当前位置:文档之家› 数字信号处理实验三离散时间傅里叶变换DTFT及IDTFT

数字信号处理实验三离散时间傅里叶变换DTFT及IDTFT

数字信号处理实验三离散时间傅里叶变换DTFT及IDTFT
数字信号处理实验三离散时间傅里叶变换DTFT及IDTFT

数字信号处理实验三

离散时间傅里叶变换DTFT及IDTFT

一、实验目的:

(1)通过本实验,加深对DTFT和IDFT的理解。

(2)熟悉应用DTFT对典型信号进行频谱分析的方法.

(3)掌握用MATLAB进行离散时间傅里叶变换及其逆变换的方法。

二、实验内容:

(1)自己生成正弦序列(如矩形序列,正弦序列,指数序列等),对其进行频谱分析,观察其时域波形和频域的幅频特性。记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。

矩形序列:

程序:

M=10;N=2*M+1;T=0.5;n=—4*M:4*M;

x=[zeros(1,3*M),ones(1,N),zeros(1,3*M)];

w=[-15:0。1:15]+1e—10;

X=sin(0.5*N*w*T)./sin(0。5*w*T);

subplot(1,3,1);stem(n,x,'.');

axis([-20,20,-0。1,1.1]),grid on

xlabel('n’),title('(a)序列幅度')

subplot(1,3,2),plot(w,X),gridon

xlabel('\Omega’),title('(b)幅频特性')

subplot(1,3,3),plot(w,X),gridon

v=axis;axis([-pi/T,pi/T,v(3),v(4)]);

xlabel(’\Omega’),title('(c)横轴放大后幅频特性')set(gcf,'color','w')

正弦序列:

程序:

n=-10:10;

x=sin(n*pi);k=-200:200;w=(pi/100)*k;

X=x*(exp(—j*pi/100)).^(n'*k);

magX=abs(X);

angX=angle(X);

subplot(3,1,1);

stem(n,x,’。k');

title('x(n)=sin(πn)’);subplot(3,1,2);

plot(w/pi,magX,'。k');title('X(e^jw)幅度谱’);subplot(3,1,3);

plot(w/pi,angX,'.k');title('X(e^jw)相位谱');

n=—10:10;

x=sin(n*pi);

k=—200:200;

w=(pi/100)*k;

X=x*(exp(—j*pi/100))。^(n’*k);

magX=abs(X);

angX=angle(X);

subplot(3,1,1);

stem(n,x,'.k');

title(’x(n)=sin(πn)’);subplot(3,1,2);

plot(w/pi,magX,'。k');title('X(e^jw)幅度谱’);subplot(3,1,3);

plot(w/pi,angX,'。k'); title(’X(e^jw)相位谱');

波形如下:

指数序列:

程序:

n=-5:5;x=(-0。1).^n;

k=-200:200;w=(pi/100)*k;

X=x*(exp(—j*pi/100)).^(n'*k);

magX=abs(X);angX=angle(X);

subplot(2,1,1);plot(w/pi,magX,'k');grid;

axis([-2,2,0,15])

xlabel(’frequencyin units of\pi’);ylabel('|x|')

gtext('Magnitde Part')

subplot(2,1,2);plot(w/pi,angX,’k’)/pi,gri

d;

axis([-2,2,-4,4])

xlabel('frequency in units of\pi');ylabel('radians\pi’)

gtext('Angle Part’);

2。对于理想的低通,高通滤波器,用IDTFT 求出它的逆变换所对应

得离散时间序列。记录实验中观察到的现象,绘出相应的时域序列曲线.要求滤波器的截至频率可由用户在MATLAB 界面自行输入。

程序:

wc=0.5*pi;

n=[—10:10]+1e-10;

hd=sin(n*wc)./(n*pi);

subplot(1,2,1);

plot([-pi,-wc,-wc,wc,wc,pi],[0,0,1,1,0,0])xlabel('频率(1/秒)');ylabel('幅度’);

axis([-pi,pi,—0。1,1.1]),grid on

subplot(1,2,2);stem(n,hd),gridon

xlabel(’n');ylabel('序列');

axis([-10,10,—0.1*wc,0.4*wc])

set(gcf,’color','w')

三、思考题

离散时间信号的频谱分辨率在实验中能体现出来吗?实序列的DTFT具有对称性吗?若是,如何体现出来?

