当前位置:文档之家› 利用Maple的Student函数包学习微积分的尝试

利用Maple的Student函数包学习微积分的尝试

利用Maple的Student函数包学习微积分的尝试
利用Maple的Student函数包学习微积分的尝试

第二章微积分0

> 第二章微积分运算 微积分是数学学习的重点和难点之一, 而微积分运算是Maple最为拿手的计算之一, 任何解析函数, Maple都可以求出它的导数来, 任何理论上可以计算的积分, Maple都可以毫不费力的将它计算出来. > > 随着作为数学符号计算平台的Maple的不断开发和研究, 越来越多的应用程序也 在不断地出现。 函数的极限和连续 1.1 函数和表达式的极限 在Maple中, 利用函数limit计算函数和表达式的极限. 如果要仅仅聋子耳朵,仅仅写出数学表达式, 则用惰性函数Limit. 若a可为任意实数或无穷大时, 求极限命令格式为: limit(f,x=a); 求时的命令格式为limit(f, x=a, right); 求时的命令格式为limit(f, x=a, left); 请看下述例子: > Limit((1+1/x)^x,x=infinity)=limit((1+1/x)^x,x=infinity); >

> > > > >

对于多重极限计算, 也用limit. 命令格式为: limit(f, points, dir); 其中, points是由一系列方程定义的极限点, dir(可选项)代表方向: left(左)、right(右)等. 例如: > limit(a*x*y-b/(x*y),{x=1,y=1}); > > restart: > plot3d(sin(x+y), x=-1..1, y=-1..1); > plot3d(x^2*(1+x)-y^2*(1-y)/(x^2+y^2),x=-1..1,y=-1..1); >

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

Maple常用计算命令..

常用计算命令 《Maple 指令》7.0版本 第1章章数 1.1 复数 Re,Im - 返回复数型表达式的实部/虚部 abs - 绝对值函数 argument - 复数的幅角函数 conjugate - 返回共轭复数 csgn - 实数和复数表达式的符号函数 signum - 实数和复数表达式的sign 函数5 1.2 MAPLE 常数 已知的变量名称 指数常数(以自然对数为底) I - x^2 = -1 的根 infinity 无穷大 1.3 整数函数 ! - 阶乘函数 irem, iquo - 整数的余数/商 isprime - 素数测试 isqrfree - 无整数平方的因数分解 max, min - 数的最大值/最小值 mod, modp, mods - 计算对 m 的整数模 rand - 随机数生成器 randomize - 重置随机数生成器 1.4 素数 Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第 i 个素数 nextprime, prevprime - 确定下一个最大/最小素数 1.5 数的进制转换 convert/base - 基数之间的转换 convert/binary - 转换为二进制形式 convert/decimal - 转换为 10 进制 convert/double - 将双精度浮点数由一种形式转换为另一种形式convert/float - 转换为浮点数 convert/hex - 转换为十六进制形式 convert/metric - 转换为公制单位

convert/octal - 转换为八进制形式 1.6 数的类型检查 type - 数的类型检查函数 第2章初等数学 2.1 初等函数 product - 确定乘积求和不确定乘积 exp - 指数函数 sum - 确定求和不确定求和 sqrt - 计算平方根 算术运算符+, -, *, /, ^ add, mul - 值序列的加法/乘法 2.2 三角函数 arcsin, arcsinh, . - 反三角函数/反双曲函数 sin, sinh, . - 三角函数/双曲函数 2.3 LOGARITHMS 函数 dilog - Dilogarithm 函数 ln, log, log10 - 自然对数/一般对数,常用对数 2.4 类型转换 convert/`+`,convert/`*` - 转换为求和/乘积 convert/hypergeom - 将求和转换为超越函数 convert/degrees - 将弧度转换为度 convert/expsincos - 将trig 函数转换为exp, sin, cos convert/Ei - 转换为指数积分 convert/exp - 将trig 函数转换为指数函数 convert/ln - 将arctrig 转换为对数函数 polar - 转换为极坐标形式 convert/radians - 将度转换为弧度 convert/sincos - 将trig 函数转换为sin, cos, sinh, cosh convert/tan - 将trig 函数转换为tan convert/trig - 将指数函数转换为三角函数和双曲函数 第3章求值 3.1 假设功能 3.2 求值 Eval - 对一个表达式求值 eval - 求值

