当前位置:文档之家› 信号与系统频域分析题库

信号与系统频域分析题库

信号与系统频域分析题库
信号与系统频域分析题库

基础与提高题

4-1 求下列各信号的傅里叶级数表达式。

(1)j200e t (2) []cos π(1)/4t - (3) t t 8sin 4cos + (4) (5) ()f t 是周期为2的周期信号,且()e ,11t f t t -=-<< (6) ()f t 如题图4-1(a)所示。

题图4-1(a)

(7) []()()1cos 2πcos 10ππ/4f t t t =++????

(8) ()f t 是周期为2的周期信号,且(1)sin 2π,01

()1sin 2π,12t t t f t t t -+<

+<

(9) ()f t 如题图4-1(b)所示。

题图4-1(b)

(10) ()f t 如题图4-1(c)所示

t t 6sin 4cos +

题图4-1(c)

(11) ()f t 如题图4-1(d)所示

题图 4-1(d)

(12) ()f t 是周期为4的周期信号,且sin π,02

()0,24t t f t t ≤≤?=?≤≤?

(13) ()f t 如题图4-1(e )所示

题图4-1(e)

(14) ()f t 如题图4-1(f)所示

题图4-1(f)

4-2 设()f t 是基本周期为0T 的周期信号,其傅里叶系数为k a 。求下列各信号的傅里叶级数系数(用k a 来表示)。

(1)0()f t t - (2)()f t -

(3)*

()f t (4)()d t f z z -∞

? (假定00=a )

(5)

d ()

d f t t

(6)(),0f at a > (确定其周期)

4-3 求题图4-3所示信号的傅里叶变换

(a ) (b ) (c ) (d )

题图4-3 4-4 已知信号()f t 的傅里叶变换为()j F ω,试利用傅里叶变换的性质求如下函数的傅里叶变换

(1)()3t f t ? (2)()()5t f t -? (3)()()

d 1d f t t t

-?

(4)()()22t f t -?- 4-5 已知信号()f t 如题图4-5(a )所示,试使用以下方法计算其傅里叶变换

(a ) (b )

题图 4-5

(1)利用定义计算()j F ω;

(2)利用傅里叶变换的微积分特性计算;

(3)()u u u u 2244f t t t t t ττττ????

????????=+--++-- ? ? ? ?????????????????,利用常用信号()u t 的

傅里叶变换及傅里叶变换的线性特性及时移特性计算()j F ω;

(4)()()()11f t f t f t =+-(()1f t 如题图4-5(b )所示),先计算()1j F ω,然后利用尺度变换性质计算()j F ω;

(5)()()()/2f t g t g t ττ=+,利用门函数的傅里叶变换及傅里叶变换的线性特性

()j F ω;

(6)()()/2/4/433288f t g t g t g t ττττ

τ????

=++

+-

? ??

??

?

,利用门函数的傅里叶变换和傅里叶变换的线性特性及()j F ω时移特性计算()j F ω。 4-6求下图信号的傅里叶变换

图4-6

4-7求如图所示锯齿脉冲的傅立叶变换。

图4-7

4-8 设()j ωF 表示题图4-8所示信号的傅里叶变换。

图4-8

(1)求()j ωF 的相位; (2)求()0F (3)求()j d ωω∞-∞

?F (4)计算()

j22sin j e d ωω

ωωω

-∞

?F

(5)计算()2

j d ωω∞

-∞

?

F

4-9 题图4-9为()F j ω的幅度特性和相位特性,求 ()F j ω的傅里叶逆变换()f t 。

(a ) (b )

图4-9

4-10 求如图4-10所示三脉冲信号的频谱。

图4-10

4-11已知()()()2

f t F j E Sa ωτ

?ω=τ,求(25)f t -的频谱密度函数。

4-12 求22

1

()(0)f t t αα=

>+的傅里叶变换 ()F j ω,并求 121

()1(1)1

f t t =+

-+的傅里叶变换1()F j ω。

4-13 求1t 、21

t

的傅里叶变换,并求t 的傅里叶变换。

4-14利用微分定理求题图4-15所示的半波正弦脉冲()f t 及其二阶导数

22

()

d f t dt

的频谱。

图4-14

4-15求下图三角函数的频谱密度函数。

2

-

2

图4-15 4-16已知

1

()t

F e t j αμαω-??=

??+,

(1) 求()()t f t te t αμ-=的傅里叶变换; (2) 证明()t t μ的傅里叶变换为2

1()()j j πδωω'+

4-17已知阶跃函数和正弦、余弦函数的傅里叶变换:

[]1()()F t j μπδωω

=+

, [][]000cos()()()F t ωπδωωδωω=++-,

[][]000sin()()()F t j ωπδωωδωω=+--

求单边正弦函数和单边余弦函数的傅里叶变换。 4-18求题图4-18所示信号的频谱函数。

t

t

(a)

(c)

(d)

图4-18

4-19已知1

()()FT

t j μπδω

ω

←?→

+ ,求()t δ和()t δ'的傅里叶变换。 4-20以T 为周期的单位冲击串()T t δ是一类很重要的信号,其表达式为

()()T n t t nT +∞

=-∞

δ=

δ-∑ ,求()T

t δ

的傅里叶变换。

图4-20

4-21 已知周期矩形脉冲信号()f t 的幅度为E ,脉宽为τ,周期为1T ,角频率为11

2T πω=。如图所示。求周期矩形脉冲信号的傅里叶级数与傅里叶变换。

图 4-21

4-22已知周期冲激串为()(1)()4n

n n p t t δ∞

=-∞

=--∑,求其傅里叶变换。 4-23设系统的微分方程为

2222()3()2()()4()5()d d d d y t y t y t f t f t f t dt dt dt dt

++=++ 若输入3()()t f t e t μ-=,试用傅里叶分析法求响应()y t 。 4-24 求下列信号的奈奎斯特间隔和频率

(1)(90)Sa t (2)2(90)Sa t

(3)(90)(50)Sa t Sa t + (4)2(100)(70)Sa t Sa t +

4-25 若()f t 的频谱()F j ω如题4-25所示,利用卷积定理粗略画出,0()cos()f t t ω,

0()j t f t e ω,1()cos()f t t ω的频谱(注明频谱的边界频率)。

图4-25

4-26已知矩形调幅信号()()()0cos

,f t G t t ω=其中()G t 为矩形脉冲,脉冲幅度为E ,脉宽为τ,试求其频谱函数。

矩形调幅信号的波形

图4-26

4-27 一个因果LTI 系统的输出()y t 与输入()f t 之间的关系为

()

()()d 2d y t y t f t t

+=, (1)求系统的传递函数()()()j j /j H Y F ωωω=,并画出频谱特性图。

(2)若()()e u t

f t t -=,求()j Y ω。 (3)求()y t

(4)若输入()f t 的傅氏变换为下列各式,重复(2)、(3)小题求()y t 。 (4-1)()1j j 2j F ωωω+=

+,(4-2)()2j j 1j F ω

ωω+=+,(4-3)()()()1j 2j 1j F ωωω=++

4-28 由题图4-29所示的RLC 电路实现的LTI 因果系统,()f t 为输入电压,电容上的电压取为该系统的输出()y t 。

(a )求关联()f t 和()y t 的微分方程; (b )求系统对输入为()j e t f t ω=的频率响应; (c )若()()sin f t t =,求输出()y t 。

(f t +

-

图 4-28

4-29 已知频率特性函数为:()()()()()()()3

4

3

2

2j j 4

j j 3j 2j 5j 2

H ωωωωωωω++=++++,

求其幅频特性和相频特性。

4-30(1)设()f t 的傅里叶变换为(j )F ω,而()p t 是基本频率为0ω,傅里叶级数的表示式为()0j e n t n n p t a ω+∞

=-∞

=

的周期信号。求()()()y t f t p t =?的傅里叶变换。

(2)假设()j F ω如题图4-30所示,对于下列各()p t ,试画出相对应的()y t 的频谱图。

图4-30

(31-1)()()cos /2p t t = (31-2)()cos p t t = (31-3)()cos2p t t = (31-4)()()()sin sin 2p t t t = (31-5)()cos2cos p t t t =- (31-6)()()δπn p t t n +∞

=-∞=-∑

(31-7)()()

δ2πn p t t n +∞

=-∞

=

-∑

(31-8)()()δ4πn p t t n +∞

=-∞

=

-∑

(31-9)()()()1δ2πδπ2n n p t t n t n +∞

+∞

=-∞=-∞

=---∑∑

4-31图4-31(a)示出一个抽样系统,其中调制频率0121

()2

ωωω=+,低通滤波器的截止频率211

()2

c ωωω=- 。输出信号的频谱如图4-31(b)所示:

f 0()()

δ=-∞=-∑n p t t nT

图4-31(a )

21

12

图4-31(b )

(1)画出该系统的输出信号()p f t 恢复原信号()f t 的频谱()p F j ω; (2)确定可以从()p f t 恢复原信号()f t 的最大抽样周期。 工程题:

4-32信号通过非线性系统所产生的失真称为非线性失真。其特点是在输出信号中产生了原信号中所没有的或新的频率成分。题图4-32(b )所示为一非线性电路,其输入信号()f t (题图4-32(a )所示)为单一正弦信号,其中只含有0f 的频率成分,经过该系统的非线性元件——二极管(理想器件,其阈值电压设为0伏)后得到半波整流信号(题图4-32(c )所示),在波形上产生了失真,试计算输出信号()y t 的傅里叶级数表示式,画出其幅度谱图。从幅度谱中,可看出输出信号产生了由无穷多个0f 的谐波分量构成的新频率。

+

--

(f t ()

y t

(a )

(b ) (c )

题图4-32非线性失真

4-33 由题图4-33所示的RL 电路实现的LTI 因果系统,电流源输出电流为输入()f t ,系统的输出为流经电感线圈的电流()y t 。

(a )求关联()f t 和()y t 的微分方程;

(b )求系统对输入为()j e t f t ω=的零状态响应; (c )若()()cos f t

t =,求输出()y t

(f t 1Ω

-

题图 4-33

4-34 由题图4-34所示的RLC 电路实现的LTI 因果系统,()f t 为输入电压,电容上的电压取为该系统的输出()y t 。

(a )求关联()f t 和()y t 的微分方程; (b )求系统对输入为()j e t f t ω=的频率响应; (c )若()()sin f t t =,求输出()y t 。

(f t +

-

题图 4-34

4-35 由题图4-35所示

(a )若初始无储能,信号源为()i t ,为求()L i t (零状态响应),列写转移函数()j H ω; (b )若初始状态以()0L i -,()0C u -表示(都不等于零),但()0i t =(开路),求()L i t (零输入响应)。

L

()

L i t

题图4-35

4-36 由题图4-37所示电路,若激励信号()()()23e 3e 2e u t t t t --=+,求响应()y t

,并指出响应中的强迫分量、自由分量、瞬态分量与稳态分量。

)

t

题图 4-35

4-46 由题图4-36所示电路,求该网络的电压转移函数()()

()

21j j j V H V ωωω=

,并画出其零、

极点分布图,若激励信号()1u t 为冲击函数()δt ,求响应()2u t 的波形。

)

题图 4-41

计算机分析题: 4-37

(1).求门函数()4g t 的傅立叶变换,并画出其频率特性曲线图。 (2).已知频率特性函数为:()()()()

()()()3

4

32

2j j 4

j j 3j 2j 5j 2

H ωωωωωωω++=++++,求其幅

频特性和相频特性。

应用Matlab对含噪声语音信号进行频谱分析及滤波

应用Matlab对含噪声的语音信号进行频谱分析及滤波 一、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。 二、实现步骤 1.语音信号的采集 利用Windows下的录音机,录制一段自己的话音,时间在1 s内。然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,(可用默认的采样频率或者自己设定采样频率)。 2.语音信号的频谱分析 要求首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性。 在采集得到的语音信号中加入正弦噪声信号,然后对加入噪声信号后的语音号进行快速傅里叶变换,得到信号的频谱特性。并利用sound试听前后语音信号的不同。

分别设计IIR和FIR滤波器,对加入噪声信号的语音信号进行去噪,画出并分析去噪后的语音信号的频谱,并进行前后试听对比。 3.数字滤波器设计 给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz(可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。

报告内容 一、实验原理 含噪声语音信号通过低通滤波器,高频的噪声信号会被过滤掉,得到清晰的无噪声语音信号。 二、实验内容 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz (可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。 三、实验程序 1、原始信号采集和分析 clc;clear;close all; fs=10000; %语音信号采样频率为10000 x1=wavread('C:\Users\acer\Desktop\voice.wav'); %读取语音信号的数据,赋给x1 sound(x1,40000); %播放语音信号 y1=fft(x1,10240); %对信号做1024点FFT变换 f=fs*(0:1999)/1024; figure(1); plot(x1) %做原始语音信号的时域图形 title('原始语音信号'); xlabel('time n'); ylabel('fuzhi n'); figure(2); plot(f,abs(y1(1:2000))); %做原始语音信号的频谱图形 title('原始语音信号频谱') xlabel('Hz'); ylabel('fuzhi');

应用matlab对语音信号进行频谱分析及滤波.

