当前位置:文档之家› 液压系统过滤器的选型与应用

液压系统过滤器的选型与应用

液压系统过滤器的选型与应用
液压系统过滤器的选型与应用

在冶金、石化等机械设备中,使用了大量的液压系统,而各种液压系统在设计时,为了控制液压系统元件的污染磨损和防止污染物引起系统的故障,需考虑在各个油管路中增加各种类型的过滤器。过滤器根据其使用场合和具体安装位置的不同,可分为:吸油管路过滤器、压力管路过滤器、回油管路过滤器;根据其工作压力的不同,可分为:高压过滤器和低压过滤器。不同位置和用途的过滤器对系统中油液污染控制的效果有很大的影响,选择过滤器时应考虑以下几个方面:

1、根据使用目的(用途)选择过滤器的种类,根据安装位置情况选择过滤器的安装形式;

2、过滤器应具有足够大的通油能力,并且压力损失要小;

3、过滤精度应满足液压系统或元件所需清洁度要求;

4、滤芯使用的滤材应满足所使用工作介质的要求,并且有足够强度;

5、过滤器的强度和压力损失是选择时需要重点考虑的因素,安装过滤器后会对系统造成局部压降或产生背压;

6、滤芯的更换及清洗应方便;

7、应根据系统需要考虑选择合适的滤芯保护附件(如带旁通阀的定压开启装置及滤芯污染情况指示器或型号器等)。

所以,在设计液压系统的时候要确定在那些位置需要布置什么样的过滤器。

一、吸油管路过滤器:

在一般的液压系统中,首先要通过油泵将液压油或润滑油从油箱注入到系统中,泵在将油液吸入系统时,也将邮箱中的各种污染物带入系统中,为了防止污染物进到系统中,可在油泵吸油口处安装吸油管路过滤器,用以保护油泵及其他液压元件,有效地控制液压系统污染,调液压系统的清洁度。泵前吸油过滤器的精度要求比较低,其主要的作用就是滤除大颗粒的污染物,防止污染物进入泵组,影响泵组工作,加快泵的磨损、堵塞或损坏,特别是精密进口泵、叶片泵、柱塞泵以及齿轮泵等这类泵前一定要安装吸油管路过滤器。

二、压力管路过滤器:

压力管路过滤器安装在不同压力等级的压力管路上,主要作用是保护液压系统中的各种液压元件,用以进一步清除或阻挡由于外界带入元件工作时磨损,以及介质本身化学作用所产生的杂质。特别适用于自动控制系统和伺服系统。它可防止高精度的控制元件和执行元件由于污染而过早磨损或卡死,从而可减少故障,延长元件使用寿命。该过滤器采用进口玻璃纤维滤材,具有过滤精度高,通油能力强,原始压力损失小,纳污量大等优点。

三、回油管路过滤器:

液压系统中的油液是循环使用的,油液在系统中运行一段时间后,会将系统中的各种污染物带回油箱,为了防止污染物随着油液再次流回油箱,重新对系统造成污染,需要在回油管路安装过滤器,用来滤

除油液中诸元件磨损的金属粉末及橡胶杂质等,使流回油箱中的油液保持清洁。该过滤器的滤芯采用化纤过滤材质,具有过滤精度高、通油能力大、原始压力损失小、纳污量大等优点,并装有压差发讯器及旁通阀。

当滤芯堵塞到进出口压差为 0.35MPa 时,便发出开关信号,此时应清洗或更换滤芯,如不能及时停机或无人来更换滤芯,装在滤芯上部的旁通阀会自动开启,以保护系统。该过滤器广泛应用于重型机械、矿山机械、冶金机械等液压系统;天宇液压过滤器用于液压系统的吸油、回油以及压力管路上。

四、高压过滤器:

高压过滤器是直接安装在液压系统的压力管路上,是经过过滤,用于滤除油液中的机械和化学杂质,从而防止阀芯卡死、节流小孔间隙和印尼孔的堵塞,减弱液压元件的磨损,该过滤器设有滤芯堵塞压差发讯器,进出油口压差达到一定值时,发讯器会发出讯号,这时应及时停机更换滤芯,高压过滤器滤芯采用金属和新型化纤滤材,具有过滤精度高、通油能力大、压力损失小,纳污量大等优点。

五、低压过滤器:

安装于液压系统低压管路或回油管路中,用于回油过滤时可直接也可以外接管路,滤除工作介质中的固体颗粒及胶状物质,有效污染度。滤芯装配有旁通阀,并可根据需要装配压力发讯器。

液压过滤器选型设计

液压过滤器选型设计指南 1 范围 本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。 2 规范性引用文件 下列文件的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 20079 液压过滤器技术条件 Q/SY 012 015 液压过滤器选用规范 3 术语、符号及定义 GB/T 20079确定的术语、符号和定义适用于本文件。 3.1 过滤精度 指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。 过滤器最大流量 由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。 纳污容量 指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。 过滤比 过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。

洁净过滤器总成压降△P总 被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。 壳体压降△P壳体 过滤器不装滤芯时的压降。 洁净滤芯压降△P滤芯 洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。 4 工作原理与结构型式 4.1 过滤器的工作原理与结构 过滤器的典型结构见图1。 图1 液压过滤器典型结构 油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。过滤后的油液从过滤器的出油口排出。 4.2 过滤器的分类 过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。

