当前位置:文档之家› 35kV并联电容器组保护方式选择

35kV并联电容器组保护方式选择

35kV并联电容器组保护方式选择
35kV并联电容器组保护方式选择

35kV并联电容器组保护方式的选择

摘要:随着国民经济的发展和国家对环境保护的重视,作为可再生能源的风电得到了大力发展,因此,大范围高压输电线路网络逐渐形成,系统对于无功功率的要求也越来越高。目前,我国风力发电升压变电站中普遍采用在35kv母线上安装动态无功补偿装置,而并联电容器组作为该装置的一个组成部分,对调整电压和降低线损起着非常重要的作用。本文拟结合35kv并联电容器组在风电场中的应用,对电容器组的接线、保护方式进行了探讨,以提出合理的保护配置方案。

关键词:并联电容器组;不平衡保护;电压差动保护;桥式差电流保护

1.电容器组的接线方式

在高压电力网中,电容器组一般采用星形接线或双星形接线。在风力发电升压变电站中,35kv并联电容器组采用星形和双星形两种接线方式均能满足要求,当单台电容量较小的时候,每相串联数量较多,可以采用单星形接线;若每相并联的数量较多,宜选择双星型接线。

2.电容器组不平衡保护

在风力发电中,无功补偿装置优先采用投资小、使用灵和、耗损小、操作维护方便、响应速度快的并联电容器组。当电容器发生事故后,会引起内部三相电容不平衡,从而导致电容器内部形成电流差和电压差等,引起电容器组不平衡保护。电容器故障最主要的表

并联电容器组的过电压保护

并联电容器组的过电压保护 【摘要】对并联电容器组的过电压保护进行深入研究,对于实际电力的正常运行有着十分重要的作用。本文首先研究了过电压保护的重要作用,然后分析了并联电容器组所承受的不同过电压,然后在探讨过电压保护方法思路的基础上,提出了电容器组运行维护的注意事项。 【关键词】并联;电容器组;过电压;保护 一、前言 并联电容器组在电力系统中的应用十分广泛,作用也十分明显。注重对过电压保护的研究,能够更好地指导电力实践。并联电容器组在实际运行过程中,会承受到多种不同类型的过电压,研究过程中有必要着重进行分析。 二、过电压保护的作用 电容器内部故障发展过程,大多数先是个别元件发生击穿短路,如无内熔丝动作切除故障元件,则为故障元件所在串联段短路,当故障继续发展就会有数个串联段乃至全部击穿短路。设置各种电容器内部保护是期望故障电容器在全击穿之前撤出,以免发生外壳爆裂事故。就保护灵敏度而言,通常是内外熔丝保护高于不平衡保护,而不平衡保护高于过电压保护,从而构成诸种保护的配合顺序。 当电容器组采用内熔丝或外熔丝为主保护时,不平衡保护和过电压保护为后备保护;当电容器组采取无熔丝保护时,不平衡保护为主保护,过电压保护为后备保护。过电压保护作为后备保护,是在主保护失效时起作用。可见,无论是采取何种保护配置组合,过电压保护都是不可或缺的保护方式。根据高压并联电容器装置的使用场所和装置构成及其技术特性的区别。 三、并联电容器组承受的过电压 并联电容器组的过电压问题,主要考虑操作过电压,因为对电容器组来讲遭受雷击大气过电压的机率很小,雷电波在大电容的影响下,陡度较小,减小了对绝缘的危害。常见的操作过电压主要有以下几个方面。 1.电容器组分闸时弧燃引起的过电压 电容器组的操作过电压大多是由于在断路器分闸时电弧重燃所引起的。单相重燃时,在电容器组不接地中性点上,产生中性点对地过电压。此过电压与其它相电容上的电压叠加,形成更高的极对地过电压。 2.合闸时电容器极间过电压

电力系统继电保护重点

2.对本元件主保护起后备作用的保护称为近后备保护。 3.在两相星形接线的中性线上接入一个继电器是为了提高保护的灵敏系数。 4.功率方向继电器用90°接线方式,若,则= Uab 。 5、为保证选择性,过电流保护的动作时限应按阶梯原则整定,越靠近电源处的保护,时限越长 7、距离I段和距离II 8.方向所占面积大的动作特性的阻抗继电器。 、目前在电力系统中,自动重合闸与继电保护配合的方式主要有两种:即 2.简述瞬时电流速断保护的优缺点。 优点:简单可靠、动作迅速。 缺点:不能保护本线路全长,故不能单独使用,另外,保护范围随运行方式和故障类型而变化。 4.纵联保护根据通信通道的不同可分为哪几类保护? 1、电力线载波纵联保护(简称高频保护)。 2、微波纵联保护(简称微波保护)。 3、光纤纵联保护(简称光纤保护)。 4、导引线纵联保护(简称导引线保护)。 3、、定时限过流保护的特点是什么? 2、何谓继电保护装置的可靠性? 3、什么叫重合闸后加速? 4、相间方向电流保护中,功率方向继电器一般使用的内角为多少度?采用90°接线方式有什么优点?