数字信号处理 —综合实验报告 综合实验名称:应用MatLab对语音信号进行 频谱分析及滤波 系: 学生姓名: 班级: 学号: 成绩: 指导教师: 开课时间学年学期

目录 一.综合实验题目 (1) 二、综合实验目的和意义 (1) 2.1 综合实验目的 (1) 2.2 综合实验的意义 (1) 三.综合实验的主要内容和要求 (1) 3.2 综合实验的要求: (2) 四.实验的原理 (2) 4.1 数字滤波器的概念 (2) 4.2 数字滤波器的分类 (2) (1)根据单位冲激响应h(n)的时间特性分类 (2) 五.实验的步骤 (3) 下面对各步骤加以具体说明。 5.1语音信号的采集 (3) 5.2 语音信号的频谱分析; (3) 5.3 设计数字滤波器和画出其频率响应 (5) 5.3.1设计数字滤波器的性能指标: (5) 5.3.2 用Matlab设计数字滤波器 (6) 5.6 设计系统界面 (19) 六、心得体会 (20) 参考文献: (21)

一.综合实验题目 应用MatLab对语音信号进行频谱分析及滤波 二、综合实验目的和意义 2.1 综合实验目的 为了巩固所学的数字信号处理理论知识,使学生对信号的采集、处理、传输、显示和存储等有一个系统的掌握和理解,再者,加强学生对Matlab软件在信号分析和处理的运用 综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。 2.2 综合实验的意义 语言是我们人类所特有的功能,它是传承和记载人类几千年文明史,没有语言就没有我们今天人类的文明。语音是语言最基本的表现形式,是相互传递信息最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。 语音信号处理属于信息科学的一个重要分支,大规模集成技术的高度发展和计算机技术的飞速前进,推动了这一技术的发展;它是研究用数字信号处理技术对语音信号进行处理的一门新兴学科,同时又是综合性的多学科领域和涉及面很广的交叉学科,因此我们进行语言信号处理具有时代的意义。 三.综合实验的主要内容和要求 3.1综合实验的主要内容: 录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;综合实验应完成的工作: (1)语音信号的采集; (2)语音信号的频谱分析;

第5章频域分析法习题解答

第5章频域分析法 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 思考与习题祥解 题判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

实验五 信号与系统的复频域分析

实验五 信号与系统的复频域分析 王靖 08通信 12号 实验目的 (1)掌握利用MA TLAB 进行连续时间信号与系统的复频域分析。 (2)掌握利用MA TLAB 进行离散系统的复频域分析。 实验环境 安装MATLAB7.0以上版本的计算机 实验内容 1. 利用help 命令了解以下命令的基本用法 residue ,roots ,pzmap ,cart2pol ,residuez ,tf2zp ,zplane 2. 部分分式展开的MATLAB 实现 用部分分式展开法求X(s)的反变换。 2321 ()452s X s s s s +=+++ 步骤一:建立新的m 文件,保存并命名为program1.m 。 步骤二:输入以下命令,理解每条命令的含义。 %program1,部分分式展开法求反变换 [10 1];[1452];[,,](,) n u m d en r p k resid u e n u m d en === 步骤三:保存程序并运行,记录得到的结果。 如右图所示 步骤四:由得到的结果可以直接获得X(s)展开表示式 25 4 2 ()21(1)X s s s s =-++++: 步骤五:由此可得到X(s)反变换的原函数,记录。 X(t)=(5exp(-2*t)-4exp(-t)+2texp(-t)) 思考:将其转换成极坐标形式,应该如何使用cart2pol 命令?离散系统的部分分式展开,如何使用命 令residuez ,得到的结果如何利用? 将笛卡尔坐标转化为极坐标用 [angle,mag]=cart2pol(real(r),imag(r)) [r,p,k] = residuez(nun,,den)

数字信号处理实验-采样的时频域分析

实 验 报 告 学生姓名: 学 号: 指导教师: 一、实验室名称:数字信号处理实验室 二、实验项目名称:采样的时域及频域分析 三、实验原理: 1、采样的概念:采样是将连续信号变化为离散信号的过程。 1. A 、理想采样:即将被采样信号与周期脉冲信号相乘 B 、实际采样:将被采样信号与周期门信号相乘,当周期门信号的宽度很小,可近似为周期脉冲串。 根据傅里叶变换性质 00 0()() ()() ??()()()()()()(()) FT FT a a T n n FT a a T a T a a n n x t X j T j x t x t T x nT t nT X j X j n ωδωδδδω=+∞=+∞=-∞ =-∞ ←?→Ω←?→Ω==-←?→Ω=Ω-Ω∑ ∑式中T 代表采样间隔,01 T Ω= 由上式可知:采样后信号的频谱是原信号频谱以0Ω为周期的搬移叠加 结论:时域离散化,频域周期化;频谱周期化可能造成频谱混迭。 ) (t T δ^ T ^)t

C 、低通采样和Nyquist 采样定理 设()()a a x t X j ?Ω且()0,2a M M X j f πΩ=Ω>Ω=当, 即为带限信号。则当采样频率满足2/22s M M f f π≥Ω=时,可以从采样后的 ^ ()()()a a s s n x t x nT t nT δ∞ =-∞ = -∑信号无失真地恢复()a x t 。称2M f 为奈奎斯特频率, 1 2 N M T f = 为奈奎斯特间隔。 注意: 实际应用中,被采信号的频谱是未知的,可以在ADC 前加一个滤波器(防混迭滤波器)。 2、低通采样中的临界采样、欠采样、过采样的时域及频域变化情况。 低通采样中的临界采样是指在低通采样时采样频率2s M f f = 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≤ 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≥ 设一带限信号的频谱如下: ) () a G j Ω0 m -ΩΩ m Ω0 T T