液压系统过滤器的选型与应用

液压系统过滤器的选型与应用 在冶金、石化等机械设备中,使用了大量的液压系统,而各种液压系统在设计时,为了控制液压系统元件的污染磨损和防止污染物引起系统的故障,需考虑在各个油管路中增加各种类型的过滤器。 过滤器根据其使用场合和具体安装位置的不同,可分为:吸油管路过滤器、压力管路过滤器、回油管路过滤器;根据其工作压力的不同,可分为:高压过滤器和低压过滤器。不同位置和用途的过滤器对系统中油液污染控制的效果有很大的影响,选择过滤器时应考虑以下几个方面: 1、根据使用目的(用途)选择过滤器的种类,根据安装位置情况选择 过滤器的安装形式; 2、过滤器应具有足够大的通油能力,并且压力损失要小; 3、过滤精度应满足液压系统或元件所需清洁度要求; 4、滤芯使用的滤材应满足所使用工作介质的要求,并且有足够强度; 5、过滤器的强度和压力损失是选择时需要重点考虑的因素,安装过滤 器后会对系统造成局部压降或产生背压; 6、滤芯的更换及清洗应方便; 7、应根据系统需要考虑选择合适的滤芯保护附件(如带旁通阀的定压 开启装置及滤芯污染情况指示器或型号器等)。 所以,在设计液压系统的时候要确定在那些位置需要布置什么样的过滤器。一、吸油管路过滤器: 在一般的液压系统中,首先要通过油泵将液压油或润滑油从油箱注入到系统中,泵在将油液吸入系统时,也将邮箱中的各种污染物带入系统中,为了防止污染物进到系统中,可在油泵吸油口处安装吸油管路过滤器,用以保护油泵及其他液压元件,有效地控制液压系统污染,调液压系统的清洁度。 泵前吸油过滤器的精度要求比较低,其主要的作用就是滤除大颗粒的污染物,防止污染物进入泵组,影响泵组工作,加快泵的磨损、堵塞或损坏,特别是精密进口泵、叶片泵、柱塞泵以及齿轮泵等这类泵前一定要安装吸油管路过滤器。

篮式过滤器使用规范书

平底蓝式过滤器使用安装说明书 SRB-I-(50~300)/1.6 C II –HG-80 2010-07-06

概述 篮式过滤器用于油或其它液体管道上,过滤管道里的杂物,过滤孔面积比通径管面积大于2-3倍.远远超过Y型、T型过滤器过滤面积。过滤器精度在过滤器中属于一种精度最佳的过滤器,滤网结构与其它过滤网不一样,因形状像篮子,故名蓝式过滤器。 篮式过滤器主要由接管、筒体、滤篮、法兰、法兰盖及紧固件等组成。安装在管道上能除去流体中的较大固体杂质,使机器设备(包括压缩机、泵等)、仪表能正常工作和运转,达到稳定工艺过程,保障安全生产的作用。 sl过滤器是除去液体中少量固体颗粒的小型设备,可保护压缩机、泵、仪表和其他的正常工作,当流体进入有一定规格的滤网的滤桶后,其杂质被阻挡,而清洁的滤液则由过滤器出口排出,当需要清洗时,只要将可拆卸的滤桶取出,处理后重新装入即可,因此,使用维护极为方便。目前已广泛应用于石油、化工、医药、食品、环保等行业。若将其串连的安装在泵的入口或系统管线的其他部位,则既可以延长泵和其他设备的使用寿命,又能保证整个系统的安全。 工作原理 管道在安装时会有其它杂物带入管道,在生产中原材料中也含有杂物。管道里液体经过过滤器时它的污物由过滤器收藏到滤网中,在一定的程度时通过泄压孔泄压,以达到轻松打开壳盖清理滤网即可,并可通过滞留物排放口对壳体进行清理。 过滤器选型的一般原则: 1、进出口通径: 原则上过滤器的进出口通径不应小于相配套的泵的进口通径,一般与进口管路口径一致。 2、公称压力: 按照过滤管路可能出现的最高压力确定过滤器的压力等级。 3、孔目数的选择:

高、中、初效过滤器知识

过滤器是怎么区分低效、中效、高效的? 过滤器一般是根据所过滤尘埃粒子料径大小及过滤效率来确定! 过滤器分类: 初效(低效):G1-G4 主要针对5.0μm以上颗粒的过滤效率 中效:F5-F9 主要针对1.0-5.0μm颗粒的过滤效率 亚高效:H10-H12 主要针对0.3-0.5μm颗粒的过滤效率 高效:H13-H14 主要针对0.3μm颗粒的过滤效率 超高效:U15-U17 主要针对0.12μm颗粒的过滤效率 高效过滤器 主要用于捕集0.5um以下的颗粒灰尘及各种悬浮物。采用超细玻璃纤维纸作滤料,胶版纸、铝膜等材料作分割板,与木框铝合金胶合而成。每台均经纳焰法测试,具有过滤效率高、阻力低、容尘量大等特点。高效空气过滤器可广泛用于光学电子、LCD液晶制造,生物医药、精密仪器、饮料食品,PCB印刷等行业无尘净化车间的空调末端送风处。高效和超高效过滤器均用于洁净室末端,以其结构形式可分为有:有隔板高效、无隔板高效、大风量高效,超高效过滤器等。 另外还有三种高效过滤器,一种是超高效过滤器,能做得到净化 99.9995%。一种是抗菌型无隔板高效空气过滤器,具有抗菌作用,阻止细菌进入洁净车间,一种是亚高效过滤器,价格便宜以前多用于要求不高的净化空间。 过滤器选型的一般原则 1、进出口通径: 原则上过滤器的进出口通径不应小于相配套的泵的进口通径,一般与进口管路口径一致。 2、公称压力: 按照过滤管路可能出现的最高压力确定过滤器的压力等级。 3、孔目数的选择: 主要考虑需拦截的杂质粒径,依据介质流程工艺要求而定。各种规格丝网可拦截的粒径尺寸查下表“滤网规格”。 4、过滤器材质: 过滤器的材质一般选择与所连接的工艺管道材质相同,对于不同的服役条件可考虑选择铸铁、碳钢、低合金钢或不锈钢材质的过滤器。

过滤器选型计算

精心整理篮式粗过滤器选型计算 粗过滤器工艺计算 1.总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T3411-1999《石油化 工泵用过滤器选用、检验及验收》、HG-T21637-1991《化工管道过滤器》。本计算仅适用 于过滤器内过滤面积及起始压降计算,过滤器壳体执行GB150标准,不在本计算内。 2.过滤面积计算 依据SH/T3411-1999标准,其规定的有效过滤面积定义为:过滤器内支撑结构开孔总面积 减去开孔处滤网占据面积的净面积。因此计算有效过滤面积时考虑支撑结构的有效面积以及 滤网的有效面积。根据标准要求,永久性过滤器的有效过滤面积与管道截面积之比不小于1.5。 本项目的过滤器按照临时过滤器要求,有效过滤面积与管道截面积之比取不小于3.0。 2.1管道截面积计算S1: 本项目过滤器进出口管道工程直径DN200,S1=(0.2/2)2×3.14=0.0314m2 2.2过滤器有效过滤面积计算S2: 按照标准要求面积比取3,即S2/S1=3,即S2=S1×3=0.0314×3=0.0942m2 2.3过滤器过滤网面积计算 按照项目要求,过滤网要求0.8mm,表面积0.45m2。 本过滤器选择蓝式滤芯的表面积为0.56m2,滤篮支撑结构开孔率取50%,滤网选24目(可 拦截0.785mm以上颗粒),其有效开孔率为56%。因此本项目所选过滤器滤篮的有效过滤 面积为S=0.56×0.5×0.56=0.157m2,有效过滤面大于2.2计算结果0.0942m2,因此 在过滤面积上满足要求。 3.起始压降计算 压降计算按照标准所提供的参考公式计算,其中涉及到的物理量有雷诺数、当量长度、流体 密度、黏度等。 计算公式: 符号说明:

净化过滤器知识(DOC)

净化过滤器知识 基本常识 ◎过滤概述 过滤材料 既有效地拦截尘埃粒子,又不对气流形成过大的阻力。杂乱交织的纤维形成对粒子的无数道屏障,纤维间宽阔的空间允许气流顺利通过。 效率 过滤器捕集粉尘的量与未过滤空气中的粉尘量之比为“过滤效率”。小于0.1?m(微米)的粒子主要作扩散运动,粒子越小,效率越高;大于0.5?m的粒子主要作惯性运动,粒子越大,效率越高。 阻力 纤维使气流绕行,产生微小阻力。无数纤维的阻力之和就是过滤器的阻力。 过滤器阻力随气流量增加而提高,通过增大过滤材料面积,可以降低穿过滤料的相对风速,减小过滤器阻力。 动态性能 被捕捉的粉尘对气流产生附加阻力,于是,使用中过滤器的阻力逐渐增加。被捕捉到的粉尘形成新的障碍物,于是,过滤效率略有改善。 被捕捉的粉尘大都聚集在过滤材料的迎风面上。滤料面积越大,能容纳的粉尘越多,过滤器寿命越长。 使用寿命 滤料上积尘越多,阻力越大。当阻力大到设计所不允许的程度时,过滤器的寿命就结束。有时,过大的阻力会使过滤器上已捕捉到的灰尘飞散,出现这种二次污染时,过滤器也该报废。静电 若过滤材料带静电或粉尘带静电,过滤效果可以明显改善。因静电使粉尘改变运动轨迹并撞向障碍物,静电力参与粘住的工作。 ◎过滤效率 在决定过滤效率的因素中,粉尘“量”的含义多种多样,由此计算和测量出来的过滤器效率数值也就不同。实用中,有粉尘的总重量、粉尘的颗粒数量;有时是针对某一典型粒径粉尘的量,有时是所有粉尘的量;还有用特定方法间接地反映浓度的通光量(比色法)、荧光量(荧光法);有某种状态的瞬时量,也有发尘全过程变化效率值的加权平均量。 对同一只过滤器采用不同的方法进行测试,测得的效率值就会不一样。离开测试方法,过滤效率就无从谈起。 ◎过滤器阻力 过滤器对气流形成阻力。过滤器积灰,阻力增加,当阻力增大到某一规定值时,过滤器报废。 新过滤器的阻力称“初阻力”;对应过滤器报废时的阻力值称“终阻力”。 终阻力 终阻力的选择直接关系到过滤器的使用寿命、系统风量变化范围、系统能耗。 大多数情况下,终阻力是初阻力的2~4倍。 终阻力建议值 效率规格建议终阻力Pa

液压油过滤方案

轧钢分厂液压系统净油器方案 天津华通科技有限公司 朱传平 2015/10/28

项目名称离心分离式净油器在轧钢分厂应用方案项目概况 液压润滑传动设备在各行各业已经得到广泛的应用,在现代化的大型生产线、工程机械上体现得尤为充分。液压润滑传动技术有其不可比拟的优点,同时,液压润滑传动设备又有其脆弱的一面,其中抗污染能力低是突出的弱点,70%?80%设备故障是由油品污染导致,污染物混入系统后会加速设备元件的磨损、甚至破坏,灰尘颗粒在液压缸内会加速密封件的损坏,缸筒内表面的拉伤,使泄漏增大,推力不足或者动作不稳定、爬行、速度下降,产生异常的声响与振动.要使润滑系统正常、可靠的运行,必须要保持整个润滑系统的清洁。离心式净油器,能降低设备生产运行成本,提高设备效率,去除润滑油中机械杂质、水分和其它污染物,提高润滑油使用、设备和管理等实际效益。 ?高线初轧?中轧.1线2线3线润滑站系统的现场基本情况现场使用的润滑油牌号为320#液压油,油箱为长方形状,横放于地面上,油箱容积为50M3-70M3。工作温度为35 C左右。 该系统配有简单的循环回路过滤网。系统中润滑油颜色偏暗.润滑油中炭黑,金属杂质和冷凝水致使润滑油粘度增加影响设备的正常运行,使液压润滑油提前进入疲劳期,会造成

设备更换和维修费用的逐年增加,更换液压润滑油造成企业增加采购成本. 润滑油采用过滤方案如下: 离心式滤油机每四台为一组,安装在液压润滑油箱的顶部方便自重回油,从油箱底排口取油来进行过滤油品中的杂质和水分。设备启动后无需人员看管,只需定期清洗和清理滤油机过滤出来的杂质和水分,设备运行周期为二个月可以使该液压润滑站油品达到理想的NAS 等级。 参数: 产品名称:净油器 专利号:ZL 2005 2 产品型号: 4 台 流量:1320L/hr (油泵流量) 电压:380V 功率: 安装附件:油泵、油管、磁力启动器。 本项目使用净油器成本分析适用油液:液压油、润滑油、透平油、循环油、机油、冷却油等,特点如下: 1.过滤精度高:能分离出以下的杂质。提高油液清洁度避免因液压阀芯堵塞造成生产故障,同时降低机械磨损,提高机械使用寿命。 2.节能降耗,经济效益突出:保持油品的清洁度,使油品更换时间至少延长 2 倍(油品酸度等指标不变)。 3.无滤芯,无耗材,维护保养费用节约70%。 能在不停机情况下完成定期清洗。本项目中原系统配有小型循环回

