当前位置:文档之家› 热力学公式汇总

热力学公式汇总

热力学公式汇总
热力学公式汇总

物理化学主要公式及使用条件

第一章 气体的pVT 关系 主要公式及使用条件

1. 理想气体状态方程式

nRT RT M m pV ==)/(

或 RT n V p pV ==)/(m

式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2. 气体混合物 (1) 组成

摩尔分数 y B (或x B ) = ∑A

A B /n n

体积分数 /

y B m,B B *

=V ?∑*

A

V

y A

m,A

式中∑A

A n 为混合气体总的物质的量。A

m,*

V

表示在一定T ,p 下纯气体A 的摩

尔体积。∑*A

A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2) 摩尔质量

∑∑∑===B

B

B

B B B

B mix //n M n m M y M

式中 ∑=B

B m m 为混合气体的总质量,∑=B

B n n 为混合气体总的物质的量。上

述各式适用于任意的气体混合物。

(3) V V p p n n y ///B B B B

*

=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*

B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律

p B = y B p ,∑=B

B p p

上式适用于任意气体。对于理想气体

V RT n p /B B =

4. 阿马加分体积定律

V RT n V /B B =*

此式只适用于理想气体。

第二章 热力学第一定律 主要公式及使用条件

1. 热力学第一定律的数学表示式

W Q U +=?

或 'a m b

δδδ

d δd U Q W Q p V W

=+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。

2. 焓的定义式

3. 焓变

(1) )(pV U H ?+?=?

式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2

,m 1

d p H nC T ?=

?

此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,

pV

U H +=

或纯的液体、固体物质压力变化不大的变温过程。

4. 热力学能(又称内能)变

此式适用于理想气体单纯pVT 变化的一切过程。

5. 恒容热和恒压热

V Q U =? (d 0,'0V W == p Q H =? (d 0,'0)p W ==

6. 热容的定义式 (1)定压热容和定容热容

δ/d (/)p p p C Q T H T ==??

δ/d (/)V V V C Q T U T ==??

(2)摩尔定压热容和摩尔定容热容

,m m /(/)p p p C C n H T ==??

,m m /(/)V V V C C n U T ==??

上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容)

式中m 和M 分别为物质的质量和摩尔质量。

(4) ,m ,m

p V

C C R -=

此式只适用于理想气体。 7. 摩尔蒸发焓与温度的关系

2

1

vap m 2vap m 1vap ,m ()()d T p T

H T H T C T ?=?+??

或 v a p m v a p (/)p p H T C ???=?

式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。

8. 体积功

,m //p p p c C m C M

==2

,m 1

d V U nC T

?=?

(1)定义式

V p W d amb -=?

或 V p W d a m b

∑-= (2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。 (3) )(21a m b V V p W --= 适用于恒外压过程。 (4) )/ln()/ln(d 12122

1p p nRT V V nRT V p W V V =-=-=? 适用于理想气体恒温可

逆过程。

(5) ,m 21()V W U nC T T =?=- 适用于,m V C 为常数的理想气体绝热过程。

9. 理想气体可逆绝热过程方程

,m 2121(/)

(/)1V C R T T V V = ,m

2121(/)

(/)1p C R T T p p -=

1)/)(/(1212=r V V p p

上式中,,m ,m /p V C C γ=称为热容比(以前称为绝热指数),适用于,m V C 为常数,理想气体可逆绝热过程p ,V ,T 的计算。

10. 反应进度

B B /νξn ?=

上式是用于反应开始时的反应进度为零的情况,B,0B B n n n -=?,B,0n 为反应前B 的物质的量。B ν为B 的反应计量系数,其量纲为一。ξ的量纲为mol 。

11. 标准摩尔反应焓

θθθ

r m B f m B c m (B,)(B,)H H H νβνβ?=?=-?∑∑

式中θf m (B,)H β?及θ

c m (B,)H β?分别为相态为β的物质B 的标准摩尔生成焓和标

准摩尔燃烧焓。上式适用于ξ=1 mol ,在标准状态下的反应。

12. θm r H ?与温度的关系

2

1

θθr m 2r m 1r ,m ()()d T p T H T H T C T ?=?+??

式中 r ,m ,m B (B)p p C C ν?=∑,适用于恒压反应。

13. 节流膨胀系数的定义式

J T (/)H T p μ-=??

T J -μ又称为焦耳-汤姆逊系数。

第三章 热力学第二定律 主要公式及使用条件

1. 热机效率

1211211/)(/)(/T T T Q Q Q Q W -=+=-=η

式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。W 为在循环过程中热机中的工质对环境所作的功。此式适用于在任意两个不同温度的热源之间一切可逆循环过程。

2. 卡诺定理的重要结论

2211//T Q T Q +??