Maple的常用内部数学函数要点

吉林大学公共数学实验中心数学实验 >> 首页> 微积分> 实验2 Maple简介 一、Maple操作界面介绍 1、编辑功能: 编辑功能中查找模块,可以帮助查找你所需要的关键字节.具体操作如图所示: 按上述操作完成后,出现下图所示的对话框: 在文本框中输入你要查找的字符或者符号,可以通过findprevious上下翻看,也可以通过replacewith 操作替代你所查找的字符或者符号.cancle表示取消操作. 其他编辑操作包括分割或连接(splitorjoin)分为一个执行过程(快截键为f3、f4)和选定块(shift+f3、

shift+f4)过程四个操作块 运行操作(Execute):运行选定或者当前的maple中的语句; 删除运行结果操作(Removeoutput):将选定或者当前的maple中运行结果从工作爷中删除或者不显示; 2、示图操作(VIEW) 文档在屏幕上的显示模式称为“示图”,maple示图菜单主要设置工作爷文档的一些视图属性,所包括菜单如上图所示。 工具条(toolbar)的功能和其他系统一样,主要包括打开文件、创建新文档、存盘、打印当前页面、复制、剪切、粘贴、撤消操作等。 内容工具条: “枫叶”表示设置工作页和标准公式和maple语言之间的转换 “X”表示设置工作页和标准公式在活动和非活动方式之间的转换 “(对号)”表示标准公式有效时自动检查输入表达式的正确性 “!”表示运行当前表达式 3、插入操作(INSERT)

插入操作比较简单这里就不做详细介绍,主要功能分为: 文本插入(textinput); 标准maple数学表达式插入; 运行单元executegroup插入其中包括在光标前插入和光标后插入 图形插入plot,其中包括两维和三维图象的插入 电子表格插入spreadsheet 段落插入parigraph,其中包括光标前插入和光标后插入 数学输入对象(image)插入 插入超级连接hyperlink 4、其他操作窗口的功能和其他软件基本相同,这里就不做详细介绍了。 二、基本语法规则 MaPle的科学计算功能主要是以命令输入的方式来实现的。Map1e 的命令有自己的使用规则和语法。在使用Maple进行科学计算之前,首先要了解Map1ev命令使用的基本规则。下面给出了利用Maple进行科学计算时的—些基本语法规则 ·MapleV的命令在提示符“>”的右边键入,每行命令要以分号“;”结尾。 ·命令输入结束按回车键,maple就立即执行该命令 ·如果命令以分号结尾,Maple将在下一行给出相应的输出结果,并把光标移到下—个程序段的