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为 (s)(t)e st X x dt +∞ --∞ = ? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ -∞ =? (2) MATLAB 中相应函数如下: (F) L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 () F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。 (,) F ilaplace L x =用x 替换结果中的变量t 。

的连续时间系统,其系统函数为s 的有理函数 110 110 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++= +++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下: r=roots(c),c 为多项式的系数向量,返回值r 为多项式的根向量。 求取零极点以及绘制系统函数的零极点分布图可以采用pzmap 函数,调用格式如下: pzmap(sys)绘出由系统模型sys 描述的系统的零极点分布图。 [p,z]=pzmap(sys)这种调用方式返回极点与零点,不绘出零极点分布图。 还有两个专用函数tf2zp 和zp2tf 可实现系统的传递函数模型和零极点增益模型的转换。调用格

含噪声的语音信号分析与处理设计

课程设计任务书 学生姓名:苗强强专业班级:电信1204 指导教师:阙大顺沈维聪工作单位:信息工程学院 题目: 程控宽带放大器的设计 初始条件: 程控宽带放大器是电子电路中常用模块,在智能仪器设备及嵌入式系统中有广 泛的应用。因此对于电子信息专业的技术人员来说,熟练掌握该项技术很有必要。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体 要求) (1)输入阻抗>1KΩ,单端输入,单端输出,放大器负载电阻为600Ω; (2)3dB通频带10kHz~6MHz,在20kHz~5MHz频带内增益起伏<1dB。 (3)增益调节范围10 dB~40 dB,(通过键盘操作调节)。 (4)发挥部分:当输入频率或输出负载发生变化时,通过微处理器自动调节,保持 放大器增益不变。 (5)电路通过仿真即可。 时间安排: 1. 任务书下达,查阅资料 1天 2. 制图规范、设计说明书讲解 2天 3. 设计计算说明书的书写 5天 4. 绘制图纸 1天 5. 答辩 1天 指导教师签名:年月日 系主任(或责任教师)签名:年月日

滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词数字滤波器 MATLAB IIR滤波器 FIR滤波器

信号时域与频域分析

信号时域与频域分析 实验报告 姓名:杨 班级:机械 学号: 213

实验数据中,电机转速为1200r/min,采样频率为1280Hz。Hz3为X位移振幅数据,Hz4为Y位移振幅数据,Hz5为速度振幅数据。 Matlab中信号特征对应函数编程 ma = max(Hz) %最大值 mi = min(Hz) %最小值 me = mean(Hz) %平均值 pk = ma-mi %峰-峰值 va = var(Hz); %方差 st = std(Hz); %标准差 ku = kurtosis(Hz); %峭度 rm = rms(Hz); %均方根 一、X轴位移测量分析 plot(Fs3,Hz3)时域图: ma =52.0261 mi =56.7010 me =1.8200 pk =108.7271 va =1.3870e+03 st =37.2431 ku =1.5462 rm =37.2693 频域图: fs=1280; x=Hz3; N=length(Hz3); df=fs/N; f=0:df:N*df-df; y=fft(x); y=abs(y)*2/N; figure(1); plot(f,y); xlabel('频率/Hz') ylabel('幅值') 频谱幅值取得最大值51.9847um,频率为20Hz,与电机转速对应频率一致,应为电机轴未动平衡所致;二倍频处有较大振幅,可能为轴承间隙过大所致。

二、Y轴位移测量分析 plot(Fs4,Hz4)时域图: ma =61.3987 mi =-74.6488 me =-1.1948 pk =136.0475 av =42.6109 va =2.2428e+03 st =47.3582 ku =1.5135 rm =47.3501 频域图: fs=1280; x=Hz4; N=length(Hz4); df=fs/N; f=0:df:N*df-df; y=fft(x); y=abs(y)*2/N; figure(1); plot(f,y); xlabel('频率/Hz') ylabel('幅值') 频谱幅值取得最大值66.6319um,频率为20Hz,与电机转速对应频率一致,应为电机轴未动平衡所致;二倍频处有较大振幅,可能为轴承间隙过大所致。