1. 电力系统运行状态:是指电力系统在不同运行条件下的系统与设备的工作 状态; 2. 短路故障类型:三相故障、两相故障、两相短路接地、单相接地故障 ● 常见故障单相接地故障 3. 负荷电流与供电电压之间的相位角就是通常所说的功率因数角,一般小于 030 4. 电流速断保护:优点:简单可靠、动作迅速;缺点:不可能保护线路的全长,并且保护范围直接受运行方式变化的影响。 5. 限时电流保护:增加一段带时限动作的保护,用来切除本线路速段保护范围以外的故障,同时也能作为速断保护的后备。 6. 定时限过电流保护:保护启动后出口动作时间的固定的整定时间 7. 电流保护的接线方式 是指保护中的电流继电器与电流互感器之间的连接方式。有两种:三相星型接线、两相星型接线 8. 方向性电流保护的主要特点:在原有电流保护的基础上增加一个功率方向判断元件,以保证在反方向故障时把保护闭锁使其不致误动作。 用以判断功率方向或测定电电压间相位角的元件(继电器)称为 功率方向元件(功率方向继电器) 9. 零序电流保护主要由零序电流(电压)滤过器、电流继电器和零序方向继电器三部分组成 10. 整定阻抗 1set set Z z L =,1z 为单位长度线路的复阻抗;set L 整定长度 11. 距离保护一般由启动、测量、振荡闭锁、电压回路断线闭锁、配合逻辑和出口等几部分组成。 12. 电压形式相位比较方程: 0090arg 90C D U U -≤≤ 13. 只有实际测量电流在最小和最大精确工作电流之间、测量电压在最小精确工作电压以上时,三段式距离保护才能准确地配合工作,其误差已被考虑在可靠系数中。最小精确工作电流是距离保护测量元件的一个重要参数,越小越好。 14. 纵联保护:将线路一侧电气量信息传到另一侧去,安装于线路两侧的保护对两侧的电气量同时比较、联合工作,就是说在线路两侧之间发生纵向的联系 15. 纵联保护按4种:导引线纵联保护;电力线载波纵联保护;微波纵联保护;光纤纵联保护。 16.电力载波通道的优点:无中继通信距离长;经济、使用方便;工地施工比较简单。缺点:通信速率低;抗干扰能力低。 光纤通信组成发射机、光纤、中继器和光端接收机 前加速优点:(1)能够快速地切除瞬时故障,(2)提高重合闸的成功率;能保证发电厂和重要变电所的母线电压在0.6~0.7倍额定电压以上,从而保证厂用电和重要用户的电能质量;(4)只需装设一套重合闸装置,简单经济。 ●前加速的缺点:(1)断路器工作条件恶劣,动作次数较多;(2)重合于永久性故障上时,故障切除的时间可能较多;(3)如果重合闸装置或断路器QF3拒绝合闸,则将扩大停电范围。

并联电容器组配套装置及应用技术

并联电容器组配套装置及应用技术 摘要:阐述高压并联电容器组的配套装置断路器、串联电抗器、放电装置、氧化锌避雷器及熔断器的电气特性和实际应用中的配置问题。 高压并联电容器组的配套装置,包括投、切电容器组用的断路器、串联电抗器、放电元件、氧化锌避雷器及熔断器等设备。在电容器组的安装、运行和试验中,必须充分了解它们之间的有机联系和相互关系、电气性能和技术标准,在实际应用中,合理配置、有效配合,以确保设备、系统和人身的安全。 一断路器在高压并联电容器组上的应用 电容器在电网中的运行方式,随着无功负荷及电网电压变化而变化,因此电容器组用断路器的操作较为频繁,为此必须解决好两方面问题:①合闸时的频率、高幅值的合闸涌流给断路器带来的过电压、机械应力和机械振动;②开断时,电弧重燃给断路器及其他回路设备带来的重击穿过电压及绝缘冲击。故并联电容器除应满足一般的技术性能和要求以外,还必须满足以下要求:①合闸时,触头不应有明显的弹跳和振动;②分闸时不允许有严重的电弧重燃而导致的击穿过电压;③应有承受合闸涌流的耐受能力;④经常投、切的断路器应具有承受频繁操作的能力。根据目前国产断路器的生产情况,要同时满足以上四点要求,尚有难度,例如真空断路器虽然适于频繁的操作要求,但存在合闸弹跳和重燃问题,必须加装氧化锌避雷器以进行防止过电压的配合、加装串联电抗器以降低合闸涌流倍数的配合。可见,断路器在电容器组上的应用,尚无法完成其独立开断的任务,必须有其他配套设备进行补偿性配合。 二串联电抗器在高压并联电容器组上的应用 为了限制电容器合闸过程中的涌流、操作过电压及电网谐波对电容器的影响,大容量电容器一般应区分具体情况,加装串联电抗器。其作用为:①降低电容器组合闸涌流倍数及涌流频率;②减少电网中高次谐波引起的电容器过负荷;③减少电容器组用断路器在两相重燃时的涌流以利灭弧;④抑制一组电容器故障时,其他电容器组对其短路电流的影响;⑤抑制电容器回路中产生的高次谐波及谐波过电压。可见,加装串联电抗器对电容安全运行的重要性、对断路器顺利完成开断任务的必要性。但在实际应用中,是否加装串联电抗器,还要根据电容器的分组方式及安装地点的具体情况而定。比如装设在配电线路35kV农村变电所母线上的电容器组,容量较小,大多在2000kvar以下,一般没必要加装串联电抗器。但在下列情况下,必须加装串联电抗器:①采用“△”连接的电容器组;②装设于一次变电站中容量较大的电容器组; ③变电站装有两组以上且频繁投切的电容器组;④电容器投运时有谐波现象或因谐波引起电容器过负荷等。 三放电装置在高压并联电容器组上的应用 电容器从电源断开时,两极处于储能状态,如果电容器整组从电源断开,储存电荷的能量非常大,必然在电容器两极之间持续保持着一定数值的残余电压,其初始值,即是电源电压的有效值,此时电容器组在带电荷的情况下,一旦再次投入,将产生强烈冲击性的合闸涌流,并伴有大幅值的过电压出现,工作人员一旦不慎触及就有可能遭到电击伤、电灼伤的严重伤害。为此,电容器组必须加装放电装置。根据标准规定,与电容器连接的放电装置应能使电容器从电源断开后,其剩余电压在10min内降至75V以下。高压成套装置用放电装置的选择和安装与低压成套装置用放电装置十分相似又略有不同:①低压成套装置用放电装置通常有灯泡、带变压器指示灯和电阻三种形式。放电元件采用“V”形和“△”形连接方式,多以“△”连接为推荐方式,原因是任一相发生断线,仍能转化成“v”形连接方式,维持放电的不间断进行; ②高压电容器组通常除了在电容器内部接入放电电阻以外,配套装置中还必须加装与电容器直接相连的放电装置。一般中小容量的电容器组,放电装置可以采用相应电压等级的电压互感器,2O00kvar及以上的电容器组,多选用专用的放电线圈来完成。