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

《微积分》《高等数学》第二章测试题

《微积分》第二章测试题 1. 【导数的概念】已知()23f '=,求()() 22lim h f h f h h →+-- 解()() ()() ()()()0 0222222lim lim 226h h f h f h f h f f h f f h h h →→+--+---??'=+== ?-?? 2. 设函数cos ln x y x e a -=++,求 d y d x 解 sin x dy x e dx -=-- 3. 设函数arctan x y e =,求 d y d x 解 d y d x () arctan arctan 1 1 1221x x e e x x x x =? ? = ++ 4. 设函数2 sin cos 2y x x =,求 d y d x , x dy dx = 解()2 2 2 2 4 sin cos 2sin 12sin sin 2sin y x x x x x x ==-=- ()()3 2 2 2sin cos 8sin cos 2sin cos 14sin sin 214sin dy x x x x x x x x x dx =-=-=-, 0x dy dx == 5. 【函数的微分,记得加dx 】设函数2 sin 2x y x = ,求dy 解2 4 3 3 2cos 22sin 22cos 22sin 22cos 22sin 2,dy x x x x x x x x x x dy dx dx x x x ---== ∴= 6. 【高阶导数】设函数11 y x = -,求 n n d y dx 解 () () () () () () () 2 3 1 2 3 4 1 23 ! 11, 21, 3!1,, 1n n n n dy d y d y d y n x x x x dx dx dx dx x ----+' = -=--=-=--=-- 7.【隐函数求导】 设函数()y y x =由方程2 sin 20xy y -=确定,求 d y d x 解 等式两边同时对x 求导2 22sin 20,y xyy y y ''+-=则 () 2 2 2 2sin 222221dy y y y y dx y xy xy xy x y '== = = ---

maple-图形制作

第五章Maple图形绘制 图形无疑是数学中最令人着迷的部分, 一些枯燥的公式可以从图形看出其美. 历史上有许多学者利用函数图形解决了学科中的许多难题. 客观地说, Maple不是一种可视化的语言—它不会产生出版品质的图形. 然而, 它的图形功能非常强大, 足以提供更多的关于函数的信息. 当然, 如果需要, 它的图形作适当改进即可满足出版要求. 限于篇幅, 本章所有图形未作打印, 读者只需在计算机上按照书中语句操作即可观其效果, 更多图形功能可通过Maple帮助获得. 1二维图形制作 Maple所提供的二维绘图指令plot可以绘制二维的函数图、参数图、极坐标图、等高线图、不等式图,等等. 这些绘图指令有些已经内嵌在其核心程序里, Maple启动时即被装入,直接调用函数命令即可,有些则需要使用with(plots)调用plots函数库才能完成. 1.1 基本二维绘图指令 plot (f(x), x=xmin .. xmax); plot (f(x), x=xmin .. xmax, y=ymin .. ymax); plot ([f1(x), f2(x), …], x=xmin .. xmax); plot (f(x), x=xmin .. xmax, option); 其中,xmin..xmax为x的变化范围,ymin..ymax为y(即f(x))的变化范围.option 选项参数主要有: axes:设定坐标轴的显示方式, 一般有FRAME(坐标轴在图形的左边与下面)、BOXED(坐标轴围绕图形)、NORMAL(一般方式显示)或NONE(无) color:设定图形所要涂的颜色(可选用也可自设) coords:指定绘图时所用的坐标系(笛卡尔坐标系(cartesian,默认)、极坐标系

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?

微积分习题解答(第二章)

微积分习题解答(第二章) 1写出下列数列的一般项,并通过观察指出其中收敛数列的极限值。 ()()11120, ,0, ,0, ,2 4 6 1 112n n u n ??= +-?? 解:一般项 该数列收敛,其极限为零。 () () 1111 3,,,,261220 11n u n n = + 解:一般项 该数列收敛,其极限为零。 ()2 510172642, ,,,,2345 1n n u n += 解:一般项 该数列发散。 3.利用定义证明下列极限;

()n n n n n -11lim 0 60-110661 ln ln 6 1ln 1,ln 6-106-1lim 0 6n n n N n N εε ε εε→∞ →∞ ?? = ? ?? >???? -=< ? ? ???? > ? ???=+>?? ???? ??-< ?????∴= ??? 证明:对于任给,要使 只要 取正整数当时 总有不等式 成立 ( )2 23lim 010111,0lim n n n N n N εε ε εε→∞ →∞ =>-= <> ?? = +>???? -<∴=证明:对于任给,要使 只要 取正整数 当时 总有不等式 成立 4.试判断下列论点断是否正确。