答:能,实序列的DTFT具有对称性。离散时间信号的频谱中,频谱分辨率体现在相同的坐标系下面,能表现信号的范围,当表现的范围越大,其分辨率越高

快速傅里叶变换实验报告

快速傅里叶变换实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

快速傅里叶变换实验报告 机械34班 刘攀 2013010558 一、 基本信号(函数)的FF T变换 1. 000()sin()sin 2cos36x t t t t π ωωω=+++ 1) 采样频率08s f f =,截断长度N =16; 取02ωπ=rad/s,则0f =1Hz ,s f =8Hz ,频率分辨率 f ?=s f f N ?= =0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3H z,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116x t t t π ωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=ra d/s,则0f =1Hz ,s f =8Hz,频率分辨率f ?=s f f N ?==0.5H z。 最高频率c f =110f =11H z,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

实验三傅里叶变换及其性质

1 / 7 信息工程学院实验报告 课程名称:信号与系统 实验项目名称:实验 3 傅里叶变换及其性质实验时间: 2013-11-29 班级: 姓名:学号: 一、实验目的: 1、学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换; 2、学会运用MATLAB 求连续时间信号的频谱图; 3、学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实验环境: 1、硬件:在windows 7 操作环境下; 2、软件:Matlab 版本7.1 三、实验原理: 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为:() [()] ()j t F F f t f t e dt , 傅里叶反变换定义为: 1 1()[()] ()2 j t f t F F f e d 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时, 学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。 Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数 f 的Fourier 变换,默认返回是关于的函数。 (2)F=fourier(f,v) :它返回函数F 是关于符号对象 v 的函数,而不是默认的 ,即 ()()j v t Fv fte d t 。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du 。 傅里叶反变换的语句格式也分为三种。(1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为 ,默认返回是关于 x 的函数。 (2)f=ifourier(F,u):它返回函数 f 是u 的函数,而不是默认的 x 。 (3)f=ifourier(F,u,v) :是对关于v 的函数F 进行反变换,返回关于 u 的函数f 。 成 绩: 指导教师(签名):

matlab-离散信号傅里叶变换

1.请用MATLAB编写程序,实现任意两个有限长度序列的卷积和。要求用图 形显示两个序列及卷积结果。 解:y(n)=∑x(i)h(n-i) 假设x(n)={1,2,3,4,5}; h(n)={3,6,7,2,1,6}; y(n)=x(n)*h(n) 验证:y[n]=[1,12,28,46,65,72,58,32,29,30] 【程序】 N=5 M=6 L=N+M-1 x=[1,2,3,4,5] h=[3,6,7,2,1,6] y=conv(x,h) nx=0:N-1 nh=0:M-1 ny=0:L-1 subplot(131);stem(nx,x,'*b');xlabel('n');ylabel('x(n)');grid on subplot(132);stem(nh,h,'*b');xlabel('n');ylabel('h(h)');grid on subplot(133);stem(ny,y,'*r');xlabel('n');ylabel('y(h)');grid on 【运行结果】

2.已知两个序列x[n]=cos(n*pi/2), y[n]=e j*pi*n/4x[n],请编写程序绘制 X(e jw)和Y(e jw)和幅度和相角,说明它们的频移关系。 –提示:用abs函数求幅度,用angle求相角。 【程序】 n=0:15; x=cos(n*pi/2); y=exp(j*pi*n/4).*x; X=fft(x); Y=fft(y); magX=abs(X); angX=angle(X); magY=abs(Y); angY=angle(Y); subplot(221);stem(n,magX,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(222);stem(n,angX,'*b');xlabel('频率');ylabel('相位');grid on; subplot(223);stem(n,magY,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(224);stem(n,angY,'*b');xlabel('频率');ylabel('相位');grid on;

离散时间傅里叶变换.