电力电容器保护原理解释

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护(电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护(电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

电力系统继电保护复习知识点总结材料

第一章、绪论 1、电力系统运行状态概念及对应三种状态: 正常(电力系统以足够的电功率满足符合对电能的需求等)不正常(正常工作遭到破坏但还未形成故障,可继续运行一段时间的情况)故障(电力系统的所有一次设备在运行过程中由于外力、绝缘老化、误操作、设计制造缺陷等原因会发生如短路,断线等故障) 2、电力系统运行控制目的: 通过自动和人工的控制,使电力系统尽快摆脱不正常运行状态和故障状态,能够长时间的在正常状态下运行。 3、电力系统继电保护: 泛指继电保护技术和由各种继电保护装置组成的继电保护系统。 4、事故: 指系统或其中一部分的正常工作遭到破坏,并造成对用户停电或少送电或电能质量变坏到不能允许的地步,甚至造成人身伤亡和电气设备损坏的事件。 5、故障: 电力系统的所有一次设备在运行过程中由于外力、绝缘老化、误操作、设计制造缺陷等原因会发生如短路,断线等。 6、继电保护装置: 指能反应电力系统中电气设备发生故障或不正常运行状态,并动作与断路器跳闸或发出信号的一种自动装置。 7、保护基本任务: 自动、迅速、有选择性的将故障元件从电力系统中切除,使元件免于继续遭到损坏,保障其它非故障部分迅速恢复正常运行;反应电气设备的不正常运行状态,并根据运行维护条件,而动作于发出信号或跳闸。 8、保护装置构成及作用: 测量比较元件(用于测量通过被保护电力元件的物理参量,并与其给定的值进行比较根据比较结果,给出“是”“非”“0”“1”性质的一组逻辑信号,从而判断保护装置是否应启动)、逻辑判断元件(根据测量比较元件输出逻辑信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否该使断路器跳闸、发出信号或不动作,并将对应的指令传给执行输出部分)、执行输出元件(根据逻辑判断部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作) 9、对电力系统继电保护基本要求: 可靠性(包括安全性和信赖性;最根本要求;不拒动,不误动);选择性;速动性;灵敏性 10、保护区件重叠: 为了保证任意处的故障都置于保护区内。区域越小越好,因为在重叠区内发生短路时,会造成两个保护区内所有的断路器跳闸,扩大停电范围。 11、故障切除时间等于保护装置(0.06-0.12s,最快0.01-0.04s)和断路器动作时间(0.06-0.15,最快0.02-0.6)之和。 12、①110kv及以下电网,主要实现“远后备”-一般下级电力元件的后备保护安装在上级(近电源侧)元件的断路器处;②220kv及以上电网,主要实现“近后备”-,“加强主保护,简化后备保护” 13、电力系统二次设备: 对一次设备的运行状态进行监视、测量、控制和保护的设备。

继电保护中电容器保护常用保护原理

继电保护中电容器保护常用保护原理 电力电容器组不平衡保护综述 科技日益进步,经济持续发展,用户用电对电能的要求也日益升高。不单是对电能数量的需求不断增长,其对电压质量要求也越来越高,电容器保护测控装置不单要有足够的电能,还要有稳定的电能——即电压、频率、波形需符合要求,才能保证用户的用电设备持续保持最好的工作性能,从而保证工效效率。其中,电压质量是很重要的一个方面,不单对用户生产、生活、工作有重大影响,对整个电网的安全稳定经济运行也有着至关重要的作用。 与电压质量息息相关的就是无功电源,无功不足,会使得系统的电压幅值降低,对整个电网来说,电压过低可能引起电压崩溃,进而使系统瓦解,造成负荷大幅流失;对单个元件而言,电压的降低可能使其无法运行在最佳工况,同时造成电能损耗增大,甚至可能损坏设备,同时输电线路在同等条件下,电压越低传输的电能就越小。因此,必须保证无功电源的供应。同时,为了确保电网经济运行与用户的用电正常,又必须减小无功功率的流动,因此,无功补偿的基本原则是就地补偿。即在变电站及用户负荷处,将一定量的电容器串联、并联在一起,形成电容组,使其达到一定的容量、满足一定的电压要求,补偿系统无功、调节该节点电压。 1电容器组接线方式的决定因素 电容器通常是将若干元件封装在一铁壳内,构成电容器单元,再

