当前位置:文档之家› 机械原理作业册答案

机械原理作业册答案

机械原理作业册答案
机械原理作业册答案

第二章机构的结构分析

一、填空与选择题

1、B、A

2、由两构件直接接触而产生的具有某种相对运动

3、低副,高副,2,1

4、后者有作为机架的固定构件

5、自由度的数目等于原动件的数目;运动不确定或机构被破坏

6、√

7、

8、m-1

9、受力情况10、原动件、机架、若干个基本杆组11、A、B 12、C 13、C

二、绘制机构简图

1、计算自由度n=7, P L=9,P H=2 F=3n-2P L-P H=3×7-2×9-2=1

2、3、 4、

三、自由度计算

(a)E处为局部自由度;F处(或G处)为虚约束

计算自由度n=4,P L=5,P H=1 F=3n-2P L-P H=3×4-2×5-1=1

自由度的数目等于原动件的数目所以该机构具有确定的运动。

(b)E处(或F处)为虚约束

计算自由度n=5,P L=7,P H=0 F=3n-2P L-P H=3×5-2×7=1

自由度的数目等于原动件的数目所以该机构具有确定的运动。

(c) B处为局部自由度;F处为复合铰链;J处(或K处)为虚约束

计算自由度n=9,P L=12,P H=2 F=3n-2P L-P H=3×9-2×12-2=1

自由度的数目等于原动件的数目所以该机构具有确定的运动。

(d) B处为局部自由度;C处为复合铰链;G处(或I处)为虚约束

计算自由度n=7,P L=9,P H=1 F=3n-2P L-P H=3×7-2×9-1=2

自由度的数目大于原动件的数目所以该机构不具有确定的运动。

(e) 构件CD(或EF)及其两端的转动副引入一个虚约束

计算自由度n=3,P L=4,P H=0 F=3n-2P L-P H=3×3-2×4=1

自由度的数目等于原动件的数目所以该机构具有确定的运动。

(f) C处为复合铰链;

计算自由度n=7,P L=10,P H=0 F=3n-2P L-P H=3×7-2×10=1

自由度的数目等于原动件的数目所以该机构具有确定的运动。

(g) B处为局部自由度;F处为复合铰链;E处(或D处)为虚约束

计算自由度n=6,P L=8,P H=1 F=3n-2P L-P H=3×6-2×8-1=1

(h)去掉杆8此处存在虚约束;B和C处为复合铰链

计算自由度n=7,P L=10,P H=0 F=3n-2P L-P H=3×7-2×10=1

(i) C处为复合铰链

计算自由度n=5,P L =7,P H=0 F=3n-2P L-P H=3×5-2×7=1

自由度的数目等于原动件的数目,所以该机构具有确定的运动。

四、试计算下图所示机构的自由度,并作出它们仅含低副的替代机构。

替代机构如下图所示:

(1)计算自由度n=4,P L=5,P H=1 F=3n-2P L-P H=3×4-2×5-1=1

(2)计算自由度n=3,P L=3,P H=2 F=3n-2P L-P H=3×3-2×3-2=1

五、计算下图所示机构的自由度,并通过结构分析确定当构件1、5分别为原动件时机构的级别。计算自由度n=5,P L=7,P H=0 F=3n-2P L-P H=3×5-2×7=1

机构分析如下图所示。

可见,若以构件1为原动件,该机构为III 级杆组;若以构件5为原动件,该机构为II 级杆组。

笫三章 平面机构的运动分析 一、选择与填空题

1、B

2、A

3、D

4、D

5、D

6、同一直线上;

7、N (N-1)/2 二、分析、计算题

1、試求下图所示各机构在图示位置时全部瞬心的位置。

.

2、下图所示的凸轮机构,已知凸轮轮廓的曲率半径r =0.05m ,L ao =0.025m ,L ac =0.08m ,凸轮以等角速度ω1=10rad/s 逆时针转动。(用矢量方程图解法)

(1)试用瞬心法求从动摆杆2的角速度ω2。

(2)试用高副低代法和矢量方程图解法求从动摆杆2的角速度ω2、角加速度 2。

3、试判断在图示两机构中,(1)B 点是否都存在科氏加速度?(2)找出科氏加速度为 零的所有位置;(3)标出图a 中的a k

B2B3。

4、下图所示的正切机构中,如果L bd =0.1m ,v 3=1.36m/s ,a 3=31.2m/s 2

方向如图所示,试用矢量方程图解法求构件1的角速度和角加速度。(用矢量方程图解法)

5、已知机构各构件的长度l AC 、l BC ,原动件1以等角速度ω1逆时针转动,用矢量方程图 解法求图示位置构件2、构件3的角速度ω2、ω3和角加速度α2 、α3(列出相关的速度 和加速度矢量方程式;作出速度图和加速度图)。 解:

大小 ? ω1l AB ? 方向 ⊥BC ⊥AB //AB

v B3 = v B2 =

2pb v μ

ω 3 =

2

2v B BC l pb v l BC

μμ=

, 逆时针

1

212B B B B v v v

+

=

ω1=ω2=常数, α1=α2=0

大小 ω32 l BC ? ω12 l AB 2ω1v B2B1 ? 方向 B → C ⊥BC B →A ⊥AB // AB

BC

b b l a l a C B B μματ2

2333'

''== 逆时针

6、下图所示的摇杆机构中,如果L ab =0.03m ,L ac =0.1m ,L bd =0.05m ,L de =0.04m ,曲柄1以等角速度ω1=10rad/s 回转,试用相对运动图解法求构件2上E 点的速度和加速度以及构件2的角速度和角加速度。

7、图示为一汽车雨刷器机构。其构件1绕固定轴心A 转动,齿条2与构件1在B 点处铰接,并与绕固定轴心D 转动的齿轮3啮合(滚子5用来保证两者始终啮合),固连于轮3的雨刷3′作往复摆动。设机构的尺寸为l AB =18mm ,轮3的分度圆半径r 3=l CD =12mm ,原动件1以等角速度ω1=1rad/s 顺时针转动,试用图解法确定雨刷的摆程角和图示位置时雨刷的角速度和角加速度。 解:

1.选定长度比例尺μl =0.0015(m/mm )作机构运动简图(a ),确定雨刷的极限位置,得出导程角。两极限位置C 、C ′,其导程角为?。

2.速度分析

210.18B AB v l mm ω==/s

选B 为重合点的速度矢量方程式

大小 ? ω1l AB ? 方向 ⊥BD ⊥AB //BC

以0.001

v

μ=1(/)m s mm -?作速度多边形图(b )

322212121

n k r

B B B B B B B B B a a a a a a a τ==+=++6262

B B B B v v v =+

62B B v =260.018mm/s v b b μ=

ω 2 =ω 6 = 6

60.059rad/s B v BD

l v pb l BD

μμ=

=,(逆时针)

3.加速度分析

大小 ω62 l BD ? ω12 l AB 2ω2v B6B2 ? 方向 B → D ⊥BD B →A ⊥BC // BC

式中,222

10.018/B AB a l m s ω==

22660.00018m/s

n B BD a l ω==

26266220.0021m/s

B B B B v ω==k

a 以0.005a

μ=2(/)m s mm -?作加速度多边形图(c )

'2

6

660.38/B a BD l a b r rad s l BD

τμαμ''===,(顺时针)

8、如图所示已知曲柄的长度L 1、转角ψ1、等角速度ω1及中心距

L 4,要求确定导杆的转角ψ3、角速度ω3和角加速度α3,以及滑块在导杆上的位置s 、滑动速度v B 2B 3及加速度a B 2B 3。(用复数矢量法,推导出方程式即可) 解:

1)位置分析:

s l l =+14,即 3

1

124?