?=<可逆循环不可逆循环

,,00

任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。

3. 熵的定义

4. 克劳修斯不等式

d S {

//Q T Q T =>δ, δ, 可逆

不可逆

5. 熵判据

a m

b s y s i s o S S S ?+?=?{

0,

0,

>=不可逆可逆

r

d δ/S Q T =

式中iso, sys 和amb 分别代表隔离系统、系统和环境。在隔离系统中,不可逆过程即自发过程。可逆,即系统内部及系统与环境之间皆处于平衡态。在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。此式只适用于隔离系统。

6. 环境的熵变

7. 熵变计算的主要公式

2

22r

1

11δd d d d Q U p V H V p S T T T

+-?===?

?? 对于封闭系统,一切0=W δ的可逆过程的S ?计算式,皆可由上式导出 (1)

,m 2121ln(/)ln(/)V S nC T T nR V V ?=+ ,m 2112ln(/)ln(/)p S nC T T nR p p ?=+ ,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ?=+

上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程 (2) T 21

12l n (/)l n (/

)S n R V V n R p p ?== 此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。 (3)

,m 21

l n (/)p S n C T T ?= 此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。

8. 相变过程的熵变

此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。

9. 热力学第三定律

amb

ys amb amb amb //S T Q T Q s -==?0

)(lim m =*

→完美晶体S T 0

T

H S /β

αβα?=?

或 0)0K ,(m =*

完美晶体S

上式中符号*

代表纯物质。上述两式只适用于完美晶体。

10. 标准摩反应熵

)

B (B

m B m r ∑=?θθνS S

2r m 2r m 1r ,m 1

()()(/)d p S T S T C T T θθ

?=?+??

上式中r ,m p C ?=B ,m B

(B)p C ν∑,适用于在标准状态下,反应进度为1 mol 时,任一

化学反应在任一温度下,标准摩尔反应熵的计算。

11. 亥姆霍兹函数的定义

12.

r d δ'T A W =

此式只适用n 一定的恒温恒容可逆过程。

13. 亥姆霍兹函数判据

V T A ,??

??=<平衡自发,0,0

只有在恒温恒容,且不做非体积功的条件下,才可用A ?作为过程的判据。

14. 吉布斯函数的定义

15.

,r d δ'T P G W =

此式适用恒温恒压的可逆过程。

16. 吉布斯函数判据

?

??=<平衡自发,,00 只有在恒温恒压,且不做非体积功的条件下,才可用G ?作为过程的判据。

TS

U A -=TS

H G -=,T p

G ?

17. 热力学基本方程式

d d d d d d d d d d d d U T S p V H T S V p A S T p V G S T V p

=-=+=--=-+

热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。说的更详细些,它们不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p , V , T 变化的过程。也可适用于相平衡或化学平衡的系统,由一平衡状态变为另一平衡态的过程。

18. 克拉佩龙方程

m m d /d /()

p T H T V ββαα=?? 此方程适用于纯物质的α相和β相的两相平衡。

19. 克劳修斯-克拉佩龙方程

2vap 21vap m 12d ln(/[])(/)d ln(/)(/)(1/1/)

p p H RT T p p H R T T =?=?-

此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;(l)m *

V 与(g)m *

V 相比可忽略不计,在21T T -的温度范围内摩尔蒸发焓可视为常数。 对于气-固平衡,上式vap m H ?则应改为固体的摩尔升华焓。

20. ))(/Δ(/ln(m fus m fus )1212p p H ΔV T T -=

式中fus 代表固态物质的熔化。m fus ΔV 和m fus H Δ为常数的固-液两相平衡才可用此式计算外压对熔点的T 的影响。

第四章 多组分系统热力学 主要公式及其适用条件

1. 偏摩尔量:

定义: C n p,T,n X X ?

???

????=B B (1)

其中X 为广延量,如V ﹑U ﹑S ......

全微分式:d ??????

=++ ? ?

??????∑B B B B B

d d d p,n T,n X X X T p X n T p (2)

总和: ∑=B

B B X n X (3)

2. 吉布斯-杜亥姆方程

在T ﹑p 一定条件下,0d B

B B =∑X n , 或

0d B

B

B =∑X

x 。

此处,x B 指B 的摩尔分数,X B 指B 的偏摩尔量。

3. 偏摩尔量间的关系

广延热力学量间原有的关系,在它们取了偏摩尔量后,依然存在。 例:H = U + PV ? H B = U B + PV B ; A = U - TS ? A B = U B - TS B ; G = H – TS ? G B = H B - TS B ;…

...S T G ;S T G ;V p G V p G

n p,p n T,T

B B B B B

B -=???