过滤器型号规格

Y型过滤器(RF) DN50-15 20#+Zn GB/T8163 PN2.0 RF 焊制Y型 SH/T3411 T26R-A105-G 过滤器(侧BW) DN350-125 20# GB/T8163 PN2.0 BW SCH20 三通侧流型30目 SH/T3411 T24S2W-A105 过滤器(侧BW) DN100-100 20# GB/T8163 PN2.0 BW SCH40 三通侧流型30目 SH/T3411 T24S4W-A105 过滤器(直BW) DN350-125 20# GB/T8163 PN2.0 BW SCH20 三通直流型30目 SH/T3411 T22S2W-A105 过滤器(直BW) DN100-100 20# GB/T8163 PN2.0 BW SCH40 三通直流型30目 SH/T3411 T22S4W-A105 篮式过滤器(RF) DN350-15 20# GB/T8163 PN2.0 RF 30目 SH/T3411 直通封头篮式带DN15排气阀带DN15排凝阀SHL-SRBII Y型过滤器(RF) DN80-15 20# GB/T8163 PN2.0 RF 焊制Y型 30目SH/T3411 T26R-A105 过滤器(侧BW) DN350-125 20# GB/T8163 PN2.0 BW SCH20 三通侧流型30目 SH/T3411 T24S2W-A105 过滤器(侧BW) DN350-125 20# GB/T8163 PN2.0 BW SCH40 三通侧流型30目 SH/T3411 T24S4W-A105 过滤器(侧BW) DN100-100 20# GB/T8163 PN2.0 BW SCH80 三通侧流型30目 SH/T3411 T24S6W-A105 过滤器(直BW) DN350-125 20# GB/T8163 PN2.0 BW SCH40 三通直流型30目 SH/T3411 T22S4W-A105 过滤器(直BW) DN100-100 20# GB/T8163 PN2.0 BW SCH80 三通直流型30目 SH/T3411 T22S6W-A105 篮式过滤器(RF) DN350-15 20# GB/T8163 PN2.0 RF 30目 SH/T3411 直通封头篮式带DN15排气阀带DN15排凝阀SHL-SRBII Y型过滤器(RF) DN80-15 20# GB/T8163 PN2.0 RF 焊制Y型 30目SH/T3411 T26R-A105

液压过滤器选型设计

液压过滤器选型设计指南 1范围 本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。 2规范性引用文件 下列文件的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 20079 液压过滤器技术条件 Q/SY 012 015 液压过滤器选用规范 3术语、符号及定义 GB/T 20079确定的术语、符号和定义适用于本文件。 3.1 过滤精度 指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。 过滤器最大流量 由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。 纳污容量 指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。 过滤比 过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。 洁净过滤器总成压降△P总 被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。 壳体压降△P壳体 过滤器不装滤芯时的压降。 洁净滤芯压降△P滤芯 洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。

4工作原理与结构型式 4.1过滤器的工作原理与结构 过滤器的典型结构见图1。 图1液压过滤器典型结构 油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。过滤后的油液从过滤器的出油口排出。 4.2过滤器的分类 过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。 图2过滤器安装位置示意图 设计系统时采用哪种或哪几种过滤方式的组合应根据系统液压元件类型,工况,成本和整机布置综合考虑,可参考表1所示优缺点设计最优的系统过滤方案,其中,吸油过滤容易导致液压泵吸空,建议尽量不采用高精度吸油过滤方案。 表1不同过滤方式的优缺点 优点缺点 压油过滤1)安装于泵出口,直接保护下游精密液压元件; 2)对压降相对来说不太敏感,因此过滤器体积可 做的比较小; 1)要求过滤耐高压,价格贵; 2)泵未受保护; 3)控制、执行元件磨损污染物直接回油箱; 回油过滤1)液压系统回油过滤后回油箱,油箱油液清洁; 2)压力等级低,价格偏移; 1)在精密液压元件上游须单独另加压油过滤器保护; 2)回油脉动大,影响过滤精度,并使滤芯容易损坏;

袋式过滤器

目录 第一部分袋式过滤器设备的运行 1.说明 2.试运行 3.日常运行 4.过滤器设备技术性能参数表 第二部分袋式过滤器设备的维护 1.说明 2.安全问题 3.阀门 4.灰斗 5.卸灰输灰装置 6.清灰机构 7.滤袋 8.仪表 9.电气操作 第一部分袋式过滤器设备的运行 1.说明 一个性能优良的袋式过滤器,是大多数用户所期望的,但是,无论性能如何优良,如果对它的操作和维修要求了解不够、或者由责任心不强的工作人员管理的话,在短时间内也会变成性能低下的系统。同时,作为制造商来说,产品经常出现故障,不仅会不断地给业务上带来麻烦,并给人以维修费用增加、效率低下的不良印象。 另一方面,虽然选取的设备没有多少备用的能力,如果操作人员在操作与维护方面具有丰富的知识,能够很好地了解其设计上的特点,正常地进行操作与维护,就能够保持原设计的性能,充分发挥其效能,而且所需要的费用也会降到最低。 在进行设备的运转与维护时,必须按照这些说明书和资料所制定的操作规程与维护规程的规定进行工作。 为了能使袋式过滤器正确地运行,须注意以下事项: ⑴首先,用户必须选取最合适的袋式过滤器,才能降低运行与维护费用。应在定购之前,要很好地研究有关运转、测试仪表、维修等资料,再考虑合适的性能和年运行费用,来选择合适的装置。 ⑵必须按照设备制造商提供的说明书等资料中的要求进行运转。 ⑶要了解袋式过滤系统中包括那些部分。 ⑷要经常地、细致地注意滤袋的安装和工作状况。