?πi i i se e l e l =+ (a )

展开后分别取实部和虚部:

311cos cos ??s l = 3114sin sin ??s l l =+

两式相除得:1

14113

cos sin arctan

???

l l l +=

311

cos cos ??l s = 2)速度分析::

将式(a )对时间求导数得: 331)

2(3)

2(11?π?π??

?

i i i e s

e s e

l +=++ (b ) 方向:

)

2(1π

?+i e

)

2(3π

?+i e

3?i e

66626262

n k r

B B B B B B B B a a a a a a τ

=+=+

+

大小: 1111ω?l l = 3?

s s 意义: v B 2 = v B 3 + v B 2B 3 两边分别乘以3

?i e

-后展开,并取实部和虚部得:

)sin()sin(3111311132??ω???--=--==l l s v B B s

l s l )cos()cos(3111311133??ω????

ω-=

-==

3)加速度分析:

将式(b )对时间求导数得:

33331)2(3)2(3)(2

3)(2112?π?π?π?π?????i i i i i e s

e s e s e s e l +++=++++ 方向:

)(1π?+i e )(2π?+i e )

2(2π

?+i e

)

2(3π

?+i e

3?i e

大小: 2

11?

l

2

3?

s

3? s 32? s s

意义:

n

B 2a = n B 3a + t B 3a + k B B 32a + r B B 32a

两边分别乘以3?i e -后展开,并取实部和虚部得:

)cos()cos(

312

112

3312

112

332??ωω????--=--==l s l s s a r

B B s

l v s l s B B )sin(2)sin(2312

1

133231211333??ωω?????

α-+-=-+-==

第四章 平面机构的力分析 一、选择与填空题

1、驱动力、阻抗力

2、×

3、与构件2相对于构件1的转动方向相反

4、×

5、驱动力、与运动方向成锐角或一致、阻抗力、与运动方向成钝角或相反

6、F Ⅰ=-ma s 、M Ⅰ=0

7、F Ⅰ=0、M Ⅰ=-J s α

8、 3n=2p l +p h

9、C

10、 A

11、C

二、分析、计算题

1、在图示摆动导杆机构中,已知L AB =300mm ,φ1=90°,φ3=30°,加于导杆的力矩M 3=60Nm 。求图示位置各运动副中的反力和应加于曲柄1上的平衡力矩。

解:首先以2,3杆组成的II 级杆组为研究对象,其上作用的力如图b 所示,对C 点取矩可求出

)(1006

.060312

N l M R BC t B === )(10043N R t

C = 以滑块B 为研究对象,其上作用的力如图c ,对于平面共点力系可得到

)(10032N R B = 012=n

B R 043=n

C R

以曲柄1为研究对象,其上作用的力如图d 所示

)(10041N R A = m)15(N 0.30.5100l sin30R M AB B ?=??=??=21

b

2、如图一曲柄滑块机构。已知各构件的尺寸、摩擦圆、摩擦角,作用在滑块3上的水平阻力F Q ,驱动力为作用在B 点处且垂直于AB 的F b 。试确定:

(1)哪个构件为二力平衡构件,哪些构件为三力平衡构件; (2)构件4对构件1的运动副反力的方向是向上还是向下; (3)标出各运动副反力的方向;

(4)求机构的各运动副反力及构件1上的驱动力F b 。 解:(1)构件2为二力平衡构件,构件1、3为三力平衡构件。 (2)构件4对构件1的副反力的方向向上。 (3)如图。

(4)构件3的力平衡条件

方向 知 知 知

大小 知 ? ?

4323=++R R Q F F F

选力比例尺F u ,作矢量多边形,如图所示,F u ?=?=bc F ,

u ca F R F R 4323

构件1的力平衡条件

方向 知 知 知

大小 ? 知 ?

F F F R R b =++4121

F b F R F R R u da F ,u cd F ,u ac F F ?=?=?=-=

412321

3、图示为一手压机,已知作用在构件1上的主动力P =500N ,简图中转动副处的大圆为摩擦圆,摩擦角的大小示于右侧。要求在图示位置:

(1)画出各构件上的作用力(画在该简图上);

(2)用μp =10N/mm ,画出力多边形图,求出压紧力Q 的大小。

4、如图所示为凸轮机构,凸轮1为原动件,且以角速度ω1逆时针匀速转动。已知机构的位置和各构件的尺寸、作用于构件

2上的生产阻力F r 以及各运动副之间的摩擦角φ及摩擦圆半径ρ。不计惯性力和重力,试求各运动副反力以及作用在凸轮上的平衡力矩M b 。

解:画出构件2上受的三个力,如图所示。

力平衡条件

方向 知 知 知

大小 知 ? ? 0

1232=++R R r F F F

选力比例尺F u ,作矢量多边形,如图所示,F R F R u ca F u bc F ?=?=1232,

画出构件1上受的两个力和一个力偶矩,如图所示。

h u F M F F F f R b R R R ??-=-==2112

2131

5、如图所示为双滑块机构。已知各构件的尺寸及各运动副之间的摩擦角ψ、摩擦圆半径ρ,滑块4为原动件,等速向右移动,滑块2上受到阻力Q 的作用。若不计构件的惯性力和重力,试求图示位置时的平衡力F b 。 解:构件3受二力,构件2受三力,构件4受三力,如图所示。

构件2力平衡条件

方向 知 知 知 

大小 知 ? ? 0

1232=++R R F F Q

构件3力平衡条件

方向 知 知 知

知 ?

大小 ?0

1434=++R R b F F F

选力比例尺F u ,作矢量多边形,如图所示,其中F b R R u da F F F ?=-=

故,3432

6、图示楔块机构,已知:F p为驱动力,F Q为生产阻力,f为各接触平面间的滑动摩擦系数。求楔块2 的两个摩擦面上所受到的全反力F R12,F R32。

解:

摩擦角的计算公式: =arctan f,楔块 2 的两个摩擦面上所受到的全反力F R12,F R32见图。

7、下图所示正切机构中,已知h=500mm,ω1=10rad/s(为常数),构件3的重量Q3=10N,重心在其轴线上,生产阻力P r=100N,其余构件的重力和惯性力均略去不计。试求当φ1=60°时,需加在构件1上的平衡力矩M b。

第五章机械的效率和自锁

一、选择与填空题

1、在机械运转过程中,考虑摩擦的转动副,总反力作用线总相切于于摩擦圆。

2、在机械运动中总是有摩擦力存在,因此,机械的效率总是___小于1________。

3、具有自锁性的机构其正行程能够运动,反行程不能运动。

4、下列式子中不是机械效率表达式的是__B_、C__。

A、W r/W d

B、P f/P d

C、F /F0

D、M0/M

5、三角螺纹的摩擦力矩 C (1)方牙螺纹的摩擦力矩,因此,它多用于 B (2)。

(1)A、小于 B、等于 C、大于

(2)A、传递动力 B、紧固联接

二、分析、计算题

1、下图所示机组中,电动机经带传动和减速器减速后,带动两个工作机Ⅰ和Ⅱ工作。已知两个工作机的输出功率和效率分别为PⅠ=2kW,ηⅠ=0.8,PⅡ=3kW,ηⅡ=0.7,每对齿轮传动的效率η1=0.95,每个支承的效率η2=0.98,带传动的效率η3=0.9。求电动机的功率和机组的效率。

答:P3= PⅠ/(ηⅠη1η2)+ PⅡ/(ηⅡη1η2)

=2/(0.8*0.95*0.98)+ 3/(0.7*0.95*0.98)=7.29kW

P电=P3/(η1η22η3)=7.29/(0.95*0.982*0.9)=8.88

η

=(P Ⅰ+P Ⅱ)/P 电=(2+3)/8.88=0.5631

2、有一楔形滑块沿倾斜V 形导路滑动,见图,已知,α=35°,θ=60°,摩擦系数f =0.13,载荷Q =1000N ,试求滑块等速上升和下降时的P 和P ‘

、效率η和η‘

及反行程自锁条件。

解:

3、图示两种结构,l 1、l 2已知,推杆1与机架2之间的摩擦系数为f 。试求:

(1)图(a)、(b)的推杆1在力F 作用下欲在机架2中移动,若发生自锁,求αa 、αb 应多大? (2)两种结构中,哪一种易自锁?为什么? 解:(1) 见图,f

l l l a

)2(arctan

211

+≥α

,f

b

1arctan

≥α

(2)图(a)结构易自锁

4、在图示焊接用的楔形夹具中,夹具把两块要焊接的工件1及1‘

预先夹妥,以便焊接。图中2为夹具体,3为楔块。如已知各接触面间的摩擦系数均为f ,试确定夹具夹紧后;楔块3不会自动松脱的条件。

解:

5、图示螺旋起升机构中,转动手轮H,通过螺杆2使楔块3向右移动以提升滑块4上的重物Q。已知Q=30kN,楔块倾角α

=15°,各接触面间摩擦系数f均为0.15,螺杆的螺旋升角λ=8.687°,不计凸缘处摩擦。求提起重物Q时,需加在手轮上的力矩及该机构的效率。

解:摩擦角φ=arctan0.15=8.531。

分别以构件4和3为研究体,其受力情况如图,则

6、图示铰链四杆机构,设构件1为主动件,P为驱动力,B、C、D处的摩擦圆为虚线圆,试确定机构在图示位置时,运动副B、C、D中的总反力;并判断在外力P作用下,该机构能否运动?

解:力P不能使该机构运动,因为R23作用在转动副D的摩擦圆内(见图)

7、图示为一超越离合器,当星轮1沿顺时针方向转动时,滚柱2将被楔紧在楔形间隙中,从而带动外圈3也沿顺时针方向转动。设已知摩擦系数f =0.08,R=50mm,h=40mm。为保证机构能正常工作,试确定滚柱直径d的合适范围。提示:在解此题时,要用到4题的结论。(答:9.424mm≤d≤10mm。)

8、如图所示的摩擦停止机构中,已知r1=290illm,r0=150mm,Q =5000N,f =0.16,求楔紧角β及构件l与2之间的正压力N21。

第六章 机械的平衡 一、选择与填空题

1、C

2、C

3、A

4、静,动

5、就是设法将构件的不平衡惯性力加以平衡以消除或减小其不良影响。

6、静平衡, 质量可近似认为分布在垂直于其回转轴它们的线的同一平面内,∑=0F ; 动平衡, 这时的偏心质

量往往是分布在若干个不同的回转平面内,

∑∑==0

0M F 。 7、不一定 ,一定 8、一个,两个 9、∑=0F ,大带轮,大齿轮

10、电动机轴,曲轴,大飞轮,大带轮。 二 分析计算题

1、解: 044332211=++++b b r m r m r m r m r m

mm 72kg mm,70kg mm,72kg mm,60kg 44332211?=?=?=?=r m r m r m r m 取mm

mm kg W

?=

,作矢量图如图(b )所示,则 ,10mm kg ea r m W b b ?=?=μ kg m b 1=

b r 与1r 的夹角为零度。

2、解: A 轴

∑∑≠=,0,0M F 静平衡。

2

2r

B 轴:

∑∑==,0,0M F 动平衡。

改变2l 不影响原有的状态。

第七章机械的运转及其速度波动的调节 一、选择与填空题

1、A

2、D

3、D

4、D

5、C

6、C ,AB

7、起动阶段,稳定运转阶段,停车阶段

8、功率相等,动能相等

9、作用在等效构件上的等效力或等效力矩的瞬时功率与作用在原机械系统上的所有外力的同一瞬时功率之和相等,作用有等效质量或等效转动惯量的等效构件的动能等于原机构系统的动能。 10、0.06

11、102.5 97.5 二、分析、计算题

1、图示车床主轴箱系统中,带轮半径R 0=40mm ,R 1=120mm ,各齿轮的齿数为z 1’

= z 2’

=20,z 2=z 3=40,各轮转动惯量为

J 1’=J 2’=0.01kgm 2,J 2=J 3=0.04kgm 2,J 0=0.02kgm 2,J 1=0.08kgm 2,作用在主轴Ⅲ上的阻力矩M 3 =60Nm 。当取轴Ⅰ为等效构件时,试求机构的等效转动惯量J 和阻力矩的等效力矩M r 。

解:(1)

21

0021332

122211)()())(

(ωωωωωωJ J J J J J J +++++= =

2

102

231232

212211)()())((R R J z z z z J z z J J J J +++++

22.0)40402020(04.0)4020)(01.004.0(01.008.0+???++++= (2)

m N

z z z z M M M r ?-=???-=-=-=1540

4020206023123133

ωω

2、图示为对心对称曲柄滑块机构,已知曲柄OA =OA ’=r ,曲柄对O 轴的转动惯量为J 1,滑块B 及B ’

的质量为m ,连杆质量不计,工作阻力F =F ’

,现以曲柄为等效力构件,分别求出当φ=90°时的等效转动惯量和等效阻力矩。

解:根据机械系统的等效动力学原理可知

222112*********B B m m J J υυωω++= 211)(ωυB m J J ++=''1B B r F F M υυω+= 1

'

1

'

ωυωυB

B r F F M +=

A '

当 90=?时,有r A B B 1'ωυυυ===

故212mr J J ==;,24Fr M =方向与ω

相反。

3、 在图所示的行星轮系中,已知各轮的齿数为z 1 = z 2 = 20,z 3 = 60,各构件的质心均在其相对回转轴线上,它们的转动惯量分别为J 1=J 2=0.01 kg·m 2,J H = 0.16 kg·m 2 ,行星轮2的质量 m 2=2 kg ,模数 m =10mm ,作用在系杆 H 上的力矩M H =40 N·m ,方向与系杆的转向相反。求以构件 1为等效构件时的等效转动惯量J e 和M H 等效力矩M e 。 解:当以构件 1为等效构件时的等效转动惯量为

21

212221221)()()(

ωω

ωωωH H O e J v m J J J +++= 因为1

3

3113z z i H H

H -=--=

ωωωω

又因为03

=ω,所以25.060

20203111=+=+=z z z H ωω

32

121

1

1()1010(2020)0.250.0522

O H H

H v l m z z ωωωωω-+??+=

==?=

因为2

3

3223z z i H H H =

--=

ωωωω

又因为03=ω,所以22060202322-=-=-=z z z H ωω

所以5.025.021

21

2

-=?-=?=

ωωωωωωH

H 从而得

22220275.0)25.0(16.0)05.0(2)5.0(01.001.0m kg J e ?=?+?+-?+=

当以构件 1为等效构件时M H 的等效力矩为

m N M M H

H e ?-=?-=-=1025.040)(

1

ωω

第八章 平面连杆机构及其设计 一、选择与填空题 1.?0,1

2.?360整周,1 3.曲柄,机架 4.曲柄,连杆

5.改变构件的形状和运动尺寸,改变运动副的尺寸,选用不同的构件为机架,运动副元素的逆换。 6.A 7.E 8.①B ②B

9.B 10.①A ②B

机械原理习题及答案

兰州2017年7月4日于家属院复习资料 第2章平面机构的结构分析 1.组成机构的要素是和;构件是机构中的单元体。 2.具有、、等三个特征的构件组合体称为机器。 3.从机构结构观点来看,任何机构是由三部分组成。 4.运动副元素是指。 5.构件的自由度是指;机构的自由度是指。 6.两构件之间以线接触所组成的平面运动副,称为副,它产生个约束,而保留个自由度。 7.机构具有确定的相对运动条件是原动件数机构的自由度。 8.在平面机构中若引入一个高副将引入______个约束,而引入一个低副将引入_____个约束,构件数、约束数与机构自由度的关系是。 9.平面运动副的最大约束数为,最小约束数为。 10.当两构件构成运动副后,仍需保证能产生一定的相对运动,故在平面机构中,每个运动副引入的约束至多为,至少为。 11.计算机机构自由度的目的是______。 12.在平面机构中,具有两个约束的运动副是副,具有一个约束的运动副是副。 13.计算平面机构自由度的公式为F= ,应用此公式时应注意判断:(A) 铰链,(B) 自由度,(C) 约束。 14.机构中的复合铰链是指;局部自由度是指;虚约束是指。 15.划分机构的杆组时应先按的杆组级别考虑,机构的级别按杆组中的级别确定。 16.图示为一机构的初拟设计方案。试: (1〕计算其自由度,分析其设计是否合理?如有复合铰链,局部自由度和虚约束需说明。 (2)如此初拟方案不合理,请修改并用简图表示。 题16图题17图 17.在图示机构中,若以构件1为主动件,试: (1)计算自由度,说明是否有确定运动。