由各单元先并后联,封装在铁箱内组成的。 当电容器组所接入电网的电压等级、容量要求确定以后,接线方式的选择则关系到了电容器组的安全性、可靠性以及经济性。决定接线方式的主要因素包括以下几个方面。 1.1受耐爆容量限制 电容器组在运行过程中,若其中某个电容器击穿短路,这个电容器将承受来自其自身及其他并联10KV电容器保护组的放电。为防止故障元件受放电能量过大冲击,导致电容元件爆炸,必须限制同一串联段上的并联台数,即有所谓的最大并联台数问题。可以通过减少并联数与增大串联段数的方法,来降低冲击故障电容器的放电能量。 1.2接线方式与设备不配套的限制 20世纪90年代末至21世纪初,由于工艺上的改进,使电力电容器的介质,结构发生改变,普遍采用了全膜电容器。电容器的容量越来越大,因此派生出了很多新的结构与接线方式。同时,在一段时间内,由于缺乏较高的 66kV电压等级的放电线圈,致使其66KV电容器保护测控装置选择及相应接线方式的应用受到限制,因此使相关接线方式适用范围受到了限制。由于这种不配套的限制,导致该时期电容器运行故障明显上升。经过阵痛之后,对配套设备的研究也跟上技术的研发进度,因此,这种限制现在基本消除。 1.3与应用的场合有关 在电力企业中,多采用星形接法,在工矿企业变电所中多采用三

并联电容器组熔断器

并联电容器组熔断器“群爆”故障的典型案例处理 摘要:首先对变电站内可能引起并联电容器组熔断器“群爆”的因素进行了详细的调研与排查,根据其呈现的特征,提出了故障分析的方法以及整改方案;通过整改方案的落实,避免了该变电站电容器组熔断器“群爆”的情况再次发生。实践证明:规范地安装电容器组及加强运行的管理和维护,可以避免补偿电容器组熔断器“群爆”的情况发生。 关键词:并联电容器组;熔断器;群爆 礼经电器 1引言 作者实地考察了多次发生并联电容器组熔断器“群爆”的两个变电站,对变电站的运行日志所涉及到的运行参数进行了比较详细的分析研究。处理问题的态度是十分谨慎的,因为它关系到变电站的稳定运行,影响着电力系统的降损节能、电能质量以及整改措施实施过程中所需的资金等问题。根据电容器组熔断器“群爆”的特征,提出了与其故障相应的分析方法以及整改方案,整改之后,效果是显著的,没有再发生类似问题。对于帮助解决并联电容器组熔断器“群爆”的问题是十分有益的。 2发生多次并联电容器组熔断器“群爆”的两个变电站的基本情况 2.1变电站的基本情况

两个变电站的情况基本相似,均靠近城区,污染相对比较严重,属110kV降压变电站,由三种电压等级,即110kV、35kV,10kV。35kV、10kV都采用单母分段,中压侧负荷较重,低压侧存在一定的有电镀冶炼直供负荷。 2.2变电站并联电容器组与系统的接线、实际布置礼经电器 按照设计要求,在变电站的低压母线上,等容量装设并联电容器组,每组均通过隔离开关、断路器、电抗器等与10kV母线相连。隔离开关、断路器位于10kV户内配电装置的开关柜内,电抗器、电流互感器、并联电容器组等位于装设电容器的栅栏房内。每段母线接一组并联电容器,每组按三相星形连接,每相由多个电容器一端经熔断器、另一端在中性点并联。其中一组的实际布置(半露天)见图1。 3并联电容器组熔断器“群爆”的特征 案例:某一变电站,2001年4月30日8时54分,天气阴,伴有大风暴雨,风向为东南,突然,蜂鸣器响,“10kVⅡ段配电装

电力系统继电保护期末复习知识点张保会

第一章 I. 电力系统的正常工作状态、不正常工作状态和故障状态(填空) 2 .一般将电能通过的设备称为电力系统的一次设备。 3. 对一次设备的运行状态进行监视、测量、控制和保护的设备,称为电力系统的二次设备。 4. 所有的等式约束条件均满足,部分的不等式约束条件不满足但又不是故障的电力系统工作 状态,称为不正常运行状态。 电力系统的所有一次设备在运行过程中由于外力、绝缘老化、过电压、误操作、设计制造缺 陷等原因会发生如短路、断线等故障。(选择) 5. 电力系统继电保护的基本任务:(1)自动、迅速、有选择性的将故障元件从电力系统中切 除,使故障元件免于继续遭到损坏,保证其他无故障部分迅速恢复正常运行; (2)反应电气设备的不正常运行状态,并根据运行维护条件,而动作于发出信号或跳闸。 6. 保护类型:过电流保护、低电压保护、距离保护、电流差动保护、瓦斯保护、过热保护 7. 继电保护装置组成由测量比较元件、逻辑判断元件和执行输出元件。 8. 电流互感器TA将一次额定电流变换为二次额定电流5A或1A,测量电流二次侧绝不开路 电压互感器TV二次测绝不短路,输出100KV以下电流。 9. 电力元件配备两套保护:主保护、后备保护。 安装位置不同,选近后备/远后备 10. 继电保护基本要求:可靠性、选择性、速动性和灵敏性 II. 四个基本要求关系:四个特性即相互统一,又相互矛盾,要根据实际情况考虑。继电保 护的科学研究、设计、制造和运行的大部分工作也是围绕如何处理好这四者的辩证统一关系 进行的。相同原理的保护装置在电力系统的不同位置的元件上如何配置和配合,相同的电力 元件再电力系统不同位置安装时如何配置相应的继电保护,才能最大限度地发挥被保护电力 系统的运行效能,充分体现着继电保护工作的科学性和继电保护工程实际的技术性。 第二章 1. 无论启动和返回,继电器的动作都是明确干脆的,不可能停留在某一个中间为位置,这种 特性称为"继电特性” 2. 返回电流与启动电流的比值称为继电器的返回系数Kre=Ire/Iop过电流继电器的返回系数恒小于1 3. 在相同地点发生相同类型的短路时流过保护安装处的电流最大,对继电保护而言称为系统最大运行方式。 4. 对于反应于短路电流幅值增大而瞬时动作的电流保护,称为电流速断保护。 5. 电流速断保护的优点是简单可靠、动作迅速,因而获得广泛的应用。缺点是不可能保护线路的全长,而且保护范围直接受运行方式的影响。 6. 灵敏度最高III段,最低1段。 7. 使用1段、II段或III段组成的阶段式电流保护,其主要优点是简单、可靠 8. 电流保护的

