40

解方程:5X+0.7X-3X=10-1.9 解方程练习课【巩固练习】 1、解方程:7(2X-6)=84 2、解方程5(X-8)=3X 3、解方程4X+8=6X-4 4、解方程7.4X-3.9=4.8X+11.7

列方程解应用题 【知识分析】 大家在三四年级的时候一定学过“年龄问题”吧!记得那时候思考这样的问题挺麻烦的,现在可好啦!我们学习了列方程解应用题,就可以轻松地解决类似于这样的应用题。 【例题解读】 例题1 今年王老师的年龄是陈强的3倍,王老师6年前的年龄和陈强10年后的年龄相等,陈强和王老师今年各是多少岁? 【分析】要求陈强和王老师两个人的年龄,我们不妨设今年陈强的年龄是X岁,王老师的年龄是3X岁,然后根据“王老师在6年前的年龄和陈强10年后的年龄相等”这个数量关系式,列出方程。解:设今年陈强的年龄是X岁,王老师的年龄是3X岁,可列方程:3X-6=X+10,2X=16,X=8 3X=3×8=24 答:陈强今年8岁,王老师今年24岁。 例题2 今年哥哥的年龄比弟弟年龄的3倍多1岁,弟弟5年后的年龄比3年前哥哥的年龄大1岁,兄弟俩现在各多少岁? 【分析】先表示出哥哥和弟弟今年的年龄,然后运用弟弟5年后,哥哥3年前的年龄作为等量关系。 解:设弟弟今年X,那么哥哥今年(3X+1)岁,可列方程 X+5=3X+1-3+1,X+5=3X-1,6=2X,X=3。 3X+1=3X3+1=10 答:哥哥今年10岁,弟弟今年3岁。

如何解含有多个绝对值符号的方程

5.如何解含有多个绝对值符号的方程 题目 解方程 |1|||3|1|2|2|2x x x x x +-+---=+ (*) 这是《你能解吗?——献给数学爱好者》一书p3的第14题. 对于含有多个绝对值符号的方程问题,常规解法都是利用分段讨论的方法脱掉绝对值符号的. 本文介绍一种简便的新方法. 设121()||(1,,)n i i n i f x a x b cx d n b b b == -++><,则在 1i i b x b +≤≤中()f x = 0无根;若1()()0i i f b f b +?<,则在1i i b x b +≤≤中()f x = 0只有一个根,此根可由公式1111()()() i i i i i i b b x b f b f b f b ++++-=--表之;对于1x b <和n x b >时根的情况再分别讨论. 对这一方法笔者称之为 “讨论两端,中间挑选.” 例1 见题(*) 解 设()|1|||3|1|2|2|2f x x x x x x =+-+-----,则(1)2,(0)2,f f -=-=- (1)4,(2)0.f f =-= 可见当12x -≤<时, ()f x = 0无根.x = 2是()f x = 0的一个根. 当1x <-时, ()242f x x =-->-, 令240x --=, 2x =-. 当2x >时,()0f x ≡. 故原方程的解是2x =-和2x ≥的所有实数. 例2 方程|21||2||1|x x x -+-=+的实数解的个数是: (A)1; (B)2; (C)3; (D)无穷多. (上海市1984年初中数学竞赛题) 解 设1()|21||2||1||1|2|||2|2 f x x x x x x x =-+--+=-++-+-, 则1 (1)6,()0,(2)0.2 f f f -=== 那么不论1x <-和2x >时有没有根,我们至少知道122 x ≤≤都是()f x = 0的根, 答案应选择(D). 例3 解方程|1|2|2|3|3|4x x x ---++=. (《初等代数难点释疑》一书p4的例4). 解 设()|1|2|2|3|3|4f x x x x =---++-,则(1)0,(2)0,(3) 4.f f f ===- 当1x <时,()220f x x =-+>;当3x >时,()2104f x x =->-,令2100x -=, 得5x =. 故原方程的解是5x =和12x ≤≤的所有实数. 例4 解方程|2||3||28|9x x x -+-+-=. (华东师大《数学教学》1984年第5期p9)

各类微分方程的解法大全

创作编号:BG7531400019813488897SX 创作者:别如克* 各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐 式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u] =dx/x两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程 解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1

y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程 令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1) 即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2 5.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ①f(x)=P m(x)eλx型 令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数 ②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型