(2)如要使构件6有确定运动,并作连续转动,则可如何修改?说明修改的要点,并用简图表示。18.计算图示机构的自由度,将高副用低副代替,并选择原动件。 19.试画出图示机构的运动简图,并计算其自由度。对图示机构作出仅含低副的替代机 构,进行结构分析并确定机构的级别。 题19图 题20图 20.画出图示机构的运动简图。 21. 画出图示机构简图,并计算该机构的自由 度。构件3为在机器的导轨中作滑移的整体构件,构件2在构件3的导轨中滑移,圆盘1的固定轴位于偏心处。 题21图 题22图 22.对图示机构进行高副低代,并作结构分析,确定机构级别。点21,P P 为在图示位置时,凸轮廓线在接触点处的曲率中心。 第3章 平面机构的运动分析 1.图示机构中尺寸已知(μL =mm ,机构1沿构件4作纯滚动,其上S 点的速度为v S (μV =S/mm)。 (1)在图上作出所有瞬心; (2)用瞬心法求出K 点的速度v K 。

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

机械原理习题集全答案

平面机构的结构分析 1、如图a 所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图?并提出修改方案。 解 1)取比例尺l μ绘制其机构运动简图(图b )。 2)分析其是否能实现设计意图。 图 a ) 由图b 可知,3=n ,4=l p ,1=h p ,0='p ,0='F 故:00)0142(33)2(3=--+?-?='-'-+-=F p p p n F h l 因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架),故需要增加机构的自由度。 图 b ) 3)提出修改方案(图c )。 为了使此机构能运动,应增加机构的自由度(其方法是:可以在机构的适当位置增

给出了其中两种方案)。 图 c1) 图 c2) 2、试画出图示平面机构的运动简图,并计算其自由度。 图a ) 解:3=n ,4=l p ,0=h p ,123=--=h l p p n F 图 b ) 解:4=n ,5=l p ,1=h p ,123=--=h l p p n F 3、计算图示平面机构的自由度。将其中的高副化为低副。机构中的原动件用圆弧箭头表示。

3-1 解3-1:7=n ,10=l p ,0=h p ,123=--=h l p p n F ,C 、E 复合铰链。 3-2 解3-2:8=n ,11=l p ,1=h p ,123=--=h l p p n F ,局部自由度

哈工大机械原理大作业凸轮 - 黄建青

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 院系:能源学院 班级: 1302402 设计者:黄建青 学号: 1130240222 指导教师:焦映厚陈照波 设计时间: 2015年06月23日

凸轮机构设计说明书 1. 设计题目 设计直动从动件盘形凸轮机构,机构运动简图如图1,机构的原始参数如表1所示。 图1 机构运动简图 表1 凸轮机构原始参数

计算流程框图: 2. 凸轮推杆升程,回程运动方程及推杆位移、速度、加速度线图 2.1 确定凸轮机构推杆升程、回程运动方程 设定角速度为ω=1 rad/s (1) 升程:0°<φ<50° 由公式可得 )]cos(1[20 ?π Φh s -=

)sin( 20 1 ?π ωπΦΦh v = )cos(20 2 2 12?π ωπΦΦh a = (2) 远休止:50°<φ<150° 由公式可得 s = 45 v = 0 a = 0 (3) 回程:150°<φ<240° 由公式得: ()()22 0000200000002200000 0,2(1)(1)1,12(1)(1),2(1)s s s s s s s s s Φhn s h ΦΦΦΦΦΦn Φn ΦΦn h n s h ΦΦΦΦΦΦn Φn n ΦΦΦn hn s ΦΦΦΦΦn Φn ??????'?=---+<≤++?'-? ???''-? =----++ <≤++???'-??? ?'---?'=-++<≤++'-?? 201 00000010002001 000 00n (),(1)(1)n ,(1)(1)n (1),(1)s s s s s s s s Φh v ΦΦΦΦΦΦn Φn ΦΦn h v ΦΦΦΦn Φn n ΦΦΦn h v ΦΦΦΦΦn ΦΦn ω??ω??ω??'=- --+<≤++?'-? ?''-? =- ++<≤++?'-? ?'---'?=--++<≤++''-??

机械原理习题附答案整理

第二章 4.在平面机构中,具有两个约束的运动副是移动副或转动副;具有一个约束的运动副是高副。 5.组成机构的要素是构件和转动副;构件是机构中的_运动_单元体。 6.在平面机构中,一个运动副引入的约束数的变化范围是1-2。 7.机构具有确定运动的条件是_(机构的原动件数目等于机构的自由度)。 8.零件与构件的区别在于构件是运动的单元体,而零件是制造的单元体。 9.由M个构件组成的复合铰链应包括m-1个转动副。 10.机构中的运动副是指两构件直接接触所组成的可动联接。 1.三个彼此作平面平行运动的构件共有3个速度瞬心,这几个瞬心必定位于同一直线上。 2.含有六个构件的平面机构,其速度瞬心共有15个,其中有5个是绝对瞬心,有10个是相对瞬心。3.相对瞬心和绝对瞬心的相同点是两构件相对速度为零的点,即绝对速度相等的点, 不同点是绝对瞬心点两构件的绝对速度为零,相对瞬心点两构件的绝对速度不为零。 4.在由N个构件所组成的机构中,有(N-1)(N/2-1)个相对瞬心,有N-1个绝对瞬心。 5.速度影像的相似原理只能应用于同一构件上_的各点,而不能应用于机构的不同构件上的各点。6.当两构件组成转动副时,其瞬心在转动副中心处;组成移动副时,其瞬心在移动方向的垂直无穷远处处;组成纯滚动的高副时,其瞬心在高副接触点处。 7.一个运动矢量方程只能求解____2____个未知量。 8.平面四杆机构的瞬心总数为_6__。 9.当两构件不直接组成运动副时,瞬心位置用三心定理确定。 10.当两构件的相对运动为移动,牵连运动为转动动时,两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为a*kc2c3,方向与将vc2c3沿ω2转90度的方向一致。 1.从受力观点分析,移动副的自锁条件是驱动力位于摩擦锥之内, 转动副的自锁条件是驱动力位于摩擦圆之内。 2.从效率的观点来看,机械的自锁条件是η<0。 3.三角形螺纹的摩擦力矩在同样条件下大于矩形螺纹的摩擦力矩,因此它多用于联接。 4.机械发生自锁的实质是无论驱动力多大,机械都无法运动。 F方向的方法是与2构件相对于1 5.在构件1、2组成的移动副中,确定构件1对构件2的总反力 R 12 构件的相对速度V12成90度+fai。 6.槽面摩擦力比平面摩擦力大是因为槽面的法向反力大于平面的法向反力。 7.矩形螺纹和梯形螺纹用于传动,而三角形(普通)螺纹用于联接。 8.机械效率等于输出功与输入功之比,它反映了输入功在机械中的有效利用程度。 9.提高机械效率的途径有尽量简化机械传动系统,选择合适的运动副形式, 尽量减少构件尺寸,减少摩擦。 1.机械平衡的方法包括、平面设计和平衡试验,前者的目的是为了在设计阶段,从结构上保证其产生的惯性力最小,后者的目的是为了用试验方法消除或减少平衡设计后生产出的转子所存在的不平衡量_。2.刚性转子的平衡设计可分为两类:一类是静平衡设计,其质量分布特点是可近似地看做在同一回转平面内,平衡条件是。∑F=0即总惯性力为零;另一类是动平衡设计,其质量分布特点是不在同一回转平面内,平衡条件是∑F=0,∑M=0。 3.静平衡的刚性转子不一定是动平衡的,动平衡的刚性转子一定是静平衡的。 4.衡量转子平衡优劣的指标有许用偏心距e,许用不平衡质径积Mr。