并联电容器设计要求规范

并联电容器装置设计规范(GB50227-95) 第一章总则 第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范. 第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计. 第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式. 第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定. 第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定. 第二章-1 术语 1.高压并联电容器装置 (installtion of high voltage shunt capacitors): 由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置. 2.低压并联电容器装置 (installtion of low voltage shunt capacitors): 由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置. 3.并联电容器的成套装置 (complete set of installation for shunt capacitors): 由制造厂设计组装设备向用户供货的整套并联电容器装置. 4.单台电容器(capacitor unit): 由一个或多个电容器元件组装于单个外壳中并引出端子的组装体. 5.电容器组(capacitor bank): 电气上连接在一起的一群单台电容器. 6.电抗率(reactance ratio): 串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.

弧光保护单元试验报告

电弧光保护装置测试报告 一、参数: 变电站:CB-10kv开闭所测试时间:2015.1.20 型号:BPR342ARC 操作电压:DC220V 保护跳闸电流:1.2I e 保护跳闸条件设定:弧光及电流 额定电流I e:5A 出厂日期:2014.10 生产厂家:弘毅电器有限公司 二、测试内容: 上电前: 1.主单元 (1)单元固定安装是否正确、牢固———————□是□否(2)主单元接线是否按图纸接正确无误—————□是□否(3)主单元设置是否按现场要求设置正确————□是□否2.辅助单元 (1)辅助单元安装是否正确、牢固———————□是□否(2)辅助单元地址等设置是否正确,合乎要求——□是□否(3)辅助单元到主单元之间连接是否正确————□是□否(4)辅助单元与传感器之间连接是否正确————□是□否3.通讯电缆 通讯电缆是否有损坏或压伤————————□是□否 上电后:

1.主单元显示是否正常———————————□是□否 2.辅助单元显示是否正常——————————□是□否 3.主单元上显示的辅助单元数量是否正确———□是□否 4.主单元上显示的传感器数量是否正确————□是□否 5.定值整定: (1)主单元保护定值是否按现场要求设置———————□是□否(2)电流达到定值主单元是否能反映出来———————□是□否(3)实际电流值___6_A___主单元显示值___6.01A___ 6.测试传感器: (1)传感器线是否有损伤或压伤———————————□是□否(2)传感器安装是否正确,牢固———————————□是□否 7.模拟弧光: (1)传感器传到辅助单元的地址是否正确———————□是□否(2)传感器传到主单元显示的地址是否正确——————□是□否(3)在6I e下打开弧光发射器,保护动作是否正常———□是□否

电力电容器保护原理解释

电力电容器保护原理解 释 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护 (电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切

除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

(完整word版)《电力系统继电保护》课程教学大纲

《电力系统继电保护》课程教学大纲 一、课程简介 课程名称:电力系统继电保护 英文名称:Principles of Power System Protection 课程代码:0110355 课程类别:专业课 学分:4 总学时:52(52理论+12实验) 先修课程:电路、电子技术、电机学、电力系统分析 课程概要: 《电力系统继电保护》是理论与实践并重的一门课程,是从事电力系统工作的人员必须掌握的一门专业课程,主要介绍电力系统继电保护的构成原理、运行特性及分析方法。其目的和任务是使学生掌握电力系统继电保护的基本原理、整定计算及其运行分析方法,为学生毕业后从事电力系统及相关领域的设计制造、运行维护和科学研究工作打下理论及实践基础。 二、教学目的及要求 本课程的教学目的是:本课程是在分析复杂的电力系统故障状态的前提下讲述保护构成原理、配置及动作行为的,并配以一定的实验。故而是一门理论与实践并重的学科。使学生深刻理解继电保护在电力系统中所担负的任务,并通过本课程学习,掌握电力系统继电保护的基本原理,基本概念,考虑和解决问题的基本方法及基本实验技能,为毕业后从事本专业范围内的各项工作奠定专业基础。 通过本课程的学习要求同学们掌握电力系统的基本知识;通过课程教学,使学生掌握电流保护、方向性电流保护、距离保护和差动保护等几种常用保护的基本工作原理、实现方法和应用范围、整定计算的基本原则和保护之间的配合关系;使学生了解电力系统各主要一次主设备(发电机、变电器、母线、送电线路)的故障类型,不正常运行状态及各自的保护方式;使学生了解各种继电器(电流、方向、阻抗)的构成原理、实现方法、动作特性和一般调试方法,熟悉常用继电保护的实验方法。 三、教学内容及学时分配 第一章绪论(4学时) 掌握电力系统继电保护的任务、基本原理、基本要求及发展概况。 重点:继电保护的任务、对继电保护的基本要求。

电力系统继电保护实验实验报告

网络高等教育《电力系统继电保护》实验报告 学习中心:奥鹏学习中心 层次:专科起点本科 专业:电气工程及其自动化 年级: 学号: 学生:

实验一电磁型电流继电器和电压继电器实验 一、实验目的 1. 熟悉DL型电流继电器和DY型电压继电器的的实际结构,工 作原理、基本特性; 2. 学习动作电流、动作电压参数的整定方法。 二、实验电路 1.过流继电器实验接线图 过流继电器实验接线图 2.低压继电器实验接线图 低压继电器实验接线图