?????-=???

????=???? ?????=?

??? ?

???

4. 化学势

定义 C

n p,T,n G G μB B ?

???

????==B

5. 单相多组分系统的热力学公式

∑+-=B

B

B d d d d n μV p S T U

∑++=B

B

B d d d d n μp V S T H ∑+-=B

B

B d d d d n μV p T S -A

∑++=B

B

B d d d d n μp V T S -G

C

C

C

C

B B B B B n p,T,n V,T,n p,S,n V,S,n G n A n H n U μ?

??? ?????

??? ?????

??? ?????

??? ????==

==

但按定义,只有 C

B n p,T,n G ?

??? ????才是偏摩尔量,其余3个均不是偏摩尔量。

6. 化学势判据

在d T = 0 , d p = 0 δW ’= 0 的条件下,???

??≤α=<∑∑平衡自发,,00α0 )()d (αB

B

B n μ 其中,∑α

指有多相共存,)(αB μ指 α相内的B 物质。

7. 纯理想气体B 在温度T ﹑压力p 时的化学势

=+00pg)g)ln(

)*p

μ(μ(RT p

pg 表示理想气体,* 表示纯态,(g)0

μ为气体的标准化学势。真实气体标准态与理想气体标准态均规定为纯理想气体状态,其压力为标准压力 0

p = 100 kPa 。

8. 理想气体混合物中任一组分B 的化学势

)ln(

(g (pg)0B

B B p p RT )μμ+=

其中,总p y p B B =为B 的分压。

9. 纯真实气体B 在压力为p 时的化学势

*

m =++-?0

00

(g)(g)ln()[(g)]d p

*

p RT μμRT V p p p

其中,(g)*m V 为纯真实气体的摩尔体积。低压下,真实气体近似为理想气体,故

积分项为零。

10. 真实气体混合物中任一组分B 的化学势

?-++=p

p p RT

V p p RT μμ0B 0B 0

B

B d ](g)[)ln((g)(g)总

其中,V B (g)为真实气体混合物中组分B 在该温度及总压B p 下的偏摩尔体积。低压下,真实气体混合物近似为理想气体混合物,故积分项为零。

11. 拉乌尔定律与亨利定律(对非电解质溶液)

拉乌尔定律: A *

A A

x p p = 其中,*

A p 为纯溶剂A 之饱和蒸气压,A p 为稀溶液中溶剂A 的饱和蒸气分压,

x A 为稀溶液中A 的摩尔分数。

亨利定律: B B B B B B B c k b k x k p c,b,x,===

其中,B p 为稀溶液中挥发性溶质在气相中的平衡分压,B B B c ,b ,x ,k k ,k 及为用不同单位表示浓度时,不同的亨利常数。

12. 理想液态混合物

定义:其任一组分在全部组成范围内都符合拉乌尔定律的液态混合物。

B B B x p p *=

其中,0≤x B ≤1 , B 为任一组分。

13. 理想液态混合物中任一组分B 的化学势

)ln((l)(l)B *

B B x RT μμ+=

其中,(l)*

B μ为纯液体B 在温度T ﹑压力p 下的化学势。

若纯液体B 在温度T ﹑压力0

p 下标准化学势为(l)0

B μ,则有:

m =+≈?*

00

B

B

B B (l)(l)(l)d (l)0

p

*,p μμV p μ 其中,m B (l)

*

,V 为纯液态B 在温度T 下的摩尔体积。

14. 理想液态混合物的混合性质

① 0Δm i x =V ; ② 0Δm i x =H

; ③ B

=-∑∑mix B B B

B

Δ()ln()S n R

x x

④ S T G

m i x m i x ΔΔ-=

15. 理想稀溶液

① 溶剂的化学势:

m =++?0

A A

A A

(l )(l )l n ()(l )d

p

*

,

p μμR T

x V p 当p 与0

p 相差不大时,最后一项可忽略。

② 溶质B 的化学势:

)ln(ln((g)ln((g))ln(

(g)(g)(0

B 00B 0B

0B B 0

B 0B

B B B b b

RT )p b k RT μ)

p

b k RT μp p RT μμμb,b,++=+=+==溶质)

我们定义:

?∞+=+p

p b,b,0

p V μ)p b k RT μd ln((g)B 0

B 00B 0B (溶质)(溶质)