机械原理习题及课后答案(图文并茂)

机械原理 课后习题及参考答案

机械原理课程组编 武汉科技大学机械自动化学院

习题参考答案 第二章机构的结构分析 2-2 图2-38所示为一简易冲床的初拟设计方案。设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。试绘出其机构运动简图,分析其运动是否确定,并提出修改措施。 4 3 5 1 2 解答:原机构自由度F=3?3- 2 ?4-1 = 0,不合理,改为以下几种结构均可: 2-3 图2-396为连杆;7为齿轮及偏心轮;8为机架;9为压头。试绘制其机构运动简图,并计算其自由度。

O 齿轮及偏心轮ω A 齿轮及凸轮 B E F D C 压头 机架 连杆 滑杆滑块 摆杆滚子 解答:n=7; P l =9; P h =2,F=3?7-2 ?9-2 = 1 2-6 试计算图2-42所示凸轮—连杆组合机构的自由度。 解答:a) n=7; P l =9; P h =2,F=3?7-2 ?9-2 =1 L 处存在局部自由度,D 处存在虚约束 b) n=5; P l =6; P h =2,F=3?5-2 ?6-2 =1 E 、B 处存在局部自由度,F 、C 处存在虚约束

b) a)A E M D F E L K J I F B C C D B A 2-7 试计算图2-43所示齿轮—连杆组合机构的自由度。 B D C A (a) C D B A (b) 解答:a) n=4; P l =5; P h =1,F=3?4-2 ?5-1=1 A 处存在复合铰链 b) n=6; P l =7; P h =3,F=3?6-2 ?7-3=1 B 、C 、D 处存在复合铰链 2-8 试计算图2-44所示刹车机构的自由度。并就刹车过程说明此机构自由度的变化情况。

机械原理习题及解答

第二章习题及解答 2-1 如题图2-1所示为一小型冲床,试绘制其机构运动简图,并计算机构自由度。 (a)(b) 题图2-1 解: 1)分析 该小型冲床由菱形构件1、滑块2、拨叉3和圆盘4、连杆5、冲头6等构件组成,其中菱形构件1为原动件,绕固定点A作定轴转动,通过铰链B与滑块2联接,滑块2与拨叉3构成移动副,拨叉3与圆盘4固定在一起为同一个构件且绕C轴转动,圆盘通过铰链与连杆5联接,连杆带动冲头6做往复运动实现冲裁运动。 2)绘制机构运动简图 选定比例尺后绘制机构运动简图如图(b)所示。 3)自由度计算 其中n=5,P L=7, P H=0, F=3n-2P L-P H=3×5-2×7=1 故该机构具有确定的运动。 2-2 如题图2-2所示为一齿轮齿条式活塞泵,试绘制其机构运动简图,并计算机构自由度。

(a)(b) 题图2-2 解: 1)分析 该活塞泵由飞轮曲柄1、连杆2、扇形齿轮3、齿条活塞4等构件组成,其中飞轮曲柄1为原动件,绕固定点A作定轴转动,通过铰链B与连杆2联接,连杆2通过铰链与扇形齿轮3联接,扇形齿轮3通过高副接触驱动齿条活塞4作往复运动,活塞与机架之间构成移动副。 2) 绘制机构运动简图 选定比例尺后绘制机构运动简图如图(b)所示。 3)自由度计算 其中n=4,P L=5, P H=1 F=3n-2P L-P H=3×4-2×5-1=1 故该机构具有确定的运动。 2-3 如图2-3所示为一简易冲床的初步设计方案,设计者的意图是电动机通过一级齿轮1和2减速后带动凸轮3旋转,然后通过摆杆4带动冲头实现上下往复冲压运动。试根据机构自由度分析该方案的合理性,并提出修改后的新方案。

机械原理作业答案A

第一章绪论 1—1 试说明机器与机构的特征、区别和联系。 解:机器具有如下三个特征: 1、人造的实物组合体 2、各部分具有确定的相对运动 3、代替或减轻人类劳动,完成有用功或实现能量的转换 机构则具有机器的前两个特征。 机器与机构的区别:研究的重点不同: 机构:实现运动的转换和力的传递; 机器:完成能量的转换或作有益的机械功。 机器与机构的联系:机器由机构组成,一部机器包含不同的机构;不同的机器可能包含相同的机构。 1—2 试举出两个机器实例,并说明其组成、功能。 解:车床:由原动部分(电动机)+传动系统(齿轮箱)+执行部分(刀架、卡盘等),其主要功能为切削,代替人作功。 汽车:由原动部分(发动机)+传动系统(变速箱)+执行部分(车轮等),其主要功能为行走、运输,代替人作功。 第二章平面机构的结构分析 2—1 试画出唧筒机构的运动简图,并计算其自由度。 2—2 试画出缝纫机下针机构的运动简图,并计算其自由度。 2—3 试画出图示机构的运动简图,并计算其自由度。 2—4 试画出简易冲床的运动简图,并计算其自由度。 1 4 2 3 3 2 3 4 3 = ? - ? = - - = = = = h l h l p p n F p p n, , 解: 解: 1 4 2 3 3 2 3 4 3 = ? - ? = - - = = = h l h l p p n F p p n, , 解: 或1 7 2 5 3 2 3 7 5 = ? - ? = - - = = = = h l h l p p n F p p n, ,

2—5 图示为一简易冲床的初拟设计方案。设计者的思路是:动力由齿轮1输入,使轴A 连续回转,而装在轴A 上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的,试绘出其机构运动简图,分析是否能实现设计意图,并提出修改方案。 解:机构简图如下: 机构不能运动。 可修改为: 2—6 计算图示自动送料剪床机构的自由度,并指出其中是否有复合铰链、局部自由度或虚约束。 2—7 计算图示机构的自由度,并指出其中是否有复合铰链、局部自由度或虚约束。说明该机构具 有确定运动的条件。 J A B C D E F G H I J 解: 1725323143=-?-?=--====h l h l p p n F p p n ,,或 解1:C 为复合铰链,F 、I 为局部自由度。 解1:C 、F 为复合铰链,I 为局部自由度, EFGC 为虚约束。 解2:C 为复合铰链,I 为局部自由度(焊死), EFGC 为虚约束(去掉)。 1 310283233108=-?-?=--====h l h l p p n F p p n ,,1 23122103230 231210=--?-?='+'---=='='===p F p p n F p F p p n h l h l ,,,,2:C 为复合铰链,F 、I 为局部自由度(焊死)。

机械原理大作业

机械原理大作业 二、题目(平面机构的力分析) 在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于构件1上的平衡力偶M 。 b Array 二、受力分析图