()() ()1, ,lim 1111 1lim 01 n n n n n u A u A n n n n →∞ →∞ -=?--= +=≠-如果越大越接近零则有 错误 例如 随着越大,而越加接近零,但 ()() {}1130lim 0N =N n >N 10lim n n n n n n n u A u A u u u A ε εεε→∞ →∞ >-=∠>-=<∴=如果对于任给,在数列中除有限项外,都满足不等式<, 则有 正确 设N 为题中的‘有限项’中的最大下标,由题意 对于任给,只要取正整数+1,当时, 总有不等式 满足 ()() {}5s in s in n n n u n u n u ?==≤有界数列必定收敛 错误 例如 显然1,但发散 6.利用定义证明下列极限: ()() ()()()()1 1 1lim 312 0312311,3 312lim 312 x x x x x x x x εε ε δδε →→-=>-- =-<= <-<-- <-=证明:对于任意给定的,要使 只需取,则当0时总有 成立,于是,由极限定义可知

Maple中微积分与极限的命令介绍

Maple中微积分与极限的命令介绍 在使用Maple进行计算时,对于函数的计算是涉及很多的,但是在计算函数的过程中,有很多需要用到高等数学中的微积分与极限。而这些计算的命令构成了复杂函数的命令。下面就对Maple微积分和命令和极限的命令做一些基本介绍。 一、极限 Limit(f(x),极限点,选项),Limit为极限号(可用value看值)。 选项有:左left、右right,省略则为普通极限。 注:不能对过程函数直接计算。 1.x=a点极限,limit(f(x),x=a)。 2.x趋向无穷极限,limit(f(x),x=infinity)。 3.x趋向正负无穷大极限,在infinity前直接加+、-号即可。 注:函数若由箭头算子、过程、转换法定义,求极限函数要用f(x)形式。 二、导数。 1.diff(f,x1,x2,…) x1,x2,…为各次求混合导数的自变量。 diff(f,x$m,y$n) m,n 分别为对自变量x、y 求导阶数。 Diff 为求导符号,可用value 显示值。 注:不能对过程函数直接使用。

注:函数若由箭头算子、过程、转换法定义,求导函数要用f(x)形式。 2.隐函数导数:diff(方程,自变量及阶数); (1)将方程中函数变量全部写成自变量函数形式(如y(x)),再求导。 (2)用别名命令alias将函数变量先定义为自变量的函数,如alias(y=y(x))再对方程求导。 3.导数算子:D(函数),D[i$m,j$n,…](函数) i,j 整数表示,对第i、第j 个变量求导。 注:只有箭头算子、过程、转换法定义函数,才能使用求导算子。 三、积分 1.一元积分 int(f,x)不定积分,int(f,x=a..b)定积分,int为积分符号,用value 显示值。 注:不能对过程函数使用。 注:箭头算子、过程、转换法定义函数要用int(f(x),x)。 2.二重积分,int(int(f(x,y),y=y1(x)..y2(x)),x=a..b) 以上内容向大家介绍了Maple微积分和极限的一般使用命令,命令格式相对来说比较简单,只需要进行相应的变量输入就可以了,Maple函数包的数量很多,功能非常齐全。