⑸要注意进入袋式过滤器的烟气温度,一定使之在露点温度以上10℃~20℃运行。 袋式过滤系统的运行可分为:试运行和日常运行。首先,在进行试运行时,必须对系统的单一部件进行检查,然后作适应性运行,同时作一部分性能实验。其次,尽管进入了日常运行,仍然有必须经常进行检查的项目。进行这些检查对煤粉过滤器的正常运行是很有益的,尤其是在日常运行条件下,因负荷条件的变化对性能要产生一定的影响,所以先要明确操作程序,在设备投入使用后还要密切注意一段时间。 2.试运行 在新的袋式过滤器开始试运行前,必须对下列各项进行检查: ⑴风机的旋向、转速、轴承振动和温度。 ⑵管道的状况、系统的配套设备、过滤器本体是否漏气以及供水系统和供气系统等。 ⑶处理风量和各点的压力与温度是否与设计相符。 ⑷测试仪表的指示及记录是否正确。 ⑸要反复校验并确认所有安全装置都正常工作。 ⑹脉冲过滤器滤袋的检查: 滤袋在安装之初虽已调好,但在运行几天后,还必须检查滤袋的泄漏情况,因为由于温度和压力的变化、安装的问题以及反复的清灰,可能使某些滤袋的脱落现象。 ⑺新装滤袋的投运: 在开始运转的时候,常常会出现一些事先预料不到的情况,需要密切注意。例如,出现异常的温度、压力、水分等将给新装置造成损害,特别是这样的气体进入冷的过滤器时,在箱体和滤袋上可能发生水气凝结,造成滤袋堵塞和腐蚀。 另外,气体温度的急剧变化,对风机也有不良的影响,应避免这种情况。因为温度的变化,可能引起风机轴的变形,将形成不平衡状态,运行时就会引起振动。并且,在停止运行时,如温度急剧下降,再启动的时候也会有振动的危险。 设备的起动对在日常运行中保持系统的良好性能有着重要的作用,必须细心注意和慎重行事。 3、日常运行 袋式过滤器在日常运行中,由于运行条件会发生某些改变,或者出现某些故障,都将影响设备的正常运转和工作性能,要定期地进行检查和适当的调节,以尽力延长滤袋的寿命,降低运行费用,以期用最低的运行费用保持设计的最好性能。主要应注意以下一些问题。

过滤器选型标准

过滤器选型标准 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

1. 过滤器(英文filter)介绍 根据过滤器的使用位置以及用途,可以分为两类:粗过滤器(英文strainer)和精细过滤器 粗过滤器主要应用于泵、流量计、阀门前,以保护设备不受大的金属颗粒磨碎,其精度基本是几百微米以上。精细过滤主要是净化流体,保护工艺安全。其精度范围基本在1微米到30微米之间。 按照制造设计要求可以分:压力容器和非压力容器 按照压力容器设计和制造的过滤器壳体执行GB150或者ASME标准。非压力容器执行 SH/T3411或HGT 21637标准执行。 根据使用介质可分为:气体过滤器和液体过滤器 气体过滤器适用于气-固分离流域,可用于气体净化、分成回收等。液体过滤器适用于液-固分离领域,如润滑油过滤、石油化工行业过滤以及污水处理等。 2. 精细过滤器过滤面积: 粗过滤器国内有三部行业标准,因此,只要按照标准选型既可满足要求。 精细过滤器的过滤面积计算基本上不用公式计算,选形时主要依据的是实验数据,因此,过滤器的选择建议还是让生产厂家来选。

过滤三大曲线: 流量压差曲线(ΔP-Q),粒径与过滤比曲线(μ-β),时间与压将曲线(T-ΔP) 因此,计算过滤面积时要依据这三个曲线,其中最主要的的是流量压差曲线,这个曲线由有实力的过滤器制造厂进行试验测得。 目前最权威的测试方法是多次通过试验:ISO 4572 多次通过试验标准。此试验台价格昂贵,目前国内仅有2-3台。目前国内的小厂家过滤器公司滤芯检测是单次通过实验。 过滤面积计算步骤: 1. 确定过滤精度为25微米的过滤比,如200(过滤效率),确定何时滤材 2. 根据给定压降,对滤材进行流量压差测试。得出合适流量(L/min) 3. 根据所得流量,除以试验滤材的面积,计算流速(L/)。 4. 根据流速,和实际应用的流量,确定过滤面积,流量/流速=过滤面积 5. 根据所选用的过滤面积和滤材确定滤芯结构形式,折叠式或圆筒卷绕式 篮式粗过滤器选型计算 粗过滤器工艺计算 1. 总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T 3411-1999《石油化工泵用过滤器选用、检验及验收》、HG-T 21637-1991 《化工管道过滤器》。本

脉冲袋式除尘器过滤风速的正确选择和设计计算方法

布袋式除尘器过滤风速的正确选择及设计计算方法 合理地在设计布袋袋式除尘器工作中选定除尘器的过滤风速十分重要。正确地选择过滤风速,不仅对于控制污染、保护环境有重要作用,而且对于提高设备处理含尘气体的能力,降低设备投资从而减少工程造价,也具有极重要的经济意义。那么,如何正确地选定过滤风速呢?下面请跟随笔者一起了解一下过滤风速选择偏低或偏高都有自己的优点和缺点。 过滤风速偏低时,可以提高除尘效率,增强清灰能力,延长清灰周期,从而延长滤袋使用寿命。但是,过滤风速选择偏低,就需要相应的增加除尘器的过滤面积和体积,由此将会带来设备的占地面积亦相应加大,投资增加的问题;过滤风速偏高时,可以减小过滤面积和体积,降低占地面积,降低投资。但是,过滤风速选择偏高,会影响除尘效率,增加清灰难度,过滤阻力增大,降低滤袋使用寿命,带来运行和维护费用增加的问题。实际上,选择风速是一项较复杂的工作,孤立地看待上述优点和缺点是远远不够的,它与粉尘性质、含尘气体的初始浓度、滤料种类、清灰方式有密切的关系。而正确选择过滤风速的关键,首先在于弄清粉尘及含尘气体的性质;其次还要正确理解和认识过滤风速与除尘效率、过滤阻力、清灰性能三者之间的关系。 首先,对于粉尘及含尘气体的性质应该掌握以下几点: 第一,要弄清粉尘的粘性。对布袋式除尘器,粘性的影响更为突出,因为除尘效率及过滤阻力在很大程度上取决于从滤料上清除粉尘的能力。 第二,要弄清粉尘的粒径分布。它是由各种不同粒径的粒子组成的集合体,单纯用平均粒径来表征这种集合体是不够的。 第三,应弄清粉尘的容重或堆积比重,即单位体积的粉尘重量。其中的单位体积包括尘粒本身体积、尘粒表面吸附的空气体积、尘粒本身的微孔、尘粒之间的空隙。弄清粉尘的容重,对通风除尘具有重要意义,因为它与粉尘的清灰性能有密切的联系。 第四,应弄清含尘气体的物理、化学性质,如温度、含湿量、化学成份及性质。 其次,对于过滤风速与除尘效率、过滤阻力、清灰性能三者之间的关系,可以从下述三方面来进行分析: 第一,过滤阻力方面。过滤风速的增减与过滤阻力的增减并不成正比,如果简单地用降低过滤风速的办法来达到降低过滤阻力从而降低运行费用的目的是错误的,因为过滤阻力的变化率较过滤风速的变化率小。 第二,除尘效率方面。我们知道,从除尘机理上说,有惯性效应(包括碰撞、拦截)和扩散效应。对粉尘粒径而言,粒径为1μm以下的微尘,借助扩散效应能有效地捕集,适当降低过滤风速可以提高除尘效率;粒径为5-15μm以内的粉尘,借助惯性效应能有效地捕集,提高过滤风速可以提高除尘效率。第三,清灰性能方面。粉尘的清灰性能与粉尘的性质,即粘性、粒度、容重有极大的关系。粉尘的粘性大、粒度小、容重小,清灰困难,过滤风速应取低一些,反之可取高一些。对某一确定的布袋除尘器,粉尘的清灰性能主要取决于粉尘及其含尘气体的性质,并不是所有的粉尘,只要过滤风速取低些,就可增强清灰能力。 此外,在滤料确定的情况下,降低过滤风速可以延长清灰周期,但是滤袋的寿命并不完全取决于清灰周期。因为当确定了某个过滤风速时,滤袋的不同地方过滤风速相差悬殊。 怎样计算选择袋式除尘器