第3章 离散时间傅里叶变换 在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。本章将介绍离散时间系统的频域分析方法。 3.1 非周期序列的傅里叶变换及性质 3.1.1 非周期序列傅里叶变换 1.定义 一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为: 正变换: ∑∞ -∞ =ω-ω = =n n j j e n x e X n x DTFT )()()]([ (3-1-1) 反变换: ? π π -ωωω-ωπ = =d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2) 记为: )()(ω?→←j F e X n x 当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。 [例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得 ωω=--=--== = ω-ω-ωω-ω-ωω-ω -ω-ω-=ω-∞ -∞ =ω ∑∑ 2 1sin 3sin )() (11)()(2 521 212133365 6j j j j j j j j j n j n n j n j e e e e e e e e e e e n R e X 2.离散时间序列傅里叶变换存在的条件: 图3-1

实验四-离散傅里叶变换

实验四:离散傅里叶变换 实验原理: DFT的快速算法FFT利用了的三个固有特性:(1)对称性(2)周期性(3)可约性。FFT算法基本上可以分为两大类,即按时间抽选法(DIT,Decimation-In-Time)和按频率抽选法(DIF,Decimation-In-frequency)。 MATLAB中提供了进行快速傅里叶变换的fft函数: X=fft(x),基2时间抽取FFT算法,x是表示离散信号的向量;X是系数向量; X=fft(x,N),补零或截断的N点DFT,当x得长度小于N时,对补零使其长度为N,当x的长度大于N时,对x截断使其长度为N。 实验内容: =60; n=[0:1:k/2]; xa1=2*sin(10*pi*n/k)+cos(18*pi*n/k); subplot(321) stem(n,xa1) xlabel('N');ylabel('x(n)'); xk1=fft(xa1);xk1=abs(xk1) subplot(322) stem(n,xk1) xlabel('k');ylabel('X(k)'); n=[0:1:k*]; xa1=2*sin(10*pi*n/k)+cos(18*pi*n/k); subplot(323) stem(n,xa1) xlabel('N');ylabel('x(n)'); xk1=fft(xa1);xk1=abs(xk1) subplot(324) stem(n,xk1) xlabel('k');ylabel('X(k)'); n=[0:1:k*2]; xa1=2*sin(10*pi*n/k)+cos(18*pi*n/k); subplot(325) stem(n,xa1) xlabel('N');ylabel('x(n)'); xk1=fft(xa1);xk1=abs(xk1) subplot(326) stem(n,xk1) xlabel('k');ylabel('X(k)');

离散信号的傅里叶变换(MATLAB实验)

离散信号的变换(MATLAB 实验) 一、实验目的 掌握用Z 变换判断离散系统的稳定与否的方法,掌握离散傅立叶变换及其基本性质和特点,了解快速傅立叶变换。 二、实验内容 1、已经系统函数为 5147.13418.217.098.2250 5)(2342-++--+=z z z z z z Z H (1) 画出零极点分布图,判断系统是否稳定; (2)检查系统是否稳定; (3) 如果系统稳定,求出系统对于u(n)的稳态输出和稳定时间b=[0,0,1,5,-50];a=[2,-2.98,0.17,2.3418,-1.5147]; subplot(2,1,1);zplane(b,a);title('零极点分布图'); z=roots(a); magz=abs(z) magz = 0.9000 0.9220 0.9220 0.9900 n=[0:1000]; x=stepseq(0,0,1000); s=filter(b,a,x); subplot(2,1,2);stem(n,s);title('稳态输出'); (1)因为极点都在单位园内,所以系统是稳定的。 (2)因为根的幅值(magz )都小于1,所以这个系统是稳定的。 (3)稳定时间为570。 2、综合运用上述命令,完成下列任务。 (1) 已知)(n x 是一个6点序列: ???≤≤=其它,050,1)(n n x