三、算法 (1)运动分析 AB l l =1 滑块2 22112112/,/s m w l a s m w l v c c == 滑块3 21113113/cos ,sin s m l w v m l s ??== 212 113/sin s m w l a ?-= (2)确定惯性力 N w l g G a m F c 2 1122212)/(== N w l g G a m F 121133313sin )/(?-== (3)受力分析 i F F i F F x R D R x R C R 43434343,=-= j F j F F R R R 232323-==

j F i F j F i F F R x R y R x R R 2121121212--=+= j F F F y R x R R 414141+= 取移动副为首解副 ① 取构件3为分离体,并对C 点取矩 由0=∑y F 得 1323F F F r R -= 由0=∑x F 得 C R D R F F 4343= 由 ∑=0C M 得 2112343/cos h l F F R D R ?= ②取构件2为分离体 由0=∑x F 得 11212cos ?R x R F F = 由0 =∑y F 得 1123212sin ?F F F R y R -= ③取构件1为分离体,并对A 点取矩 由0=∑x F 得 x R x R F F 1241= 由0 =∑ y F 得 y R y R F F 1241= 由0=A M 得 1132cos ?l F M R b = 四、根据算法编写Matlab 程序如下: %--------------已知条件---------------------------------- G2=40; G3=100; g=9.8; fai=0; l1=0.1; w1=10; Fr=400; h2=0.8; %--------分布计算,也可将所有变量放在一个矩阵中求解------------------- for i=1:37 a2=l1*(w1^2); a3=-l1*(w1^2)*sin(fai); F12=(G2/g)*a2;

机械原理课后全部习题答案

机械原理课后全部习题答案 目录 第1章绪论 (1) 第2章平面机构的结构分析 (3) 第3章平面连杆机构 (8) 第4章凸轮机构及其设计 (15) 第5章齿轮机构 (19) 第6章轮系及其设计 (26) 第8章机械运动力学方程 (32) 第9章平面机构的平衡 (39)

第一章绪论 一、补充题 1、复习思考题 1)、机器应具有什么特征机器通常由哪三部分组成各部分的功能是什么 2)、机器与机构有什么异同点 3)、什么叫构件什么叫零件什么叫通用零件和专用零件试各举二个实例。 4)、设计机器时应满足哪些基本要求试选取一台机器,分析设计时应满足的基本要求。 2、填空题 1)、机器或机构,都是由组合而成的。 2)、机器或机构的之间,具有确定的相对运动。 3)、机器可以用来人的劳动,完成有用的。 4)、组成机构、并且相互间能作的物体,叫做构件。 5)、从运动的角度看,机构的主要功用在于运动或运动的形式。 6)、构件是机器的单元。零件是机器的单元。 7)、机器的工作部分须完成机器的动作,且处于整个传动的。 8)、机器的传动部分是把原动部分的运动和功率传递给工作部分的。 9)、构件之间具有的相对运动,并能完成的机械功或实现能量转换的的组合,叫机器。 3、判断题 1)、构件都是可动的。() 2)、机器的传动部分都是机构。() 3)、互相之间能作相对运动的物件是构件。() 4)、只从运动方面讲,机构是具有确定相对运动构件的组合。()5)、机构的作用,只是传递或转换运动的形式。() 6)、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。()

7)、机构中的主动件和被动件,都是构件。() 2 填空题答案 1)、构件2)、构件3)、代替机械功4)、相对运动5)、传递转换6)、运动制造7)、预定终端8)、中间环节9)、确定有用构件 3判断题答案 1)、√2)、√3)、√4)、√5)、×6)、√7)、√

机械原理大作业

Harbin Institute of Technology 机械原理大作业(一) 课程名称:机械原理 设计题目:连杆机构运动分析 院系:机电工程学院 班级: 设计者: 学号: 指导教师:

一、题目(13) 如图所示机构,已知各构件尺寸:Lab=150mm;Lbc=220mm;Lcd=250mm;Lad=300mm;Lef=60mm;Lbe=110mm;EF⊥BC。试研究各杆件长度变化对F点轨迹的影响。 二、机构运动分析数学模型 1.杆组拆分与坐标系选取 本机构通过杆组法拆分为: I级机构、II级杆组RRR两部分如下:

2.平面构件运动分析的数学模型 图3 平面运动构件(单杆)的运动分析 2.1数学模型 已知构件K 上的1N 点的位置1x P ,1y P ,速度为1x v ,1Y v ,加速度为1 x a ,1y a 及过点的1N 点的线段12N N 的位置角θ,构件的角速度ω,角加速度ε,求构件上点2N 和任意指定点3N (位置参数13N N =2R ,213N N N ∠=γ)的位置、 速度、加速度。 1N ,3N 点的位置为: 211cos x x P P R θ=+ 211sin y y P P R θ=+ 312cos()x x P P R θγ=++ 312sin()y y P P R θγ=++ 1N ,3N 点的速度,加速度为: 211211sin ()x x x y y v v R v P P ωθω=-=-- 211121sin (-) y y y x x v v R v P P ωθω=-=- 312131sin() () x x x y y v v R v P P ωθγω=-+=--312131cos()() y y y x x v v R v P P ωθγω=-+=-- 2 212121()()x x y y x x a a P P P P εω=---- 2 212121()() y y x x y y a a P P P P εω=+--- 2313131()()x x y y x x a a P P P P εω=---- 23133(1)(1) y y x x y y a a P P P P εω=+--- 2.2 运动分析子程序 根据上述表达式,编写用于计算构件上任意一点位置坐标、速度、加速度的子程序如下: 1>位置计算 function [s_Nx,s_Ny ] =s_crank(Ax,Ay,theta,phi,s) s_Nx=Ax+s*cos(theta+phi); s_Ny=Ay+s*sin(theta+phi); end 2>速度计算 function [ v_Nx,v_Ny ] =v_crank(s,v_Ax,v_Ay,omiga,theta,phi) v_Nx=v_Ax-s*omiga.*sin(theta+phi); v_Ny=v_Ay+s*omiga.*cos(theta+phi); end 3>加速度计算 function [ a_Nx,a_Ny ]=a_crank(s,a_Ax,a_Ay,alph,omiga,theta,phi) a_Nx=a_Ax-alph.*s.*sin(theta+phi)-omiga.^2.*s.*cos(theta+phi);

机械原理习题及答案

第1章 平面机构的结构分析 解释下列概念 1.运动副; 2.机构自由度; 3.机构运动简图; 4.机构结构分析; 5.高副低代。 验算下列机构能否运动,如果能运动,看运动是否具有确定性,并给出具有确定运动的修改办法。 题图 题图 绘出下列机构的运动简图,并计算其自由度(其中构件9为机架)。 计算下列机构自由度,并说明注意事项。 计算下列机构的自由度,并确定杆组及机构的级别(图a 所示机构分别以构件2、4、8为原动件)。 题图 题图 第2章 平面机构的运动分析 试求图示各机构在图示位置时全部瞬心。 题图 在图示机构中,已知各构件尺寸为l AB =180mm , l BC =280mm , l BD =450mm , l CD =250mm , l AE =120mm , φ=30o , 构件AB 上点E 的速度为 v E =150 mm /s ,试求该位置时C 、D 两点的速度及连杆2的角速度ω2 。 在图示的摆动导杆机构中,已知l AB =30mm , l AC =100mm , l BD =50mm , l DE =40mm ,φ1=45o ,曲柄1以等角速度ω1=10 rad/s 沿逆时针方向回转。求D 点和E 点的速度和加速度及构件3的角速度和角加速度(用相对运动图解法)。 题图 题图 在图示机构中,已知l AB =50mm , l BC =200mm , x D =120mm , 原动件的位置φ1=30o, 角速度ω1=10 rad/s ,角加速度α1=0,试求机构在该位置时构件5的速度和加速度,以及构件2的角速度和角加速度。 题图 图示为机构的运动简图及相应的速度图和加速度图。 (1)在图示的速度、加速度多边形中注明各矢量所表示的相应的速度、加速度矢量。 (2)以给出的速度和加速度矢量为已知条件,用相对运动矢量法写出求构件上D 点的速度和加速度矢量方程。 (3)在给出的速度和加速度图中,给出构件2上D 点的速度矢量 2pd 和加速度矢量2''d p 。 题图 在图示机构中,已知机构尺寸l AB =50mm , l BC =100mm, l CD =20mm , 原动件的位置φ1=30o, 角速度ω1=ω4=20 rad/s ,试用相对运动矢量方程图解法求图示位置时构件2的角速度ω2和角加速度α2的大小和方向。 题图 在图示机构构件1等速转动,已知机构尺寸l AB =100mm ,角速度为ω1= 20 rad/s ,原动件的位置φ1= 30o,分别用相对运动图解法和解析法求构件3上D 点的速度和加速度。 题图 题图 在图示导杆机构中,已知原动件1的长度为l 1 、位置角为φ1 ,中心距为l 4 ,试写出机构的矢量方程和在x 、y 轴上的投影方程(机构的矢量三角形及坐标系见图)。 在图示正弦机构中,已知原动件1的长度为l 1=100mm 、位置角为φ1= 45o 、角速度ω1= 20 rad/s ,试用解析法求出机构在该位置时构件3的速度和加速度。 在图示牛头刨床机构中,已知机构尺寸及原动件曲柄1的等角速度ω1 ,试求图示位置滑枕的速度v C 。 题图 题图