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

数学软件Maple使用教程

数学软件Maple使用教程 序言 一.什么是数学实验? 我们都熟悉物理实验和化学实验,就是利用仪器设备,通过实验来了解物理现象、化学物质等的特性。 同样,数学实验也是要通过实验来了解数学问题的特性并解决对应的数学问题。过去,因为实验设备和实验手段的问题,无法解决数学上的实验问题,所以,一直没有听说过数学实验这个词。随着计算机的飞速发展,计算速度越来越快,软件功能也越来越强,许多数学问题都可以由计算机代替完成,也为我们用实验解决数学问题提供了可能。 数学实验就是以计算机为仪器,以软件为载体,通过实验解决实际中的数学问题。 二.常用的数学软件 目前较流行的数学软件主要有四种: 1.MathACD 其优点是许多数学符号键盘化,通过键盘可以直接输入数学符号,在教学方面使用起来非常方便。缺点是目前仅能作数值运算,符号运算功能较弱,输出界面不好。 2.Matlab 优点是大型矩阵运算功能非常强,构造个人适用函数方便很方便,因此,非常适合大型工程技术中使用。缺点是输出界面稍差,符号运算功能也显得弱一些。不过,在这个公司购买了Maple公司的内核以后,符号运算功能已经得到了大大的加强。再一个缺点就是这个软件太大,按现在流行的版本5.2,自身有400多兆,占硬盘空间近1个G,一般稍早些的计算机都安装部下。我们这次没用它主要就是这个原因。 3.Mathematica 其优点是结构严谨,输出界面好,计算功能强,是专业科学技术人员所喜爱的数学软件。缺点是软件本身较大,目前流行的3.0版本有200兆;另一个缺点就是命令太长,每一个命令都要输入英文全名,因此,需要英语水平较高。 4.Maple 优点是输出界面很好,与我们平常书写几乎一致;还有一个最大的优点就是它的符号运算功能特别强,这对于既要作数值运算,又要作符号运算时就显得

Maple微分方程的求解

题目:微分方程的求解 ——基于Maple工具 姓名: 学号: 专业: 学科: 老师:

目录 一、简介 (3) 概况: (3) Maple 主要技术特征: (3) 1. 强大的求解器:数学和分析软件的领导者 (3) 2. 技术文件环境:重新定义数学的使用性 (4) 3. 知识捕捉:不仅是工具,更是知识 (4) 4. 外部程序连接:无缝集成到您现有的工具链中 (4) 二、Maple在微分方程中的应用 (5) 1、常用函数 (5) 1)求解常微分方程的命令dsolve. (5) 2)求解一阶线性常微分方程的命令linearsol. (5) 3)偏微分方程求解命令pdsolve. (6) 2、方法 (6) 1)一阶常微分方程的解法 (6) 2)二阶线性常微分方程的解法 (7) 3、作图 (8) 1)常微分方程数值解作图命令odeplot (8) 2)偏微分方程作图命令PDEplot (8) 三、各种方程的求解 (8) 第一部分:一阶常微分方程 (8) 1、可分离变量方程 (8) 2、齐次方程 (9) 3、线性方程 (10) 4、Bernoulli方程 (10) 第二部分:二阶线性常微分方程 (11) 1、二阶常系数线性齐次方程 (11) 2、二阶常系数线性非齐次方程 (12) 3、Euler方程(变系数) (12) 第三部分:偏微分方程 (13) 1、波动方程 (13) 2、热传导方程 (14) 3、作图 (14) 四、总结 (15)

一、简介 概况: Maple是目前世界上最为通用的数学和工程计算软件之一,在数学和科学领域享有盛誉,有“数学家的软件”之称。Maple 在全球拥有数百万用户,被广泛地应用于科学、工程和教育等领域,用户渗透超过96%的世界主要高校和研究所,超过81%的世界财富五百强企业。 Maple系统内置高级技术解决建模和仿真中的数学问题,包括世界上最强大的的符号计算、无限精度数值计算、创新的互联网连接、强大的4GL语言等,内置超过5000个计算命令,数学和分析功能覆盖几乎所有的数学分支,如微积分、微分方程、特殊函数、线性代数、图像声音处理、统计、动力系统等。 Maple不仅仅提供编程工具,更重要的是提供数学知识。Maple是教授、研究员、科学家、工程师、学生们必备的科学计算工具,从简单的数字计算到高度复杂的非线性问题,Maple都可以帮助您快速、高效地解决问题。用户通过Maple产品可以在单一的环境中完成多领域物理系统建模和仿真、符号计算、数值计算、程序设计、技术文件、报告演示、算法开发、外部程序连接等功能,满足各个层次用户的需要,从高中学生到高级研究人员。 Maple 主要技术特征: 1. 强大的求解器:数学和分析软件的领导者 ★内置超过5000个符号和数值计算命令,覆盖几乎所有的数学领域,如微积分,线性代数,方程求解,积分和离散变换,概率论和数理统计,物理,图论,张量分析,微分和解析几何,金融数学,矩阵计算,线性规划,组合数学,矢量分析,抽象代数,泛函分析,数论,复分析和实分析,抽象代数,级数和积分变换,特殊函数,编码和密码理论,优化等。 ★各种工程计算:优化,统计过程控制,灵敏度分析,动力系统设计,小波分析,信号处理,控制器设计,集总参数分析和建模,各种工程图形等。 ★提供世界上最强大的符号计算和高性能数值计算引擎,包括世界上最强大的微分方程求解器(ODEs,PDEs,高指数DAEs)。 ★智能自动算法选择。 ★强大、灵活、容易使用的编程语言,让您能够开发更复杂的模型或算法。