三、预习题 1.过流继电器线圈采用_串联_接法时,电流动作值可由转动刻度盘上的指针所对应的电流值读出;低压继电器线圈采用__并联 _接法时,电压动作值可由转动刻度盘上的指针所对应的电压值读出。(串联,并联) 2. 动作电流(压),返回电流(压)和返回系数的定义是什么? 答:1.使继电器返回的最小电压称为返回电压;使继电器动作的最大电压称为动作电压;返回电压与动作电压之比称为返回系数。 2.使继电器动作的最小电流称为动作电流;使继电器返回的最大电流称为返回电流;返回电流与动作电流之比称为返回系数。 四、实验容 1.电流继电器的动作电流和返回电流测试 表一过流继电器实验结果记录表

2.低压继电器的动作电压和返回电压测试 表二低压继电器实验结果记录表 五、实验仪器设备

六、问题与思考 1.电流继电器的返回系数为什么恒小于1? 答:由于摩擦力矩和剩余力矩的存在,使得返回量小于动作量。根据返回力矩的定义,返回系数恒小于1. 2.返回系数在设计继电保护装置中有何重要用途? 答:返回系数是确保保护选择性的重要指标,让不该动作的继电器及时返回,使正常运行的部分系数不被切除。 3. 实验的体会和建议 电流保护的动作电流是按躲开最大负荷电流整定的,一般能保护相邻线路。在下一条相邻线路或其他线路短路时,电流继电器将启动,但当外部故障切除后,母线上的电动机自启动,有比较大的启动电流,此时要求电流继电器必须可靠返回,否则会出现误跳闸。所以过电流保护在整定计算时必须考虑返回系数和自起动系数,以保证在上述情况下,保护能在大的启动电流情况下可靠返回。电流速断的保护的动作电流是按躲开线路末端最大短路电流整定的,一般只能保护线路首端。在下一条相邻线路短路时,电流继电器不启动,当外部故障切除后,不存在大的启动电流情况下可靠返回问题

电力电容器的保护原理及技术要求

电力电容器保护原理技术要求 (1)电容器组应采用适当保护措施,如采用平衡或差动保护或采用瞬时作用过电流继电保护,对于3.15kV及以上的电容器,必须在每个电容器上装置单独的熔断器,熔断器的额定电流应按熔丝的特性和接通时的涌流来选定,一般为1.5倍电容器的额定电流为宜,以防止电容器油箱爆炸。 (2)除上述指出的保护形式外,在必要时还可以作下面的几种保护: ①如果电压升高是经常及长时间的,需采取措施使电压升高不超过1.1倍额定电压。 ②用合适的电流自动开关进行保护,使电流升高不超过1.3倍额定电流。 ③如果电容器同架空线联接时,可用合适的避雷器来进行大气过电压保护。 ④在高压网络中,短路电流超过20A时,并且短路电流的微机保护装置或熔丝不能可靠地保护对地短路时,则应采用单相短路保护装置。 (3)正确选择电容器组的保护方式,是确保电容器安全可靠运行的关键,但无论采用哪种保护方式,均应符合以下几项要求: ①保护装置应有足够的灵敏度,不论电容器组中单台电容器内部发生故障,还是部分元件损坏,电容器保护装置都能可靠地动作。

②能够有选择地切除故障电容器,或在电容器组电源全部断开后,便于检查出已损坏的电容器。 ③在电容器停送电过程中及电力系统发生接地或其它故障时,保护装置不能有误动作。 ④保护装置应便于进行安装、调整、试验和运行维护。 ⑤消耗电量要少,运行费用要低。 (4)电容器不允许装设自动重合闸装置,相反应装设无压释放自动跳闸装置。主要是因电容器放电需要一定时间,当电容器组的开关跳闸后,如果马上重合闸,电容器是来不及放电的,在电容器中就可能残存着与重合闸电压极性相反的电荷,这将使合闸瞬间产生很大的冲击电流,从而造成电容器外壳膨胀、喷油甚至爆炸。 电容器组保护: 开口三角保护,开口三角形保护标准名称为零序电压保护,多用于单星形接线 (对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护装置采集到差电压后即动作掉闸。 并联电容器组的保护及应用

并联电容器组的接线方式

并联电容器组的接线方式 (2009-06-09 14:37:33) 转载 标签: 分类:杂、论坛 电容器组 谐波 放电线圈 电抗器 文化 电容器的接线通常分为三角形和星形两种方式。此外,还有双三角形和双星形之分。 三角形接线的电容器直接承受线间电压,任何一台电容器因故障被击穿时,就形成两相短路,故障电流很大,如果故障不能迅速切除,故障电流和电弧将使绝缘介质分解产生气体,使油箱爆炸,并波及邻近的电容器。因此这种接线已经很少在10kV系统中使用,只是在380V配电系统中有少量使用。 在高压电力网中,星形接线的电容器组目前在国内外得到广泛应用。星形接线电容器的极间电压是电网的相电压,绝缘承受的电压较低,电容器的制造设计可以选择较低的工作场强。当电容器组中有一台电容器因故障击穿短路时,由于其余两健全相的阻抗限制,故障电流将减小到一定范围,并使故障影响减轻。星形接线的电容器组结构比较简单、清晰,建设费用经济,当应用到更高电压等级时,这种接线更为有利。 星形接线的最大优点是可以选择多种保护方式。少数电容器故障击穿短路后,单台的保护熔丝可以将故障电容器迅速切除,不致造成电容器爆炸。 由于上述优点,各电压等级的高压电容器组现已普遍采用星形接线。 高压电力系统的电容器组除广泛采用星形接线外,双星形接线也在国内外得到广泛应用。所谓双星形接线,是将电容器平均分为两个电容相等或相近的星形接线电容器组,并联到电网母线,两组电容器的中性点之间经过一台低变比的电流互感器连接起来。 这种接线可以利用其中性点连接的电流保护装置,当电容器故障击穿切除后,会产生不平衡电流,使保护装置动作将电源断开,这种保护方式简单有效,不受系统电压不平衡或接地故障的影响。