过滤器知识

1为什么空气中油的危害是最大的? 答:在一些要求严格的地方,比如气动控制系统中,一滴油能改变气孔的状况。使原本正常自动运行的生产线瘫痪。有时,油还会将气动阀门的密封圈和柱体胀大,造成操作迟缓,严重的甚至堵塞。在由空气完成的工序中,如吹形件,油还会造成产品外形缺陷或外表污染。 2油污的主要来源是怎样的? 答:由于大部分压缩空气系统都使用润滑油式压缩机,该机在工作中将油汽化变成油滴。它以二种方式形成的: 一种是由于活塞压缩或叶片旋转的剪切作用产生的所谓“分散型液滴”。其直径从1~5μm。 另一种是在润滑油冷却高温的机体时,汽化形成的“冷凝型液滴”,其直径一般小于lμm.这种冷凝油滴通常占全部油污重量超过50%,占全部油污实际颗粒数量超过99%。 3过滤器的工作原理是什么? 答:一般过滤器滤芯是由纤维介质、滤网、海绵等材料组成,压缩空气中的固体的、液体的微粒(滴)经过过滤材料的拦截后,凝聚在滤芯表面(内外侧)。积聚在滤芯表面的液滴和杂质经过重力的作用沉淀到过滤器的底部再经自动排水器或人工排出。 4玻璃纤维材质应用于过滤中有什么特点? 答:玻璃纤维能十分有效地分离直径从50~0.0lμm间的润滑油滴,它在过滤时既不必吸附也不用吸收。而且十分有效,比其他材质更优胜。 5高效的凝聚式过滤器的简单工作过程是怎样的? 答:压缩空气进入滤芯的中部后,经重力、碰撞、拦截和渗透作用被滤层搜集起来。当油滴被滤层清除后,首先要收集它们。小油滴先聚合成大油滴,聚合的大油滴质量足够大时,会沉降至滤层底部。然后流入过滤糟内,经人工或自动排油装置从系统中排除。 6过滤器的等级是如何具体划分的? 答:一般过滤器的等级可分为预过滤、初过滤、精过滤和活性碳过滤。其中预过滤器一般滤除直径3~5μm微粒,初过滤器一般滤除直径O.5~1μm微粒和油雾剩余含量1ppm w/w,精过滤器一般滤除直径0.01μm微粒和油雾剩余含量0.0lppm w/w.活性碳过滤器则主要用来去除臭味和油蒸汽(油雾剩余含量仅0.003ppm w/w). 7过滤器不同等级标准的适用场合如何? 答:预过滤器一般用于压缩机(后冷却器)的下游,使用场合要求不高。初过滤器一般用于工具、马达、气缸等。精过滤器一般用于喷漆、注塑、仪表、控制阀、传动、搅拌、电子元件制造、氮分离等。活性碳过滤器一般用于食品和药品制造、呼吸空气、气体加工等。 8为什么过滤器要搭配选购? 答:一般人的误区是,认为根据所需要的空气质量选择对应处理精度的单支过滤器就能达到要求,并且节约开支。其实不然,所需要的空气质量虽然由所选的单支过滤器的处理精度决定,但没有前置低一级过滤器的预处理保护,高精密滤芯很快就会因负载过大而堵塞,加快了滤芯的更换频率,从而会变相地增加生产成本。 9过滤器效率与空气温度的关系是什么?

流砂过滤器设计说明书

流砂过滤器设计说明书

目录 1流砂过滤器设计说明书 (1) 1.1滤料粒径 (3) 1.2滤层高度 (3) 1.3滤速 (3) 1.4砂循环速率 (4) 1.5压缩空气气压、气量对出水水质的影响 (4) 1.6 反冲洗水量确定[5] (4) 2.流砂过滤器设计计算书 (5) 2.1 流砂过滤器选择 (5) 2.2 内循环流砂过滤器主体尺寸计算 (5) 2.2.1 砂滤器直径和截面积计算 (5) 2.2.2 流砂过滤器高度计算 (5) 2.3 进、出水管线、反洗出水管线及环空流道设计及计算 (12) 2.3.1 进、出水管线及反洗出水管线设计 (12) 2.3.2 提砂管及环空流道设计 (12) 2.4 布水器设计计算 (13) 2.4.1 干管 (13) 2.4.2 支管 (14) 2.4.3 布水孔设计及计算 (14) 2.5 空压机及气管线设计计算 (17) 2.5.1 空压机选择 (17) 2.5.2 气管线设计 (17) 3 材料表 (17) 4 设备表 (18) 5 图纸 (19) 6参考文献 (19)