小学解方程经典例题

列方程解应用题及解析 例1甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45.求甲、乙二数. 分析:被除数、除数、商和余数的关系:被除数=除数×商+余数.如 果设乙数为x,则根据甲数除以乙数商2余17,得甲数=2x+17.又 根据乙数的10倍除以甲数商3余45得10x=3(2x+17)+45,列出 方程. 解:设乙数为x,则甲数为2x+17. 10x=3(2x+17)+45 10x=6x+51+45 4x=96 x=24 2x+17=2×24+17=65. 答:甲数是65,乙数是24. 例2电扇厂计划20天生产电扇1600台.生产5天后,由于改进技术,效率提高25%,完成计划还要多少天 思路1: 分析依题意,看到工效(每天生产的台数)和时间(完成任务 需要的天数)是变量,而生产5天后剩下的台数是不变量(剩余工作 量).原有的工效:1600÷20=80(台),提高后的工效:80×(1+25 %)=100(台).时间有原计划的天数,又有提高效率后的天数,因 此列出方程的等量关系是:提高后的工效x 所需的天数=剩下台数. 解:设完成计划还需x天. 1600÷20×(1+25%)×x=1600-1600÷20×5 80×=1600-400 100x=1200 x=12. 答:完成计划还需12天.例4 中关村中学数学邀请赛中,中关村一、二、三小六年级大约有380~450人参赛.比赛结果全体学生的平均分为76分,男、女生平均分数分别为79分、71分.求男、女生至少各有多少人参赛 分析若把男、女生人数分别设为x人和y 人.依题意全体学生 的平均分为76分,男、女生平均分数分别为79分、71分,可以确 定等量关系:男生平均分数×男生人数+女生平均分数×女生人数= (男生人数+女生人数)×总平均分数.解方程后可以确定男、女生 人数的比,再根据总人数的取值范围确定参加比赛的最少人数,从而 使问题得解. 解:设参加数学邀请赛的男生有x人,女生有y人. 79x+71y=(x+y)×76 79x+71y=76x+76y 3x=5y ∴x:y=5:3 总份数:5+3=8. 在380~450之间能被8整除的最小三位数是384,所以参加邀 请赛学生至少有384人. 男生:384×=240(人) 5 8 女生:384×=144(人) 3 8 答:男生至少有240人参加,女生至少有144人参加. 例 5 瓶子里装有浓度为15%的酒精1000克.现在又分别倒入 100克和400克的A、B两种酒精,瓶子里的酒精浓度变为14%.已 知A种酒精的浓度是B种酒精的2倍,求A

绝对值方程详解及答案精编

第九讲 绝对值与一元一次方程 绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程. 解绝对值方程的基本方法有:一是设法去掉绝对值符号.将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧. 解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法. 例题 【例1】方程5665-=+x x 的解是 . (重庆市竞赛题) 思路点拨 没法去掉绝对值符号,将原方程化为一般的一元一次方程来求解. 【例2】 适合81272=-++a a 的整数a 的值的个数有( ). A .5 B .4 C . 3 D .2 ( “希望杯;邀请赛试题) 思路点拨 用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径. 注:形如d cx b ax +=+的绝对值方程可变形为)(d cx b ax +±=+且0≥+d cx , 才是原方程的根,否则必须舍去,故解绝对值时应检验. 【例3】解方程:413=+-x x ; 思路点拨 从内向外,根据绝对值定义性质简化方程. (天津市竞赛题) 【例4】解下列方程: (1)113+=--+x x x (北京市“迎春杯”竞赛题) (2)451=-+-x x . (“祖冲之杯”邀请赛试题) 思路点拨 解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解. 【例5】已知关于x 的方程a x x =-+-32,研究a 存在的条件,对这个方程的解进行讨论. 思路点拨 方程解的情况取决于a 的情况,a 与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键.运用分类讨它法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解. 注 本例给出了条件,但没有明确的结论,这是一种探索性数学问题,它给我们留有自由思考的余地和充分展示思维的广阔空间,我们应从问题的要求出发,进行分析、收集和挖掘