计算该序列的离散时间傅立叶变换,并绘出它们的幅度和相位。 要求:离散时间傅立叶变换在[-2π,2π]之间的两个周期内取401个等分频率上进行数值求值。 n=0:5;x=ones(1,6); k=-200:200;w=(pi/100)*k; X=x*(exp(-j*pi/100)).^(n'*k); magX=abs(X);angX=angle(X); subplot(2,1,1);plot(w/pi,magX);grid;title('幅度'); subplot(2,1,2);plot(w/pi,angX);grid;title('相位'); (2) 已知下列序列: a. ,1000),52.0cos()48.0cos()(≤≤+=n n n n x ππ; b .)4sin()(πn n x =是一个N =32的有限序列; 试绘制)(n x 及它的离散傅立叶变换 )(k X 的图像。 a . n=[0:1:100];x=cos(0.48*pi*n)+cos(0.52*pi*n); subplot(2,1,1);plot(n,x);title('x(n)的图像'); X=dft(x,101); magX=abs(X); subplot(2,1,2);plot(n,magX);title('丨X(k)丨的图像');

离散傅里叶变换和快速傅里叶变换

戶幵,戈丿、弟实验报告 课程名称:彳 _____________ 指导老师 _____________ 成绩: ____________________ 实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: _________________ 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握DFT 的原理和实现 2. 掌握FFT 的原理和实现,掌握用 FFT 对连续信号和离散信号进行谱分析的方法。 二、实验内容和原理 2.1 DTFT 和 DFT N 1 如果x(n)为因果有限长序列,n=0,1,...,N-1,则x(n)的DTFT 表示为:X(e j ) x(n)e n 0 序列的N 点DFT 是DTFT 在[0,2 n 上的N 点等间隔采样,采样间隔为2 d N 。通过DFT , 可以完成由一组有限个信号采样值 x(n)直接计算得到一组有限个频谱采样值 X(k)。X(k)的幅 度谱为X(k) v 'x R (k ) X |2(k ) , X R (k)和X i (k)分别为X(k)的实部和虚部。X(k)的相位谱 为(k) 列吩 序列x(n)的离散事件傅里叶变换(DTFT )表示为: X(e j ) x( n)e x(n)的离散傅里叶变换(DFT )表达式为: X(k) x(n)e n 0 j^nk N (k 0,1,…,N 1)

IDFT )定义为 x(n)丄 N \(k)e j_Nnk (n 0,1,…,N 1) N n 0 2.2 FFT 快速傅里叶变换(FFT )是DFT 的快速算法,它减少了 DFT 的运算量,使数字信号的处理 速度大大提高。 三、主要仪器设备 PC 一台,matlab 软件 四、实验内容 4.1第一题 x(n)的离散时间 傅里叶变换(DTFT ) X(e j Q )并绘图。 0 其2他n 2; (2)已知 x(n) 2n 0 n 10。 0其他 4.1.1理论分析 1) 由DTFT 计算式, X (Q)是实数,可以直接作出它的图像。 离散傅里叶反变换 求有限长离散时间信号 (1)已知 x(n) X( ) x(n)e j n e 2j 1 5j e 1 e j e 2? e 2? 0.5j e 0.5 j e sin(2.5 )

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换 摘要 本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。 1. 离散时间傅里叶变换 1.1离散时间傅里叶变换及其逆变换 离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{n j e ω-}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展开,为离散时间信号和线性时不变系统提供了一种频域表示,其中ω是实频率变量。时间序列x[n]的离散时间傅里叶变换)(ωj e X 定义如下: ∑∞ -∞ =-= n n j j e n x e X ωω ][)( (1.1) 通常)(ωj e X 是实变量ω的复数函数同时也是周期为π2的周期函数,并且)(ωj e X 的幅度函数和实部是ω的偶函数,而其相位函数和虚部是ω的奇函数。这是由于: ) ()()(tan ) ()()() (sin )()()(cos )()(2 22 ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X = +=== (1.2) 由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从)(ωj e X 中算出: ωπ ωπ πω d e e X n x n j j )(21 ][?- = (1.3)