实验六-信号与系统复频域分析

实验六信号与系统复频域分析 一、实验目的 1.学会用MATLAB进行部分分式展开; 2.学会用MATLAB分析LTI系统的特性; 3.学会用MATLAB进行Laplace正、反变换。 4.学会用MATLAB画离散系统零极点图; 5.学会用MATLAB分析离散系统的频率特性; 二、实验原理及内容 1.用MATLAB进行部分分式展开 用MATLAB函数residue可以得到复杂有理分式F(s)的部分分式展开式,其调用格式为 其中,num,den分别为F(s)的分子和分母多项式的系数向量,r为部分分式的系数,p为极点,k为F(s)中整式部分的系数,若F(s)为有理真分式,则k为零。 例6-1 用部分分式展开法求F(s)的反变换 解:其MATLAB程序为 format rat; num=[1,2]; den=[1,4,3,0]; [r,p]=residue(num,den) 程序中format rat是将结果数据以分数形式显示

F(s)可展开为 210.536()13 F s s s s --=++++ 所以,F(s)的反变换为 3211()()326t t f t e e u t --??=--???? 2.用MATLAB 分析LTI 系统的特性 系统函数H (s )通常是一个有理分式,其分子和分母均为多项式。计算H (s )的零极点可以应用MATLAB 中的roots 函数,求出分子和分母多项式的根,然后用plot 命令画图。 在MATLAB 中还有一种更简便的方法画系统函数H (s )的零极点分布图,即用pzmap 函数画图。其调用格式为 pzmap(sys) sys 表示LTI 系统的模型,要借助tf 函数获得,其调用格式为 sys=tf(b,a) 式中,b 和a 分别为系统函数H (s )的分子和分母多项式的系数向量。 如果已知系统函数H (s ),求系统的单位冲激响应h(t)和频 率响应H ω(j )可以用以前介绍过的impulse 和freqs 函数。 例6-2 已知系统函数为 321221 s s s +++H(s)= 试画出其零极点分布图,求系统的单位冲激响应h(t)和频率响应H ω(j ),并判断系统是否稳定。 解:其MATLAB 程序如下: num=[1];

语音信号的频域分析

实验二:语音信号的频域分析 实验目的:以MATLAB 为工具,研究语音信号的频域特性,以及这些特性在《语音信号处理》中的应用情况。 实验要求:利用所给语音数据,分析语音的频谱、语谱图、基音频率、共振峰等频域参数。要求会求取这些参数,并举例说明这些参数在语音信号处理中的应用。 实验内容: 1、 语音信号的频谱分析 1.1加载“ma1_1”语音数据。基于DFT 变换,画出其中一帧数据(采样频率为8kHz ,帧长为37.5ms ,每帧有300个样点)的频域波形(对数幅度谱)。 load ma1_1; x = ma1_1 (4161:4460); plot (x) N = 1024; k = - N/2:N/2-1; X = fftshift (fft (x.*hann (length (x)),N)); plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ]) 已知该帧信号的时域波形如图(a )所示,相应的10阶LPC 谱如图(b )所示。 问题1:这帧语音是清音还是浊音?基于DFT 求出的对数幅度谱和相应的LPC 谱相比,两者有什么联系和区别? 问题2:根据这帧基于DFT 的对数幅度谱,如何估计出共振峰频率和基音周期? 问题3:时域对语音信号进行加窗,反映在频域,其窗谱对基于DFT 的对数幅度谱有何影响?如何估计出窗谱的主瓣宽度? 1.2对于浊音语音,可以利用其频谱)(ωX 具有丰富的谐波分量的特点,求出其谐波乘积谱: ∏ ==R r r X HPSx 1)()(ωω 式中,R 一般取为5。在谐波乘积谱中,基频分量变得很大,更易于估计基音周期。

语音信号的时域特征分析

中北大学 课程设计说明书 学生姓名:蒋宝哲学号: 24 学生姓名:瓮泽勇学号: 42 学生姓名:侯战祎学号: 47 学院:信息商务学院 专业:电子信息工程 题目:信息处理实践:语音信号的时域特征分析指导教师:徐美芳职称: 讲师 2013 年 6 月 28 日

中北大学 课程设计任务书 2012-2013 学年第二学期 学院:信息商务学院 专业:电子信息工程 学生姓名:蒋宝哲学号: 24 学生姓名:瓮泽勇学号: 42 学生姓名:侯战祎学号: 47 课程设计题目:信息处理实践:语音信号的时域特征分析起迄日期: 2013年6 月7日~2013年6月 28 日 课程设计地点:学院楼201实验室、510实验室、608实验室指导教师:徐美芳 系主任:王浩全 下达任务书日期: 2013 年 6 月 7 日

语音信号的采集与分析 摘要 语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。 关键词:语音信号,采集与分析, Matlab 0 引言 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能.声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。 让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,电话、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。 语音信号采集与分析之所以能够那样长期地、深深地吸引广大科学工作者去不断地对其进行研究和探讨,除了它的实用性之外,另一个重要原因是,它始终与当时信息科学中最活跃的前沿学科保持密切的联系.并且一起发展。语音信号采集与分析是以语音语言学和数字