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

含绝对值的一元一次方程解法

含绝对值的一元一次方程解法 形如| x | = a(a≥0)方程的解法(2课时) 一、教学目的: 1、掌握形如| x | = a(a≥0)方程的解法; 2、掌握形如| x – a | = b(b≥0)方程的解法。 二、教学重点与难点: 教学重点:解形如| x | = a(a≥0)和| x – a | = b(b≥0)的方程。 教学难点:解含绝对值方程时如何去掉绝对值。 (一) 1、绝对值的代数和几何意义。 绝对值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值 是零。 a (a > 0) 用字母表示为| a | = 0 (a = 0) – a (a < 0) 绝对值的几何意义:表示这个数的点离开原点的距离。因此任何数的绝对值是非负 数。 2、求下列方程的解: (1)| x | = 7;(2)5 | x | = 10;(3)| x | = 0;(4)| x | = – 3;(5)| 3x | = 9. 解:(1)x =±7; (2)x = ±2; (3)x = 0; (4)方程无解; (5)x = ±3. (二)根据绝对值的意义,我们可以得到: 当a > 0时x =± a | x | = a当a = 0时x = 0 当a < 0时方程无解. (三) 例1:解方程: (1)19 – | x | = 100 – 10 | x | (2)2||3 3|| 4 x x + =- 解:(1)– | x | + 10 | x | = 100 – 19 (2) 2 | x | + 3 = 12 – 4 | x | 9 | x | = 81 2 | x | + 4 | x | = 12 – 3 | x | = 9 6 | x | = 9 x = ±9 | x | = 1.5 x = ±1.5 例2、思考:如何解| x – 1 | = 2 分析:用换元(整体思想)法去解决,把x – 1 看成一个字母y,则原方程变为:| y | = 2,这个方程的解为y = ±2,即x – 1 = ±2,解得x = 3或x = – 1. 解:x – 1 = 2 或x – 1 = – 2 x = 3 x = – 1 例题小结:

六年级列方程解决实际问题典型例题解析1(通用)

【同步教育信息】 一、本周教学主要内容: 列方程解决实际问题(1) 二、本周学习目标: 1、在解决实际问题的过程中,理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题。 2、在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。 3、在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯。 三、考点分析: 经历寻找实际问题中数量之间的相等关系并列方程解决问题的过程,在过程中自主理解并掌握有关方程的解法,加深对列方程解决实际问题的体验。 四、典型例题 例1、小强的爸爸今年37岁,比他年龄的3倍还大4岁,小强今年是多少岁? 分析与解: 这个题目包含的信息有:(1)小强爸爸的年龄(已知)37岁;(2)小强的年龄(未知)乘3再加上4岁和他爸爸年龄一样。 根据(1)(2)之间的关系,很快就可以找出下面的数量关系,小强今年多少岁不知道,可以设为x岁。 小强的年龄×3 + 4 岁 = 小强爸爸的年龄 根据上面的数量关系可以列出方程,再解答。 解:设小强今年是x岁。 3x + 4 = 37 3x + 4 - 4 = 37 – 4 ┄┄() 3x = 33

x = 33 ÷ 3 ┄┄() x = 11 这道题你会检验吗? 答:小强今年11岁。 这道题你还会列其它方程解答吗?(依据不同的数量关系可以列出不同的方程) 点评:实际解答这一题时,还可以想出几种不同的数量关系式。但是,对于符合题意的数量关系式,我们在解题时一般用最容易想到的数量关系式,即顺着题目的意思所想到的数量关系式。 例2、一种墨水有两种包装规格,大瓶容量是1.5升,比小瓶容量的4倍少0.9升,小瓶容量是多少? 分析与解: 这个题目包含的信息有:(1)大瓶容量(已知)1.5升;(2)小瓶容量(未知)乘4减去0.9升和大瓶容量一样。 根据(1)(2)之间的关系,很快就可以找出下面的数量关系,小瓶容量不知道,可以设为x升。 小瓶的容量×4 - 0.9升 = 大瓶的容量 根据上面的数量关系可以列出方程,再解答。 解:设小瓶的容量是x升。 4x – 0.9 = 1.5 4x - 0.9 + 0.9 = 1.5 + 0.9 4x = 2.4 x = 2.4 ÷ 4 x = 0.6 这道题你会检验吗? 答:小瓶的容量是0.6升。 点评:在解形如ax±b=c的方程时,要先把ax看作一个整体,根据等式的性质在方程的两边同时加上或减去或乘一个相同的数,变形为“ax= b”的形式,最后再求出x的值。 例3、一个三角形的面积是100平方厘米,它的底是25厘米,高是多少厘米? 分析与解: 根据题目可以得出这一题的等量关系式是:三角形的面积=底×高÷2