《电力系统继电保护》重点复习题

4.2什么是采样定理?其有何意义? 答:采样定理:采样率f s应大于输入信号的最高频率f mas的2倍,即f s>2f mas,这样就是采样定理。 意义:是保证采样后不丢失其中信息的充分必要条件;由采样值能完整、正确和唯一地恢复输入连续信号的充分必要条件。 4.6微机保护的硬件由那几个部分组成?各部分的作用是什么? 答:组成部分:①数据采集系统;作用:将来自TA二次侧电流,TV二次侧电压这类模拟信号转为相应的微机系统能接收的数字信号。 ②微机系统;作用:分析计算电力系统的有关电量和判定系统是否发生故 障后决定是否发出跳闸信号。 ③开关输入﹨输出回路;作用:完成各种保护的出口跳闸、信号警报。 ④人机对话回路;作用:用于人机对话。 ⑤微机保护的电源;作用:为微机保护装置提供电源。 4.7微机保护数据采集系统有哪几部分组成?各部分的原理如何? 答:组成部分:电压形成回路、前置模拟低通滤波器、采样保护电路、多路转换开关、模数转换器 原理: 4.12开关量输入电路中,装置内接点输入电路与装置外接点输入电路有何不同?为什么?开关量输出电路接线有何特点?光电隔离电路的作用是什么?它是如何工作的? 答:不同: 因为: 特点: 工作: 4.13什么是开关输入量?什么是开关输出量? 答:开关输入量:来自保护装置外部的接点,供保护装置使用。 开关输出量:保护装置向外部提供的接点,供给外部设备。 6.1距离保护的工作原理是什么?其与电流电压保护相比有哪些优点? 答:工作原理: 优点: 6.2什么是阻抗继电器的测量阻抗.整定阻抗和起动阻抗? 答:测量阻抗:被保护线路始端电压和线路电流的比值;即 整定阻抗:动作阻抗的整定值 起动阻抗:阻抗继电器刚好动作时的测量阻抗 6.4距离保护有哪几种组成元件?起动元件应满足哪些要求? 答:组成元件:起动元件、时间元件、方向元件、阻抗测量元件、出口元件起动元件应满足的要求: 6.6试说明全阻抗继电器、方向阻抗继电器、偏移特性阻抗继电器的动作特性。 答:全阻抗继电器:以保护安装点为圆心,以整定阻抗Zset为半径所做的一个圆,园内为动作区,圆周是动作边界。 方向阻抗继电器:以整定阻抗Zset为直径并且圆周经过坐标原点的一个圆,圆内为动作区,圆外为非动作区。圆周是动作边界。 偏移阻抗继电器:当正方向的整定阻抗为Zset时,同时相反方向偏移一个aZset,其中0<a<1,园内为动作区,圆外为非动作区,圆周是动作边界。

电容器保护整定计算

电容器保护整定计算 一、集合式并联电容器:例如BAMH11/√3-1200-1×3W B:并联电容器;A为浸渍剂代号,表示苄基甲苯 M:为介质代号,表示全膜介质(如为F表示膜纸复合介质) H:集合式 11/√3:额定电压 1200:额定容量 3:代表三相 W:户外 二、集合式并联电容器成套装置 TBB□-□-A K T表示并成套装置 BB表示并联电容器装置 第一个□表示额定电压 第二个□表示额定容量 A表示单星形接线 K表示开口三角电压保护 三、可调容集合式成套装置 TBB□-□+□-A K □+□为可调额定容量 一、延时电流速断保护 作为电容组与断路器之间连线以及电容器组内部连线上的相间短路、两(三)相接地短路故障的保护。 整定原则:按躲过电容器长期允许的最大工作电流整定,一般整定为3-5倍的电容器组的额定电流,同时为了躲过电容器组投入时的涌流,考虑0.1-0.2S 延时。 Idz=Kk×Ie Ie为电容器组额定电流 我们一般取4倍的Ie,T=0.1S IΦ=I=Q/1.732/U U为线电压(电容器Y形接线) 例如BAMH11/√3-1200-1×3W I=1200/√3/11 灵敏度要求:保护安装处故障时Klm≥2 二、过电流保护 作为电容组与断路器之间连线以及电容器组内部连线上的相间短路、两(三)相接地短路故障的保护。 整定原则:按躲过电容器长期允许的最大工作电流整定,一般整定为1.5-2倍的电容器组的额定电流,动作时间一般为0.3-1S.我们一般取2In,0.4S. 灵敏度要求:电容器端部引出线故障时Klm≥1.2-1.5 灵敏度=0.866×Idmin(3)/Idz≥1.5 Idmin(3)为最小方式下,保护安装处的三相短路电流 咱们计算灵敏度时一般考虑电容器串联电抗器的阻抗