实验四 离散傅里叶变换的性质

实验四离散傅里叶变换的性质 一、实验目的 1. 熟悉matlab软件中离散傅里叶变换的实现方法及FFT函数的使用方法; 2. 通过软件仿真,加深对离散傅里叶变换性质的理解。 二、实验内容 1. 验证离散傅里叶变换的线性性质; 2. 掌握用matlab实现圆周移位的方法; 3. 验证圆周卷积与线性卷积的关系。 三、实验步骤 1. 验证线性性质 设两个有限长序列分别为xn1=[3,1,-2,2,3,4],xn2=[1,1,1,1],做4DFT[xn1]+2DFT[xn2],及DFT[4xn1+2xn2]的运算,比较它们的结果。 代码如下: clear,N=20;n=[0:1:N-1]; xn1=[3,1,-2,2,3,4];n1=0:length(xn1)-1; %定义序列xn1 xn2=[1,1,1,1];n2=0:length(xn2)-1; %定义序列xn2 yn1=4*xn1;yn2=2*xn2;[yn,ny]=seqadd(yn1,n1,yn2,n2); %计算4xn1+2xn2 xk1=fft(xn1,N);xk2=fft(xn2,N); %分别求DFT[xn1] 和DFT[xn2] yk0=4*xk1+2*xk2; %计算4DFT[xn1]+2DFT[xn2] yk=fft(yn,N); %计算DFT[4xn1+2xn2] subplot(2,1,1);stem(n,yk0);title('傅里叶变换之和') %显示4DFT[xn1]+2DFT[xn2] subplot(2,1,2);stem(n,yk);title('序列和之傅里叶变换') %显示DFT[4xn1+2xn2] 运行结果如图1所示,从图中可知,用两种方法计算的DFT完全相等,所以离散傅里叶变换的线性性质得到验证。

离散信号变换的matlab实现

实验四 离散信号的频域分析 一、 实验目的 1. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab 实现; 2. 学习用FFT 对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。 二、 实验内容及步骤 1. 计算序列的DTFT 和DFT ,观察栅栏效应 设)()(4n R n x =,要求用MATLAB 实现: (1)计算)(n x 的傅里叶变换)(ωj e X ,并绘出其幅度谱; (2)分别计算)(n x 的4点DFT 和8点DFT ,绘出其幅度谱。并说明它们和)(ωj e X 的关系。 (提示:DFT 变换可用MA TLAB 提供的函数fft 实现,也可以自己用C 语言或matlab 编写) 2.计算序列的FFT ,观察频谱泄漏 已知周期为16的信号)1612cos()1610cos()(n n n x π π +=。 (1) 截取一个周期长度M=16点,计算其16点FFT ,并绘出其幅度谱; (2) 截取序列长度M=10点,计算其16点FFT ,绘出其幅度谱,并与(1)的结果进行比 较,观察频谱泄漏现象,说明产生频谱泄漏的原因。 三、 实验报告要求 1. 结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT 作谱分析时有关参数的选择方法。 2. 总结实验所得主要结论。 1. 计算序列的DTFT 和DFT ,观察栅栏效应 设)()(4n R n x =,要求用MATLAB 实现: (1)计算)(n x 的傅里叶变换)(ωj e X ,并绘出其幅度谱; (2)分别计算)(n x 的4点DFT 和8点DFT ,绘出其幅度谱。并说明它们和)(ωj e X 的关系。 (1)代码: n=0:3; M=10;

3.2 离散傅里叶变换的基本性质

第3章 离散傅里叶变换(DFT)
3.2 离散傅里叶变换的基本性质
3.2.1 线性性质
如果x1(n)和x2(n)是两个有限长序列, 长度分别为N1 和N2。 若 y(n)=ax1(n)+bx2(n) 式中a、 b为常数. 取N=max[N1, N2] , 则y(n)的N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2 (k), 0≤k≤N-1 (3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/f911723892.html,
X

第3章 离散傅里叶变换(DFT)
3.2.2
循环移位性质
1. 序列的循环移位 设x(n)为有限长序列, 长度为N, 则x(n)的循环 移位定义为 y(n)=x((n+m))NRN(n) (3.2.2)
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/f911723892.html,
X

第3章 离散傅里叶变换(DFT) x(n)
n 0 1 2 3 4 5 6 7
% x ( n)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

n
% x(n + 2)

-7 -6 -5 -4 -3 -2 -1
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
n
图 3.2.1
循环移位过程示意图 (N=8)
X
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/f911723892.html,