四年级解方程典型练习题

四年级解方程典型练习题 练习一 【知识要点】学会解含有三步运算的简易方程。 2、口算下面各题。 3.4a-a= a-0.3a= 3.1x- 1.7x= 0.3x+3.5x+x= 15b-4.7b= 6.7t-t= 32x-4x x-0.5x-0.04x= 3、解方程。 2x+0.4x=48(并检验) 8x- x=14.7 35x+13x=9.6 4、列出方程,并求出方程的解。 ①x的7倍比52多25。②x的9倍减去x的5倍,等于24.4。 ①0.3乘以14的积比x的3倍少0.6。②x的5倍比3个7.2小3.4。 ③一个数的3倍加上它本身 2、苹果:x千克 梨子:比苹果多270千克 求苹果、梨子各多少千克?

3、两个数的和是144,较小数除较大数,商是3,求这两个数各是多少? 练习二 1、解方程 0.52×5-4x=0.6 0.7(x+0.9)=42 1.3x+2.4×3=12.4 x+(3-0.5)=12 7.4-(x-2.1)=6 5(x+3)=35 x+3.7x+2=16.1 14x+3x-1.2x=158 5x+34=3x +54 【拓展训练】 1、在下面□里填上适当的数,使每个方程的解都是x=2。 □+5x=25 5x-□=7.3 2.3x×□ =92 2.9x÷□=0.58 2、列方程应用题。 ①果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?

②王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元? ③一个长方形的周长是35米,长是12.5米,它的宽是多少米? 练习三 1、①学校有老师x人,学生人数是老师的20倍,20x表 示,20x+x表示。 ②一本故事书的价钱是x元,一本字典的价钱是一本故事书的2.5倍。一本字典元,3本故事书和2本字典一共 是元。 ③甲数是x,乙数是甲数的3倍,甲乙两数的和是。 ④如果x=2是方程3x+4a=22的解,则a= 。 2、解方程。 5x+2x=1.4+0.07 6x-3x=6÷5 x-13.4+ 5.2=1.57 0.4×25-3.5x=6.5 7x+3×1.4x=0.2×56 5×(3-2x)=2.4×5

各种类型的微分方程及其相应解法教学文案

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1) )(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y

令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得??? ???-+--??? ??--1122 121 21 u u u u ,x dx du = 两边积分得 ,ln ln ln 21 )2ln(23 )1ln(C x u u u +=---- 整理得 .)2(1 2/3Cx u u u =-- 所求微分方程的解为 .)2()(32x y Cy x y -=- 3.一阶线性微分方程 ?+??==+-])([),()()()(C dx e x Q e y x Q y x p dx dy dx x p dx x p 其通解为 例3. x y dx dy x sin 2=+, ππ1 )(=y ; 解 将方程改写为 x x y x dx dy sin 2=+, 这里x x p 2)(=,x x x q sin )(=,故由求解公式得 )sin (1 sin 22 2 ??+=??? ????+?=-xdx x C x dx e x x C e y dx x dx x 22sin cos x x x x x C +-=. 由初值条件ππ1 )(=y ,得0=C . 所以初值问题的解为 2cos sin x x x x y -= 例4.设非负函数()f x 具有一阶导数,且满足1 200()()()x f x f t dt t f t dt =+??,求 函数()f x . 解:设120()A t f t dt =?,则0()()x f x f t dt A =+?,两边对x 求导,得 ()()()x f x f x f x Ce '=?=,由已知(0)()x f A C A f x Ae =?=?= 又 11222004 ()()1t A t f t dt t Ae dt A e ==?=+??,则 24 ()1x f x e e =+

带绝对值的方程练习题

含绝对值的一元一次方程 我们把绝对值内含有未知数的方程,叫做含有绝对值的方程, 1.解方程:||1|1|3x x +-=. 2.解方程:|1||3|5x x -+-=. 解:方程可化为: ①1,135,x x x ??-+-=?由①得1,1,x x x+1 构造函数图形如下:从而求解

相关主题
文本预览
相关文档 最新文档