浅述并联电容器组的过电压保护

浅述并联电容器组的过电压保护 发表时间:2016-11-09T14:28:35.610Z 来源:《电力设备》2016年第17期作者:毕书阳[导读] 并联电容器组的过电压问题,主要考虑操作过电压。 (内蒙古鲁电蒙源电力工程有限公司内蒙古呼和浩特)摘要:并联电容器组随的各种过电压,保护并联电容器组的金属物避雷器的技术特性,MOA的接线方案和参数的选择抑制过电压的其它措施等问题,供有关单位参考。 关键词:并联;电容器组;过电压保护一、并联电容器组承受的过电压并联电容器组的过电压问题,主要考虑操作过电压。因为对电容器组来讲遭受雷击大气过电压的机率很小,雷电波在大电容的影响下,陡度较小,减小了对绝缘的危害。常见的操作过电压主要有以下几个方面。 1.1 电容器组分闸时弧燃引起的过电压电容器组的操作过电压大多是由于在断路器分闸时电弧重燃所引起的。单相重燃时,在电容器组不接地中性点上,产生中性点对地过电压。此过电压与其它相电容上的电压叠加,形成更高的极对地过电压。据华北地区统计,用ZN10真空断路器投切8Mvar电容器组时,重燃率达10%,过电压最高可达5Uφ。分闸时还会产生两相重击穿和一次操作多次重击穿引起的操作过电压,但机率均较少。在电源侧有单 相接地故障时产生的单相重击穿过电压远高于接地故障时的情况。安装了串联电抗器的电容器组,由于电容器端电压的升高,使操作过电压相应提高。 1.2 电容器合闸引起的过电压 合闸时电容器极间过电压。未充电的电容器合闸时,极间过电压的最大值不会超过其额定电压峰值的2倍。如果电容器处于充电状态,而充电电压与系统电压大小相等,极性相反时,合闸时的极间过电压可能达到3倍。由于真空断路器触头弹跳引起的过电压。合闸时,真空断路器触头的弹跳将出现电弧断开有接通的重复过程,过电压可能达到2.8 ~ 3倍,对电容器绝缘油产生危害。 非同期合闸引起的过电压。断路器非同期合闸时,可能出现其中一相先合闸使电容器充电,而其它两相接通时,也会遇到大小相近,极性相反的工况,有可能发生高于2倍的过电压。 1.3 电容器合闸或分闸引起的远方放大过电压电容器合闸引起远方变电站中产生的相间过电压放大,在国际大电网会议中已成为热门话题,据统计某次事故中7台变压器的损坏与离变压器3.3km以内的并联电容器合闸有关。其原因是由于电容器合闸瞬间,在输电线路上注入一个阶跃电压波的反射所引起,在线路末端两相对地电压可能达到3.5倍,由于两相的电压波极性相反,相与相之间的电压可能达到6.5倍,这一问题在国内尚未引起注意。电容器分闸过程发生电弧重燃时,过电压波也会沿着输电线路传播,在辐射状线路的末端,经过反射再反射的作用,将过电压波放大,对末端变电站中的电气设备造成危害。例如1978年我国淮南电业局某变电站35kV、9.4Mvar电容器组用DW8-35断路器分闸时,使相距5km的另一变电站的户内穿墙套管和开关的支柱绝缘子发生7次相间闪络和多次对地过电压为 2.69Uφ,而相距5km的变电站中C相对地过电压高达5.2 Uφ,过电压放大了1.93倍。1983年丹东电业局某变电站的66kV、20Mvar电容器组用SW2-60T断路器分闸时,多处远方变电站因过电压造成避雷器动作,最远的距离达56km。 1.4 电容与电感的谐波匹配引起的谐振过电压例如:①电容器组与变压器同时合闸,由于变压器合闸涌流的谐波影响,其中某次谐波可能与电容器发生串联谐振,产生倍数很高的动态过电压,时间上可持续数周波,甚至几秒钟;②空载变压器母线上投入电容器时,电容器合闸涌流中的谐波分量也会产生动态过电压;③如电容器组选用中性点接地的电压互感器线圈,当电容器开断时,储存在互感器线圈内的电磁能将释放出来,通过中性点与母线和电容器外壳的对地电容回路,产生振荡,在断路器的相对地和断口间产生很高的过电压。 1.5 电容器组的其它过电压 主要指电容器组运行中曾发生的并非由于断路器分合闸产生的操作过电压,例如:配电线路断线接地或配电线路连续放电产生的过电压,配电变压器绕组因出线烧断放电引起非故障相变压器绕组的电干涸电容器组的电容形成的振荡回路产生的铁磁谐振过电压等都有可能对电容器组的绝缘造成危害。 二、保护并联电容器组的金属氧化物避雷器的技术特性交流无间隙金属氧化物避雷器(MOA)使用金属氧化物非线性电阻作为唯一工作元件的避雷器。非线性电阻阀片以ZnO为主体,约占90%,添加少量其它金属氧化物后经混合、压制、高温焙烧而成。由于阀片的非线性伏安特性非常好,即使当通过电流的变化达6个数量级时,而电压也只变动50%-60%左右。因此在过电压情况下,尽管通过MOA的电流数值很大,而能做到的保护较低的符合要求的残压值。阀片的伏安特性曲线如图一所示。当过电压过去以后在系统工作电压作用下阀片呈高电阻状态,将工频电流限制到数十微安,相当于绝缘状态,可持续运行。由于MOA没有间隙,在雷电过电压、操作过电压、暂时过电压和长期的工频电压作用下,都有相应的电流通过MOA。MOA的工作特性与传统的碳化硅阀型避雷器对比,其显著差别是:①MOA的保护水平只取决于残压;②MOA无灭弧问题,其可靠性主要取决于热平衡;③MOA除承受雷电和操作过电压时的负载外,还承受暂时过电压和系统工作电压的负载。 三、MOA的接线方案 二十世纪90年代初MOA保护电容器组的传统接线方案。在编制国家标准GB50227-1995《并联电容器装置设计规范》时,有关单位根据运行经验提出不少新接线方案,对传统方案有较大的突破。试验研究结果表明:电源侧有单相接地时单相重击穿,对电容器的极间电压无影响;两相重击穿时的过电压也不受单相接地的影响,以此作为确定避雷器参数的依据。 四、抑制电容器组分闸重燃过电压

相关主题
文本预览
相关文档 最新文档