已知条件:来水流量Q=1m3/h,来水含油≤100mg/L,含悬浮物≤100mg/L,处理后出水含有≤20mg/L,含悬浮物≤ 20mg/L[1]。 1.1滤料粒径 滤料粒径对连续式砂滤器的处理效果有重要影响,连续式砂滤器一般采用单一粒径的石英砂滤料。根据相关文献[2],处理含油废水及含有易粘结物质的原水时,通常使用有效直径为1.2mm、均质系数为1.4的均质石英砂。 1.2滤层高度 砂层过低会导致一些微絮体及与滤料结合力较弱的物 质不能被砂层截留,随出水流出;砂层过高易形成沙锥,堵住洗沙器的出砂口,反应器内的砂冲洗不完全,后期出水SS 浓度偏高。为达到有效的过滤高度,滤床厚度可取0.8-1.4m。 [1]本设计选择0.8m。 1.3滤速 根据相关文献[2] [3],建议内循环连续式砂滤器的过滤速度小于12m/h。本设计选择滤速ν=8 m/h。

空气过滤器知识

空气过滤器知识 ◎空气过滤器概述 过滤材料 既有效地拦截尘埃粒子,又不对气流形成过大的阻力。杂乱交织的纤维形成对粒子的无数道屏障,纤维间宽阔的空间允许气流顺利通过。 效率 过滤器捕集粉尘的量与未过滤空气中的粉尘量之比为“过滤效率”。小于0.1 m(微米)的粒子主要作扩散运动,粒子越小,效率越高; 大于0.5 m的粒子主要作惯性运动,粒子越大,效率越高。 阻力 纤维使气流绕行,产生微小阻力。无数纤维的阻力之和就是过滤器的阻力。 KLC过滤器阻力随气流量增加而提高,通过增大过滤材料面积,可以降低穿过滤料的相对风速,减小过滤器阻力。 动态性能 被捕捉的粉尘对气流产生附加阻力,于是,使用中过滤器的阻力逐渐增加。被捕捉到的粉尘形成新的障碍物,于是,过滤效率略有改善。 被捕捉的粉尘大都聚集在过滤材料的迎风面上。滤料面积越大,能容纳的粉尘越多,过滤器寿命越长。 使用寿命

滤料上积尘越多,阻力越大。当阻力大到设计所不允许的程度时,过滤器的寿命就结束。有时,过大的阻力会使过滤器上已捕捉到的灰尘飞散,出现这种二次污染时,过滤器也该报废。 静电 若过滤材料带静电或粉尘带静电,过滤效果可以明显改善。因静电使粉尘改变运动轨迹并撞向障碍物,静电力参与粘住的工作。 ◎过滤效率 在决定过滤效率的因素中,粉尘“量”的含义多种多样,由此计算和测量出来的过滤器效率数值也就不同。实用中,有粉尘的总重量、粉尘的 颗粒数量;有时是针对某一典型粒径粉尘的量,有时是所有粉尘的量;还有用特定方法间接地反映浓度的通光量(比色法)、荧光量(荧光法);有某种状态的瞬时量,也有发尘全过程变化效率值的加权平均量。 对同一只过滤器采用不同的方法进行测试,测得的效率值就会不一样。离开测试方法,过滤效率就无从谈起。◎过滤器阻力 过滤器对气流形成阻力。过滤器积灰,阻力增加,当阻力增大到某一规定值时,过滤器报废。 新过滤器的阻力称“初阻力”;对应过滤器报废时的阻力值称“终阻力”。 终阻力 终阻力的选择直接关系到过滤器的使用寿命、系统风量变化范围、系统能耗。 大多数情况下,终阻力是初阻力的2~4倍。

袋式除尘器的详细选型计算公式

袋式除尘器的选型计算 袋式除尘器的种类很多,因此其选型计算显得特别重要,选型不当,如设备过大,会造成不必要的浪费;设备选小会影响生产,难于满足环保要求。 选型计算方法很多,一般地说,计算前应知道烟气的基本工艺参数,如含尘气体的流量,性质,浓度以及粉尘的分散度,浸润性、黏度等。知道这些参数后,通过计算过滤风速、过滤面积、滤料及设备阻力、再选择设备类别型号。 1、 处理气体量的计算 计算袋式除尘器的处理气体时,首先要求出工况条件下的气体量,即实际通过袋式除尘设备的气体量,并且还要考虑除尘器本身的漏风量。这些数据,应根据已有工厂的实际运行经验或检测资料来确定,如果缺乏必要的数据,可按生产工艺过程产生的气体量,再增加集气罩混进的空气量(约20%~40%)来计算。 )1(273324.101)273(K Pa t Q Q c s +?+-= (1-1) 式中 Q- 通过除尘器的含尘气体量, m 3/h ; Q s - 生产过程中产生的气体量,m 3/h ; T c - 除尘器内气体的温度, ℃; Pa - 环境大气压, kPa; K - 除尘器器前漏风系统。

应该注意,如果生产过程产笺气体量是工作状态下的气体量,进行选型比较时则需要换算为标准状态下的气体量。 2、过滤风速的选取 过滤风速的大小,取决于含尘气体的性状、织物的类别以及料尘的性质,一般按除尘器样本推荐的数据及使用者的实践经验选取。多数反吹风袋式除尘器的过滤风速在0.6~1.3m/s 之间,脉冲袋式除尘器的过滤风速在 1.2~2m/s 左右,玻璃纤维袋式除尘器的过滤风速约为0.5~0.8m/s ,表1所列过滤风速可供参考: 表1 3、过滤面积的确定 (1) 总过滤面积 根据通过除尘器的总气量和选定的过滤速度,按下式计算总过滤面积: 22160S Q S S S +=+=υ (1-2) 式中 S- 总过滤面积 m2; S1— 滤袋工作部分的过滤面积 m 2; S2— 滤袋清灰部分的过滤面积 m 2;