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

maple 求高等数学问题

用Maple求函数极限 1. 自变量趋于有限值的极限 解输入: f:=x->sin(x)/x; Limit(f(x),x=0); 输出: 或 f:=x->sin(x)/x; limit(f(x),x=0); 或 f:=x->sin(x)/x: Limit(f(x),x=0)=limit(f(x),x=0); f:=x->(1+x^2/2-sqrt(1+x^2))/((cos(x)-exp(x^2))*sin(x^2)): Limit(f(x),x=0)=limit(f(x),x=0);

2. 自变量趋于无穷大的极限 f:=x->(1+a/x)^x; Limit(f(x),x=infinity)=limit(f(x),x=infinity); f:=x->x*sin(a/x); Limit(f(x),x=infinity)=limit(f(x),x=infinity); 用Maple求单侧极限

解输入: f:=x->exp(1/x); Limit(f(x),x=0,left)=limit(f(x),x=0,left); 输出: f:=x->exp(1/x); Limit(f(x),x=0,right)=limit(f(x),x=0,right); f:=x->exp(1/x); Limit(f(x),x=0)=limit(f(x),x=0);

f:=x->arctan(1/x); Limit(f(x),x=0,right)=limit(f(x),x=0,right); 用Maple求分段函数的极限 2011-07-29 10:30:50| 分类:Maple应用| 标签:|举报|字号大中小订阅 用微信“扫一扫” 将文章分享到朋友圈。 用易信“扫一扫” 将文章分享到朋友圈。 下载LOFTER客户端 g:=x->piecewise(x<3,x^2-6,3<=x,2*x-1); Limit(g(x), x=3,right)=limit(g(x), x=3,right); Limit(g(x), x=3,left)=limit(g(x), x=3,left); Limit(g(x), x=3)=limit(g(x), x=3);

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

maple_chap2

36 微积分运算 第 二 章 本章将通过例子系统地介绍Maple 软件中的微积分运算,读者可以学到利用Maple 软件解决简单的高等数学问题的一些方法和技巧。 本章具体包括以下内容: 如何在Maple 中计算函数的极限 如何在Maple 中检验函数的连续性 如何在Maple 中表示微分运算 如何在Maple 中进行函数和表达式的微分运算 如何在Maple 中对隐函数进行微分和求导运算 如何在Maple 中进行符号积分运算 如何在Maple 中计算广义积分 如何在Maple 中计算数值积分 如何在Maple 中表示和计算数列 如何在Maple 中求数列的极限 如何在Maple 中将已知函数展开成级数