机械原理大作业

机械原理大作业三 课程名称: 机械原理 级: 者: 号: 指导教师: 设计时间: 1.2机械传动系统原始参数 设计题目: 系: 齿轮传动设计 1、设计题 目 1.1机构运动简图 - 11 7/7777777^77 3 UtH TH7T 8 'T "r 9 7TTTT 10 12 - 77777" 13 ///// u 2

电动机转速n 745r/min ,输出转速n01 12r/mi n , n02 17r /mi n , n°323r/min,带传动的最大传动比i pmax 2.5 ,滑移齿轮传动的最大传动比 i vmax 4,定轴齿轮传动的最大传动比i d max 4。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实 现。设带传动的传动比为i pmax 2.5,滑移齿轮的传动比为9、心、「3,定轴齿轮传动的传动比为i f,则总传动比 i vi i vmax 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、 7、8 9和10为角度变位齿轮,其齿数: Z5 11,Z6 43,Z7 14,Z8 39,Z9 18,乙。35 ;它们的齿顶高系数0 1,径向间隙

系数c 0.25,分度圆压力角200,实际中心距a' 51mm。 根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11、12、13和14为角度变位齿轮,其齿数:Z11 z13 13,乙 2 z14 24。它们的齿顶高系数d 1,径向间隙系数c 0.25,分度圆压力角200,实际中心距 a' 46mm。圆锥齿轮15和16选择为标准齿轮令13,乙 6 24,齿顶高系数 h a 1,径向间隙系数c 0.20,分度圆压力角为200(等于啮合角’)。 4、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算 4.1滑移齿轮5和齿轮6

机械原理课后答案第8章

第8章作业 8-l 铰链四杆机构中,转动副成为周转副的条件是什么?在下图所示四杆机构ABCD 中哪些运动副为周转副?当其杆AB 与AD 重合时,该机构在运动上有何特点?并用作图法求出杆3上E 点的连杆曲线。 答:转动副成为周转副的条件是: (1)最短杆与最长杆的长度之和小于或等于其他两杆长度之和; (2)机构中最短杆上的两个转动副均为周转副。图示ABCD 四杆机构中C 、D 为周转副。 当其杆AB 与AD 重合时,杆BE 与CD 也重合因此机构处于死点位置。 8-2曲柄摇杆机构中,当以曲柄为原动件时,机构是否一定存在急回运动,且一定无死点?为什么? 答:机构不一定存在急回运动,但一定无死点,因为: (1)当极位夹角等于零时,就不存在急回运动如图所示, (2)原动件能做连续回转运动,所以一定无死点。 8-3 四杆机构中的极位和死点有何异同? 8-4图a 为偏心轮式容积泵;图b 为由四个四杆机构组成的转动翼板式容积泵。试绘出两种泵的机构运动简图,并说明它们为何种四杆机构,为什么? 解 机构运动简图如右图所示,ABCD 是双曲柄机构。 因为主动圆盘AB 绕固定轴A 作整周转动,而各翼板CD 绕固定轴D 转动,所以A 、D 为周转副,杆AB 、CD 都是曲柄。 8-5试画出图示两种机构的机构运动简图,并说明它们各为何种机构。 图a 曲柄摇杆机构 图b 为导杆机构。 8-6如图所示,设己知四杆机构各构件的长度为240a mm =,600b =mm ,400,500c mm d mm ==。试问: 1)当取杆4为机架时,是否有曲柄存在? 2)若各杆长度不变,能否以选不同杆为机架的办法获得双曲柄机构和双摇杆机构?如何获得?

机械原理习题及答案

第1章 平面机构的结构分析 1.1 解释下列概念 1.运动副; 2.机构自由度; 3.机构运动简图; 4.机构结构分析; 5.高副低代。 1.2 验算下列机构能否运动,如果能运动,看运动是否具有确定性,并给出具有确定运动的修改办法。 题1.2图 题1.3图 1.3 绘出下列机构的运动简图,并计算其自由度(其中构件9为机架)。 1.4 计算下列机构自由度,并说明注意事项。 1.5 计算下列机构的自由度,并确定杆组及机构的级别(图a 所示机构分别以构件2、4、8为原动件)。 题1.4图 题1.5图 第2章 平面机构的运动分析 2.1 试求图示各机构在图示位置时全部瞬心。 题2.1图 2.2 在图示机构中,已知各构件尺寸为l AB =180mm , l BC =280mm , l BD =450mm , l CD =250mm , l AE =120mm , φ=30o, 构件AB 上点E 的速度为 v E =150 mm /s ,试求该位置时C 、D 两点的速度及连杆2的角速度ω2 。 2.3 在图示的摆动导杆机构中,已知l AB =30mm , l AC =100mm , l BD =50mm , l DE =40mm ,φ1=45o,曲柄1以等角速度ω1=10 rad/s 沿逆时针方向回转。求D 点和E 点的速度和加速度及构件3的角速度和角加速度(用相对运动图解法)。 题2.2图 题2.3图 2.4 在图示机构中,已知l AB =50mm , l BC =200mm , x D =120mm , 原动件的位置φ1=30o, 角速度ω1=10 rad/s ,角加速度α1=0,试求机构在该位置时构件5的速度和加速度,以及构件2的角速度和角加速度。 题2.4图 2.5 图示为机构的运动简图及相应的速度图和加速度图。 (1)在图示的速度、加速度多边形中注明各矢量所表示的相应的速度、加速度矢量。 (2)以给出的速度和加速度矢量为已知条件,用相对运动矢量法写出求构件上D 点的速度和加速度矢量方程。 (3)在给出的速度和加速度图中,给出构件2上D 点的速度矢量 2pd 和加速度矢量2''d p 。 题2.5图 2.6 在图示机构中,已知机构尺寸l AB =50mm, l BC =100mm, l CD =20mm , 原动件的位置φ1=30o, 角速度ω1=ω4=20 rad/s ,试用相对运动矢量方程图解法求图示位置时构件2的角速度ω2和角加速度α2的大小和方向。 题2.6图 2.7 在图示机构构件1等速转动,已知机构尺寸l AB =100mm ,角速度为ω1= 20 rad/s ,原动件的位置φ1= 30o,分别用相对运动图解法和解析法求构件3上D 点的速度和加速度。 题2.7图 题2.8图 2.8 在图示导杆机构中,已知原动件1的长度为l 1 、位置角为φ1 ,中心距为l 4 ,试写出机构的矢量方程和