液压过滤器的选型误区

液压过滤器的选型误区 引言 液压过滤器作为液压系统污染控制的主要元件,其设计选型是否合理,日常使用(维护)是否正确直接关系到系统的安全及可靠性。而在实际应用中,许多用户对过滤器选型及使用还存在着诸多误区,不加以纠正将会影响液压系统的正常可靠工作。 1液压系统中过滤器的选型误区 1.1误区一:选择高精度吸油过滤器既能有效的保护泵,又能保证系统的清洁度 由于油液中的颗粒污染物会加剧泵的磨损从而影响泵的使用性能和寿命,大颗粒污染物可能还会卡死泵,严重影响系统的安全、可靠性。因此,有些用户就选择了高精度吸油过滤器,认为其既能保护泵又能保证系统的清洁度。但是,高精度吸油过滤器由于承受了过多污染物而易堵塞,导致泵吸油不畅,以致吸空,加速泵的磨损,严重影响系统安全。所以,吸油过滤器的压降要进行严格控制。一般液压系统可以考虑安装低精度吸油过滤器来保护泵,并且在对污染物敏感的元件前安装过滤器加以保护,以控制颗粒污染对其影响。为了最有效的截获回路中因元件磨损或外界侵入的污染,建议安装回油过滤器加以控制,以提高整个系统的清洁度。同时在系统运转前应对管道、油箱进行彻底清洗,以保证其油液污染度。这样整个系统的油液污染度基本上都得到了控制,既保护了泵也保护了整个系统。

1.2误区二:过滤器的额定(公称)流量就是系统的实际流量 过滤器的额定流量是油液黏度在32cst的时候,油液在规定原始阻力下的清洁滤芯所通过的流量。但在实际应用中,由于使用介质不同和系统的温度不同,油液黏度也会随时变化。假如按额定流量与实际流量1:1选用过滤器,在系统油液黏度稍大时,油液通过过滤器的阻力将增大(如32号液压油0℃时其黏度约为420cst),甚至达到过滤器的污染堵塞发讯器发讯值,滤芯被认为堵塞。其次,过滤器的滤芯是属于易损件,工作中逐渐被污染,滤材实际有效过滤面积不断的减少,油液通过过滤器的阻力很快达到污染堵塞发讯器发讯值。这样,过滤器需频繁的清洗或更换滤芯,加大用户的使用成本。 目前,国内各过滤器生产商都规定了其生产的过滤器的额定流量,笔者根据以往经验和众多客户使用情况,系统使用油液为一般液压油时,建议过滤器在选型时按以下流量的倍数选用:①吸油、回油过滤器的额定流量是系统实际流量的3倍以上;②管路过滤器的额定流量是系统实际流量的2.5倍以上。若使用油液非一般液压油或高黏度液压油时,请咨询各生产厂家选型。 1.3误区三:过滤器选用的精度越高越好 液压系统中固体污染是造成液压系统故障的主要原因,所以就选用高精度过滤器来控制污染。其实不然,这样不但增加了系统的制造成本,还缩短了滤芯的使用寿命。那如何合理的选择过滤器的精度

过滤器基本知识

基本知识 一、过滤器可实现的功能 1、过滤:除去液体或气体等流体中的杂质。 2、混合:按要求将不同的流体混合在一起。 3、油气分离:除去气体中的油污等杂质。 4、缓冲:保护测量仪器免遭高压脉动压力的破坏。 5、发泡:使空气或气体在液体中均匀产生所需要的气泡。 6、消音:消除排气装置中的噪音。 二、过滤器适用范围 1、石油、化工系统 2、化纤、纺织系统 3、工程机械系统 4、电子、电力系统 5、冶金系统 6、感光材料系统 7、制药系统 8、烟草、食品、饮料、造酒系统 9、矿山、能源系统 三、过滤器种类及主要性能 1、油气分离过滤器 主要用于空气压缩机。

当螺杆压缩机工作时,靠油液密封。油气混合物在高速旋 转的螺杆挤压下产生雾化、气化,从而使螺杆出气口的压 缩空气中含有较多的油分。为使油液回收循环使用及净化 压缩空气,必须使用油气分离器。 规格:处理风量0、1~40 M3 /min(米3 /分钟) 过滤精度:1、3、5、10、25、40、50μm(微米) 分离率:99、9%~99、999% 2、空气过滤器 用在空气压缩机入口。用于洁净厂房空调系统、气体送料 系统、自动喷漆房、车船发动机进气口等空气净化领域。 效率:45%~99、99% 3、高、中、低压过滤器 带有外壳体,适用于有压力的液压系统。一般带有压差指 示器。滤芯采用不锈钢超细纤维烧结毡,强度高,耐高温, 耐腐蚀,纳污量大,过滤性能好,滤芯可反复清洗。  (1) YPH系列高压过滤器 工作压力:42Mpa (420公斤/平方厘米) 温度:-10℃~+100℃ 精度:5、10、20μm 滤芯耐压差:21Mpa 工作介质:一般液压油

机械过滤器设计计算

机械过滤池的设计 设计参数 设计水量Qmax=3825 m 3/h =91800m 3/d 采用数据:滤速v=14m/h,冲洗强度q=15L/(s ?m 2),冲洗时间为6min 机械过滤池的设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h , 实际工作时间T=h 8.2312241.024=?- 滤池面积为,F=Q/vT=91800/14?23.8=275.5 m 2 采用4个池子,单行排列 f=F/N=275.5/4=68.9m 2 分成4个半径为5m1的圆柱形构筑物 校核强制滤速,v'=Nv/(N-1)=18.7m/h (2) 滤池高度: 支撑层高度: H1=0.45m 滤料层高度: H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.配水干管流量: qg=fq=78.5×15=1178L/s 干管长度:10m 断面尺寸:850mm ×850mm 采用管径dg= 1000 mm,始端流速1.453m/s 2.支管: 支管中心距离:采用 ,m 25.0a j =5 支管长度: 每池支管数:根480.25 62a 2n j =?=?=L nj=D/a=2×8.5/0.25=68 m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

每根支管入口流量:qj=qg/nj=805.76/68=11.85L/s,管径150mm,流速v=0.67m/s 3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k m m 6000024%25.0Kf F =?== 孔眼总面积 Fk=Kf=0.25%×50.36=125900mm 2 采用孔眼直径m m 9d k = 每格孔眼面积:22 k mm 6.634d f ==π fk=πdk 2/4=63.6mm 2 孔眼总数9446 .6360000f F N k k k === Nk=Fk/fk=125900/63.6=1979 每根支管空眼数:个2048/944n n j k k ===N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1d 21l g j =-=-=)()(B 每排孔眼中心数距:17.020 5.07.1n 21l a k j k =?=?= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k ==)(μ 5.复算配水系统: 管长度与直径之比不大于 60,则6023075 .07.1d l j j <== lmax/dj=4250/150=28.3<60 孔眼总面积与支管总横面积之比小于0.5,则

相关主题
文本预览
相关文档 最新文档