。37. Maple 的应用,可以说大多数是用在高等数学的计算上了,微积分运算,也许是Maple 最为拿手的计算了。任何解析函数,Maple 都可以求出它的导数来;任何理论上可以计算的的积分,Maple 也都可以不费吹灰之力地将它计算出来。有了Maple ,你完全可以把积分手册扔到一边去,因为你在也忍受不了它了。不仅如此,Maple 从来不会抱怨表达式太繁,或者太长的。 可以毫不夸张地说,高等数学书上的任何一道计算题,都可以用Maple 解决。不信?那好,就跟着我用Maple 重新温习一遍微积分吧,你一定会有新的发现的! 2.1 极限和连续性 2.1.1 函数或表达式的极限 在Maple 中,我们可以利用函数limit 表示和计算函数和表达式的极限。 读者一定还记得,我们用一对单引号表示暂时不作计算的表达式;上面,我们就利用它在Maple 中写出了一个漂亮的极限式。而后面再次引用它时,Maple 就进行计算,得到了我们所期望的结果。实际上,对于这些常用的“漂亮”计算符号(又比如求导、积分等运算) ,Maple 中都有一套函数与其一一对应。对应的规则是,把原有函数的首字母改成大写,于是就得到“形式函数”,得到的是一个形式上的表达式。比如上面这个例子,我们就可以写成: 顺理成章地,这个函数也可用来求自变量趋于无穷时的极限。无穷, 在Maple 中用infinity 表示。我们来看下面这个经典的极限: 为了使大多数计算能够进行下去,函数limit 假设表达式中所有未被赋值的参数都是非0实数。比如在a 未被赋值时,a 2/x 在x 趋向于0时的极限将被认为是正无穷大。 函数的第二个参数表示欲求的极限所在的位置,它是一个等式,等式的左边是自变量,右边是极限点,极限点可以是任意的实数。基于Maple 的强大符号运算功能,表达式中间完

多元函数微积分学

第六章 多元函数微积分学 §6.1空间解析几何 习题 6-1 1.在空间直角坐标系中,指出下列各点所在的卦限: (2,2,3);(6,2,4);(1,5,3);(3,2,4);A B C D ------ (4,3,2); (2,3,1); (3,3,5); (1,2,3).E F G H ------ 2.写出坐标面上和坐标轴上的点的坐标的特征,并指出下列各点的位置: (2,0,3);(0,2,4);(0,0,3);(0,2,0);A B C D --- 3.求点(,,)M a b c 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标. 4.求以点(1,3,2)O -为球心,且通过坐标原点的球面方程. 5.求与原点和0(2,3,4)M 的距离之比为1:2的点的全体所构成的曲面的方程,它表示怎样的曲面? 6. 指出下列方程组所表示的曲面 222(1)4x y z ++=; 7.指出下列方程组所表示的曲线: 22225(1)3 x y z x ?++=?=?; 22(2)20x y z +-=; 22(3)0x y -=; 22(4)0x y +=; 2 2(5)1916x y +=; 2 2 (6)125 y x -=; (7)0y -=;

2 (8)430y y -+=; 2(9)4x y =; 222(10)0z x y --=. §6.2 多元函数的基本概念 习题 6-2 1.设22,y f x y x y x ? ?+=- ?? ?,求(,)f x y . 2.已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy -+. 3.求下列各函数的定义域: 2 (1)ln(21)z y x =-+ ; (2)z = 22(3)z = ; (4)z = ; (5)ln()z y x =- ; (6)u =4.求下列各极限 : 10 (1)y x y →→ (,)(0,0)(2) lim x y →; 22() (3)lim ()x y x y x y e -+→+∞→+∞ +; 222200 (4)lim x y x y x y →→+ ; 00(5)x y →→;22222200 1cos() (6)lim ()x y x y x y x y e →→-++. 5.证明下列极限不存在: 2222(,)(0,0)2(1)lim 32x y x y x y →-+; 1 00 (2)lim(1)x y x y xy +→→+ ; (,)(0,0)(3)lim x y →6.研究下列函数的连续性: 222(1)(,)2y x f x y y x +=-; 22(2)(,)ln()f x y xy x y =+.

相关主题
文本预览
相关文档 最新文档