机械原理作业册答案

第二章机构的结构分析- 一、填空与选择题 1、B、A 2、由两构件直接接触而产生的具有某种相对运动 3、低副,高副,2,1 4、后者有作为机架的固定构件 5、自由度的数目等于原动件的数目;运动不确定或机构被破坏 6、√ 7、 8、m-1 9、受力情况10、原动件、机架、若干个基本杆组 11、A、B 12、C 13、C 二、绘制机构简图 1、计算自由度n=7, P L=9,P H=2 F=3n-2P L-P H=3×7-2×9-2=1 2、3、 4、 三、自由度计算 (a)E处为局部自由度;F处(或G处)为虚约束 计算自由度n=4,P L=5,P H=1 F=3n-2P L-P H=3×4-2×5-1=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (b)E处(或F处)为虚约束 计算自由度n=5,P L=7,P H=0 F=3n-2P L-P H=3×5-2×7=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (c) B处为局部自由度;F处为复合铰链;J处(或K处)为虚约束 计算自由度n=9,P L=12,P H=2 F=3n-2P L-P H=3×9-2×12-2=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (d) B处为局部自由度;C处为复合铰链;G处(或I处)为虚约束 计算自由度n=7,P L=9,P H=1 F=3n-2P L-P H=3×7-2×9-1=2 自由度的数目大于原动件的数目所以该机构不具有确定的运动。

(e) 构件CD(或EF)及其两端的转动副引入一个虚约束 计算自由度n=3,P L=4,P H=0 F=3n-2P L-P H=3×3-2×4=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (f) C处为复合铰链; 计算自由度n=7,P L=10,P H=0 F=3n-2P L-P H=3×7-2×10=1 自由度的数目等于原动件的数目所以该机构具有确定的运动。 (g) B处为局部自由度;F处为复合铰链;E处(或D处)为虚约束 计算自由度n=6,P L=8,P H=1 F=3n-2P L-P H=3×6-2×8-1=1 (h)去掉杆8此处存在虚约束;B和C处为复合铰链 计算自由度n=7,P L=10,P H=0 F=3n-2P L-P H=3×7-2×10=1 (i) C处为复合铰链 计算自由度n=5,P L =7,P H=0 F=3n-2P L-P H=3×5-2×7=1 自由度的数目等于原动件的数目,所以该机构具有确定的运动。 四、试计算下图所示机构的自由度,并作出它们仅含低副的替代机构。 替代机构如下图所示: (1)计算自由度n=4,P L=5,P H=1 F=3n-2P L-P H=3×4-2×5-1=1 (2)计算自由度n=3,P L=3,P H=2 F=3n-2P L-P H=3×3-2×3-2=1 五、计算下图所示机构的自由度,并通过结构分析确定当构件1、5分别为原动件时机构 的级别。 计算自由度n=5,P L=7,P H=0 F=3n-2P L-P H=3×5-2×7=1 机构分析如下图所示。

哈工大机械原理大作业

连杆的运动的分析 一.连杆运动分析题目 图1-13 连杆机构简图 二.机构的结构分析及基本杆组划分 1.。结构分析与自由度计算 机构各构件都在同一平面内活动,活动构件数n=5, PL=7,分布在A、B、C、E、F。没有高副,则机构的自由度为 F=3n-2PL-PH=3*5-2*7-0=1 2.基本杆组划分 图1-13中1为原动件,先移除,之后按拆杆组法进行拆分,即可得到由杆3和滑块2组成的RPR II级杆组,杆4和滑块5组成的RRP II级杆组。机构分解图如下:

图二 图一 图三 三.各基本杆组的运动分析数学模型 图一为一级杆组, ? c o s l A B x B =, ? sin lAB y B = 图二为RPR II 杆组, C B C B j j B E j B E y y B x x A A B S l C E y x S l C E x x -=-==-+=-+=0000 )/a r c t a n (s i n )(c o s )(?? ? 由此可求得E 点坐标,进而求得F 点坐标。 图三为RRP II 级杆组, B i i E F i E F y H H A l E F A l E F y y l E F x x --==+=+=111)/a r c s i n (s i n c o s ??? 对其求一阶导数为速度,求二阶导数为加速度。

lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0; yC=-350; A0=xB-xC; B0=yB-yC; S=sqrt(A0.^2+B0.^2); zj=atan(B0/A0); xE=xB+(lCE-S)*cos(zj); yE=yB+(lCE-S)*sin(zj); a=0:0.0001:20/255; Xe=subs(xE,t,a); Ye=subs(yE,t,a); A1=H-H1-yB; zi=asin(A1/lEF); xF=xE+lEF*cos(zi); vF=diff(xF,t); aF=diff(xF,t,2); m=0:0.001:120/255; xF=subs(xF,t,m); vF=subs(vF,t,m); aF=subs(aF,t,m); plot(m,xF) title('位移随时间变化图像') xlabel('t(s)'),ylabel(' x') lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0;

机械原理习题答案安子军

习题解答第一章绪论 1-1 答: 1 )机构是实现传递机械运动和动力的构件组合体。如齿轮机构、连杆机构、凸轮机构、螺旋机构等。 2 )机器是在组成它的实物间进行确定的相对运动时,完成能量转换或做功的多件实物的组合体。如电动机、内燃机、起重机、汽车等。 3 )机械是机器和机构的总称。 4 ) a. 同一台机器可由一个或多个机构组成。 b. 同一个机构可以派生出多种性能、用途、外型完全不同的机器。 c. 机构可以独立存在并加以应用。 1-2 答:机构和机器,二者都是人为的实物组合体,各实物之间都具有确定的相对运动。但后者可以实现能量的转换而前者不具备此作用。 1-3 答: 1 )机构的分析:包括结构分析、运动分析、动力学分析。 2 )机构的综合:包括常用机构设计、传动系统设计。 1-4 略

习题解答第二章平面机构的机构分析 2-1 ~ 2-5 (答案略) 2-6 (a) 自由度 F=1 (b) 自由度 F=1 (c) 自由度 F=1 2-7 题 2 - 7 图 F = 3 × 7 - 2 × 9 - 2 = 1

2 -8 a) n =7 =10 =0 F =3×7-2×10 =1 b) B 局部自由度 n =3 = 3 =2 F=3×3 -2×3-2=1 c) B 、D 局部自由度 n =3 =3 =2 F=3×3 -2×3-2 =1 d) D( 或 C) 处为虚约束 n =3 =4 F=3×3 - 2×4=1 e) n =5 =7 F=3×5-2×7=1 f) A 、 B 、 C 、E 复合铰链 n =7 =10 F =3×7-2×10 =1 g) A 处为复合铰链 n =10 =14 F =3×10 - 2×14=2 h) B 局部自由度 n = 8 = 11 = 1 F =3×8-2×11-1 =1 i) B 、 J 虚约束 C 处局部自由度 n = 6 = 8 = 1 F =3×6 - 2×8-1=1 j) BB' 处虚约束 A 、 C 、 D 复合铰链 n =7 =10 F =3×7-2×10=1 k) C 、 D 处复合铰链 n=5 =6 =2F =3×5-2×6-2 =1 l) n = 8 = 11 F = 3×8-2×11 = 2 m) B 局部自由度 I 虚约束 4 杆和 DG 虚约束 n = 6 = 8 = 1 F =3×6-2×8-1 =1 2-9 a) n = 3 = 4 = 1 F = 3 × 3 - 2 × 8 - 1 = 0 不能动。 b) n = 5 = 6 F = 3 × 5 - 2 × 6 = 3 自由度数与原动件不等 , 运动不确定。

相关主题
文本预览
相关文档 最新文档