数字信号处理在语音信号分析中的应用

《数字信号处理》 课程设计报告 数字信号处理在语音信号分析中的应用 专业班级: 姓名: 学号:

目录 摘要 (3) 1、绪论 (3) 2、课程设计的具体内容 (4) 2.1.1、读取语音信号的任务 (4) 2.1.2、任务分析和解决方案 (5) 2.1.4、运行结果和相应的分析 (5) 2.2、IIR滤波器设计和滤波处理 (6) 2.2.1、设计任务 (6) 2.2.2、任务分析和解决方案 (7) 2.2.3、编程得到的MATLAB代码 (7) 2.2.4、运行结果和相应的分析 (7) 2.3、FIR滤波器设计和滤波处理 (9) 2.3.1、设计任务 (9) 2.3.2、任务分析和解决方案 (9) 2.3.3、编程得到的MATLAB代码 (9) 2.3.4、运行结果和相应的分析 (11) 3、总结 (13) 4、存在的不足及建议 (13) 5、参考文献 (13)

数字信号处理设计任务书 摘要 语音信号滤波处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前 发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。本设计通过录制一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab平台对语音信号进行加噪然后再除去噪声,进一步设计两种种滤波器即高通滤波器、带通滤波器,基于这两种滤波器设计原理,对含加噪的语音信号进行滤波处理。最后对比滤波前后的语音信号的时域和频域特性,回放含噪语音信号和去噪语音信号。论文从理论和实践上比较了不同数字滤波器的滤波效果。 1.绪论 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能,声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。 随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,电话、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。数字滤波器是数字信号处理的基础,用来对

连续时间信号与系统的频域分析

第3章连续时间信号与系统的频域分析3.1 学习要求 1、掌握周期信号的频谱及其特点; 2、了解周期信号的响应问题; 3、掌握非周期信号的频域描述——傅立叶变换; 4、熟练掌握傅立叶变换的性质与应用; 5、掌握系统的频域特性及响应问题; 6、了解系统的无失真传输和理想滤波。 3.2 本章重点 1、频谱的概念及其特性; 2、傅里叶变换及其基本性质; 3、响应的频域分析方法; 4、系统频率响应的概念。 3.3 知识结构

3.4内容摘要 3.4.1信号的正交分解 两个矢量1V 和2V 正交的条件是这两个矢量的点乘为零,即: o 1212cos900?=?=V V V V 若有一个定义在区间()12,t t 的实函数集{}()(1,2,,)i g t i n =L ,在该集合中所有的函数满足 ?????=≠===??2 1 21,,2,1,0)()(,,2,1)(2t t j i t t i i n j j i dt t g t g n i k dt t g ΛΛ 则称这个函数集为区间()12,t t 上的正交函数集。式中i k 为常数,当1i k =时,称此函数集为归一化正交函数集。 若实函数集{}(),1,2,,i g t i n =L 是区间()12,t t 内的正交函数集,且除()i g t 之外 {}(),1,2,,i g t i n =L 中不存在()x t 满足下式 2 1 20()t t x t dt <<∞?且2 1 ()()0t i t x t g t dt =? 则称函数集{}(),1,2,,i g t i n =L 为完备正交函数集。 若在区间()12,t t 上找到了一个完备正交函数集{}(),1,2,,i g t i n =L ,那么,在此区间的信号()x t 可以精确地用它们的线性组合来表示 11221 ()()()()()n n i i i x t C g t C g t C g t C g t ∞ ==++++=∑L L 各分量的标量系数为 2 1 21 2 ()()d ()d t i t i t i t x t g t t C g t t = ?? 系数i C 只与()x t 和()i g t 有关,而且可以互相独立求取。 3.4.2周期信号的傅里叶级数 1、三角形式的傅里叶级数 0001 ()(cos sin )n n n x t a a n t b n t ωω∞ ===++∑

语音信号采集与时频域分析正文

第一章引言 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和频域等处理方法。语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。 时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。 频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。主要分析的特征参数:短时谱、倒谱、语谱图等。 本文采集作者的声音信号为基本的原始信号。对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。整体设计框图如下图所示: 图1.1时频域分析设计图 图1.2加噪滤波分析流程图

第二章 语音信号时域分析 语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。 2.1窗口选择 由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。两种窗函数的时域波形如下图2.1所示: sample w (n ) sample w (n ) 图2.1 矩形窗和Hamming 窗的时域波形 矩形窗的定义:一个N 点的矩形窗函数定义为如下 {1,00,()n N w n ≤<=其他 (2.1) 哈明窗的定义:一个N 点的哈明窗函数定义为如下 0.540.46cos(2),010,()n n N N w n π-≤<-??? 其他 = (2.2) 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用哈明窗,在计算短时能量和平均幅度时通常用矩形窗。表2.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。