连续时间傅里叶变换

2 奇偶信号的FS: (i) 偶信号的FS: 2 a n f (t)cosn T] T 1 Fn 弘 1tdt ; bn 2 T1 f (t)sin n 1tdt c n d n a n (ii ) jbn an 2 2 偶的周期信号的 奇信号的FS: F n ( Fn 实, 偶对称);n FS 系数只有直流项和余弦项。 2 T f(t)sinn 1tdt ; 5 dn T| 11 1 Fn F n jbn ( Fn 纯虚,奇对称); a a n 0 ; b n b n 2jFn 第二章连续时间傅里叶变换 1周期信号的频谱分析 一一傅里叶级数FS (1) 狄义赫利条件:在同一个周期 T1内,间断点的个数有限;极大值和极小值的数目有限;信号绝 为T i ,角频率为 ,2 f ,—。 Ti (3)任何满足狄义赫利条件周期函数都可展成傅里叶级数。 ⑷三角形式的FS: (i) 展开式:f(t) a 0 (ancon it bn sin n ,t) n 1 (ii) 系数计算公式: (a) 直流分量: ao f (t)dt T 1 T 1 (b) n 次谐波余弦分量: a n - f (t) cosn 1tdt, n N T1 T 1 2 (c) n 次谐波的正弦分量: bn — f (t)sinn 1tdt, n N T1 T 1 (iii) 系数an 和bn 统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv) 称f1 1/T1为信号的基波、基频; nf1为信号的n 次谐波。 (V) 合并同频率的正余弦项得: n 和n 分别对应合并后 门次谐波的余弦项和正弦项的初相位。 (vi) 傅里叶系数之间的关系: (5)复指数形式的FS: (i) 展开式:f (t) Fne jn 1t n (ii) 系数计算:Fn 丄 f(t)e jn 1t dt, n Z T] T 1 (iii) 系数之间的关系: (iv) Fn 关于 n 是共扼对称的,即它们关于原点互为共轭。 (v) 正负n (n 非零)处的Fn 的幅度和等于Cn 或dn 的幅度。 对可积 丁 f(t)dt 。 (2)傅里叶级数:正交函数线性组合。 正交函数集可以是三角函数集 {1,cosn *,sinn 1t :n N}或复指数函数集 {e jn 术:n Z},函数周期

实验2 离散时间傅里叶变换

电 子 科 技 大 学 实 验 报 告 学生姓名:项阳 学 号: 2010231060011 指导教师:邓建 一、实验项目名称:离散时间傅里叶变换 二、实验目的: 熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。 三、实验内容: 1. 求下列序列的离散时间傅里叶变换 (a) ()(0.5)()n x n u n = (b) (){1,2,3,4,5}x n = 2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。 3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。 4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。 5. 已知连续时间信号为t a e t x 1000)(-=,求: (a) )(t x a 的傅里叶变换)(Ωj X a ; (b) 采样频率为5000Hz ,绘出1()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论; (c) 采样频率为1000Hz ,绘出2()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论。 四、实验原理:

1. 离散时间傅里叶变换(DTFT)的定义: 2.周期性:()j X e ?是周期为2π的函数 (2)()()j j X e X e ??π+= 3.对称性:对于实值序列()x n ,()j X e ?是共轭对称函数。 *()() Re[()]Re[()] Im[()]Im[()]()() ()() j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ??????????-----===-=∠=-∠ 4.线性:对于任何12,,(),()x n x n αβ,有 1212[()()][()][()]F x n x n F x n F x n αβαβ+=+ 5.时移 [()][()]()j k j j k F x n k F x n e X e e ωωω---== 6.频移 00()[()]()j n j F x n e X e ωωω-= 7.反转(翻褶) [()]()j F x n X e ω--= 五、实验器材(设备、元器件): PC 机、Windows XP 、MatLab 7.1 六、实验步骤: 本实验要求学生运用MATLAB 编程产生一些基本的离散时间信号,并通过MATLAB 的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB 的使用。 [()]()()(), ()j j jn z e n n F x n X e X z x n e x n ωωω∞-==-∞∞=-∞===<∞∑∑收敛条件为:

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域 的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域 数字序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值 实际位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

离散傅里叶变换性质证明

1. [][]()()j j ax n by n aX e bX e ωω+?+ Proof: ([][])[][]()() j n j n j n j j ax n by n e a x n e b y n e aX e bX e ωωωωω∞ --∞ ∞∞ ---∞-∞ +=+=+∑∑∑ 2. (1)[]()d j n j d x n n X e e ωω--? Proof: ()[][].()d d j n d n j n n j n d n j n j x n n e x n n e e X e e ωωωωω∞-=-∞∞---=-∞--=-=∑ ∑ (2) 00()[]()j n j e x n X e ωωω-? Proof: 000()()[][]()j n j n j n j n n e x n e x n e X e ωωωωωω∞∞ ----=-∞=-∞==∑ ∑ 3. []()j x n X e ω--? Proof: ()[][]()j n j n j n n x n e x n e X e ωωω∞∞ ---=-∞=-∞-=-=∑ ∑ if []x n is real ()j X e ω-=*()j X e ω 4. ()[]j dX e nx n j d ωω? Proof: ()[]() ()[]()[]j j n n j j n n j j n n X e x n e dX e jn x n e d dX e j nx n e d ωωωωωωωω∞-=-∞∞-=-∞∞-=-∞=?=-?=∑∑∑

5. (1)22 1|[]||()|2j n x n X e d πωπωπ∞ =-∞-=∑ ? Proof: 2*2221 |()|21 ()()21 [][]21 |[]|21 |[]| 2|[]|j j j j n j n n n n n n X e d X e X e d x n e x n e d x n d x n d x n πωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞=-∞ -∞=-∞ -∞=-∞ =====??∑∑?∑?∑ ?∑ (2) **1[][]()()2j j n x n y n X e Y e d π ωωπωπ∞=-∞-=∑ ? Proof: *****1 ()()21 ()()21 [][]21[][]21 [][] 2[][] j j j j j n j n n n n n n n X e Y e d X e Y e d x n e y n e d x n y n d x n y n d x n y n πωωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞ =-∞-∞ ∞=-∞ =-∞-∞=-∞====??∑∑?∑?∑ ∑?∑ 6. []*[]()()j j x n y n X e Y e ωω? Proof:

实验离散时间傅里叶变换和离散傅里叶变换

实验二离散时间傅里叶变换和离散傅里叶变换 一.实验目的 1.深刻理解离散时间信号傅里叶变换的定义,与连续傅里叶变换之间的关系; 2.深刻理解序列频谱的性质(连续的、周期的等); 3.能用MATLAB编程实现序列的DTFT,并能显示频谱幅频、相频曲线; 4.深刻理解DFT的定义、DFT谱的物理意义、DFT与DTFT之间的关系; 5.能用MATLAB编程实现有限长序列的DFT; 6.熟悉循环卷积的过程,能用MA TLAB编程实现循环卷积运算。 二.实验原理 1.离散时间信号的频谱和图示化 2.离散傅里叶变换的定义和图示化 三.实验结果 w=[0:2:500]*pi*2/500; h=(1+0.9*exp(-j*w))./(1-0.9*exp(-j*w)); magh=abs(h); plot(w/pi,magh);grid;xlabel('f');ylabel('|H(w)|'); n=[0:127]; m=[0:127]; x=exp(j*2*pi/128*m.*n); [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk');

n=[0:127]; m=[0:127]; x=cos(2*pi/128*m.*n); [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk'); n=[0:127]; m=[0:127]; [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk'); n=[0:127];m=[0,127]; x=sin(n); [xk]=dft(x,128); stem(n,xk);xlabel('n');ylabel('xk');

傅里叶变换 讲解最通俗易懂的一片

【纯技术帖】为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶 变换?来源:胡姬的日志 写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,内容非我所原创。在此 向多位原创作者致敬!!! 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得 非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.doczj.com/doc/f911723892.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的 名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角 波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,