实验二连续时间信号的频域分析

实验二 连续时间信号的频域分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质; 5、学习掌握利用Matlab 语言编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用Matlab 编程完成相关的傅里叶变换的计算。 二、原理说明 1、连续时间周期信号的傅里叶级数CTFS 分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 三角傅里叶级数为: ∑∞ =++=1 000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1 或: ∑∞=++=1 00)cos()(k k k t k c a t x ?ω 2.2 其中1 02T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、 余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为:

语音信号的采集与时频域分析系统的设计说明

燕山大学 课程设计说明书 题目:语音信号的采集与时频域分系统的设计 学院(系):电气工程学院 年级专业:09精仪一班 学号:8 学生:乔召杰 指导教师:永红 教师职称:副教授

目录 引言 (2) 第1章语音信号时域分析 (3) 1、1 窗口选择 (3) 1、2 短时能量 (4) 1、3短时平均过零率 (5) 1、4 短时自相关函数 (6) 1、5 时域分析方法的应用 (7) 第2章语音信号频域分析 (8) 2、1 短时傅里叶变换 (8) 2、2 语谱图 (9) 2、3 复倒谱和倒谱 (9) 第3章加噪与滤波处理 (11) 3、1 原始信号加噪处理 (11) 3、2 加噪信号滤波处理 (12) 第4章总结 (13) 参考文献 (14) 附录 (15)

引言 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和频域等处理方法。语音信号可以认为在短时间(一般认为在10~30ms 的短时间)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。 时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。 频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。主要分析的特征参数:短时谱、倒谱、语谱图等。 本文采集作者的声音信号为基本的原始信号。对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。整体设计框图如下图所示: 图0.1时频域分析设计图

实验三线性系统的频域分析

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班

: 学号: 实验三 线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、基础知识及MATLAB 函数 频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。 1.频率曲线主要包括三种:Nyquist 图、Bode 图和Nichols 图。 1)Nyquist 图的绘制与分析 MATLAB 中绘制系统Nyquist 图的函数调用格式为: nyquist(num,den) 频率响应w 的围由软件自动设定 nyquist(num,den,w) 频率响应w 的围由人工设定 [Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量, 不作图 例4-1:已知系统的开环传递函数为2 526 2)(2 3++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) 极点的显示结果及绘制的Nyquist 图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。 p = -0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668 若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为: num=[2 6]; den=[1 2 5 2]; w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距 离的点 nyquist(num,den,w) 2)Bode 图的绘制与分析 系统的Bode 图又称为系统频率特性的对数坐标图。Bode 图有两图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。 MATLAB 中绘制系统Bode 图的函数调用格式为: bode(num,den) 频率响应w 的围由软件自动设定 bode(num,den,w) 频率响应w 的围由人工设定 图4-1 开环极点的显示结果及Nyquist 图

浅谈语音信号时域与频域

随机信号分析及应用题目:浅谈语音信号时域与频域 学生姓名 学号 指导教师王琳 院系信息科学与技术学院 专业电子信息科学与技术 年级2011级

摘要 目的:研究语音信号的时域和频域分析的特点与应用。方法:中英文相关文献结合分析。结果:采用一系列图像分析和处理技术,实现了语音信号的基本处理的功能,经过测试运行,本设计圆满的完成了对语音信号的读取与打开;较好的完成了对语音信号的频谱分析,通过fft变换,得出了语音信号的频谱图。结论:时域的表示较为形象与直观,频域分析则更为简练,剖析问题更为深刻和方便。目前,信号分析的趋势是从时域向频域发展。然而,它们是互相联系,缺一不可,相辅相成的。 关键词:语音信号,时域,频域,傅里叶变换

Abstract Objective: to study the characteristics of speech signal in the time domain and frequency domain analysis and application. Methods: literature combined with analysis in both Chinese and English. Results: by using a series of image analysis and processing technology, can realize the function of the basic processing of speech signal, through the test run, this design successfully finished the reading of the speech signal and open; by FFT transformation, it is concluded that the figure of speech signal spectrum. Conclusion: the time-domain said more image and intuitive, frequency domain analysis is more succinct, analyze the problem more deeply and convenient. At present, the trend of the signal analysis from time domain to frequency domain development. However, they are linked to each other, be short of one cannot, complementary to each other. Key words: random signal, the time domain, frequency domain, the sampling theorem, the Fourier transform.

相关主题
文本预览
相关文档 最新文档