实验三离散傅里叶变换

实验三 离散傅里叶变换 一 实验目的 1、理解和加深DFS 和DFT 的概念及其性质; 2、学习利用离散傅里叶变换分析信号的频谱。 二 实验设备 1、计算机 2、MA TLAB R2007a 仿真软件 三 实验原理 离散傅里叶变换在时域和频域都离散有限的特点,使其成为信号分析与处理中的一个最根本的也是最常用的变换。然而,但序列的长度N 很大时,直接计算DFT 需要很大的计算量。快速傅里叶变换使DFT 的运算效率提高数个数量级,为数字信号处理技术应用与各种信号的实时处理创造了良好的条件。MA TLAB 提供了用于快速计算DFT 的fft 函数,其调用格式为:y=fft(x) 或 y=fft(x,N);fft 函数用来计算序列)(n x 的N 点DFT ,如果序列的长度小于N ,则函数在序列的尾部补零至N 点;而当序列的长度大于N 时,函数对序列进行截短。为了提高运行速度,通常将N 取为2的整数次幂。 四 实验内容 1、上机实验前,认真阅读实验原理,掌握DFS 和DFT 的基本概念; 2、掌握离散傅里叶变换分析信号频谱的MATLAB 实现方法。 实例1:求周期序列)()(~ 5 ~ n R n x ,周期分别为N=20 和N=60时的)(~ k X 。 将下列指令编辑到“exlfft.m ”文件中: clc; close all; clear all; L=5;N1=20;N2=60; xn1=[ones(1,L),zeros(1,N1-L)]; xn2=[ones(1,L),zeros(1,N2-L)]; n1=0:N1-1; n2=0:N2-1; Xk1=fft(xn1,N1); Xk2=fft(xn2,N2); magXk1=abs(Xk1); magXk2=abs(Xk2); k1=[-N1/2:N1/2];

数字信号处理 离散傅里叶变换的性质及应用

数字信号处理实验 题目:离散傅里叶变换的性质及应用 学院: 专业: 学生姓名:班级/学号 指导老师: 一、实验目的 1.了解DFT的性质及其应用 2.熟悉MATLAB编程特点 二、实验仪器及材料 计算机,MATLAB软件

三、实验内容及要求 1.用三种不同的DFT 程序计算8()()x n R n =的256点离散傅里叶变换()X k ,并比较三种程序计算机运行时间。 (1)编制用for loop 语句的M 函数文件dft1.m ,用循环变量逐点计算()X k ; (2)编写用MATLAB 矩阵运算的M 函数文件dft2.m ,完成下列矩阵运算: 000 0121 012(1) (1)(1) (0)(0) (1)(1) (1)(1) N N N N N N N N N N N N N N N N N X x W W W W X x W W W W x N X N W W W W -----?????? ????????????=???????????? --???????????? (3)调用fft 库函数,直接计算()X k ; (4)分别调用上述三种不同方式编写的DFT 程序计算序列()x n 的离散傅里叶变换 ()X k ,并画出相应的幅频和相频特性,再比较各个程序的计算机运行时 间。 M 函数文件如下: dft1.m: function[Am,pha]=dft1(x) N=length(x); w=exp(-j*2*pi/N); for k=1:N sum=0; for n=1:N sum=sum+x(n)*w^((k-1)*(n-1)); end Am(k)=abs(sum); pha(k)=angle(sum); end dft2.m: function[Am,pha]=dft2(x) N=length(x); n=[0:N-1];

MATLAB的离散傅里叶变换的仿真

应用MATLAB对信号进行频谱分析及滤波 设计目的 要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 一、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: N?1?2?kn)(nx j?W W NN e?0?n N X(k)=DFT[x(n)]=,k=0,1,...,N-1N?11?kn?)(WXk N N0?n x(n) =IDFT[X(k)]= 逆变换:,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 三、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t); figure(1); subplot(211); plot(t,x);%作正弦信号的时域波形 axis([0,0.1,-1,1]); title('正弦信号时域波形'); z=square(50*t); subplot(212) plot(t,z) axis([0,1,-2,2]); title('方波信号时域波形');grid;

相关主题
文本预览
相关文档 最新文档