同理,有:

??∞∞+=++=+p p x,x,p p c,c 00p

V μp k RT μp

V μ)p c k RT μd (溶质)(溶质)d (溶质)(溶质)B 0

B 0B

B

B 0

B 00B ,0B )ln((g)ln((g)

???∞∞∞

++=++=++=p

p x,p

p c,p

p b,0

p

V x RT μ

p V c c RT μp V b b RT μμd ()ln()(d )()ln()(d )()ln(B B 0

B

B 0

B 0

B B 0B 0

B

B 溶质)溶质溶质溶质溶质(溶质)(溶质)

注:(1)当p 与0

p 相差不大时,最后一项积分均可忽略。

(2)溶质B 的标准态为0

p 下B 的浓度分别为...x ,c c ,b b 1B 0B 0B === ,

时,B 仍然遵循亨利定律时的假想状态。此时,其化学势分别为)(0B ,溶质

b μ﹑)(0B ,溶质

c μ﹑)(0B ,溶质

x μ。

16. 分配定律

在一定温度与压力下,当溶质B 在两种共存的不互溶的液体α﹑β间达到平衡时,若B 在α﹑β两相分子形式相同,且形成理想稀溶液,则B 在两相中浓度之比为一常数,即分配系数。

ααββ==

B B B B ()

()

()

()

b c K ,K b c

17. 稀溶液的依数性(公式不用记)

① 溶剂蒸气压下降:B *

A A Δx p p =

② 凝固点降低:(条件:溶质不与溶剂形成固态溶液,仅溶剂以纯固体析出)

A m,fus A

f f B

f f ΔH ΔM )R(T k b k T 2*==

③ 沸点升高:(条件:溶质不挥发)

A m,vap A

b b B b b ΔΔH M )R(T k b k T 2*==

④ 渗透压: Π=B V n R T

18. 逸度与逸度因子

气体B 的逸度~

p B ,是在温度T ﹑总压力总p 下,满足关系式:

)ln(

(g)(g)0B

B B p p RT μμ~

+=

的物理量,它具有压力单位。其计算式为:

}

d ](g )[

e x p {B B B p p RT V p p p

0~

总1

-=?

逸度因子(即逸度系数)为气体B 的逸度与其分压力之比:

B

B B p p ~

=

? 理想气体逸度因子恒等于1 。

19. 活度与活度因子

对真实液态混合物中溶剂:

B B *

B B *B B ln (l)ln (l)(l)f x RT μa RT μμ+=+= ,且有:1lim B

1

B =→f x ,其中a B 为

组分B 的活度,f B 为组分B 的活度因子。

若B 挥发,而在与溶液平衡的气相中B 的分压为B p ,则有

B

B

B B

B B

x

p p

x

a f

*=

=

,且 *p p

a B B

B =

对温度T 压力p 下,真实溶液中溶质B 的化学势,有:

∞=++?0

B B B B

B 0ln(()d p

p γb

μμRT )V p b (溶质)(溶质)溶质

其中,??

?

??=0B B B b b a γ/为B 的活度因子,且

1

B

lim

=∑→γ B

B b 0 。

当p 与0p 相差不大时,B 0

B B ln )(a RT μμ+=溶质(溶质)

,对于挥发性溶质,其在气相中分压为:B B b k γp b =,则,

==

B B

B B B

b

b p

p a γk k b 。 第五章 化学平衡 主要公式及其适用条件

1. 化学反应亲和势的定义

A 代表在恒温、恒压和'0W =的条件下反应的推动力,A >0反应能自动进行;A =0处于平衡态;A < 0反应不能自动进行。 2.

摩尔反应吉布斯函数与反应进度的关系

()B B r m

,B

G T p G ξνμ??==?∑

式中的()p ξ??T,G 表示在T ,p 及组成一定的条件下,反应系统的吉布斯函数随反应进度的变化率,称为摩尔反应吉布斯函数变。 3.

化学反应的等温方程

式中 νμ?=∑θθ

r m B B

G ,称为标准摩尔反应吉布斯函数变;()B

B B

p J p p ν=∏θ ,称为反应的压力商,其单位为1。此式适用理想气体或低压下真实气体,,在T ,p 及组成一定,反应进度为1 mol 时的吉布斯函数变的计算。 4.

标准平衡常数的表达式

式中eq

B p 为参加化学反应任一组分B 的平衡分压力,γB 为B 的化学计量数。K θ

量纲为一。若已知平衡时参加反应的任一种物质的量n B ,摩尔分数y B ,系统的

r m

A G =-?p

J ln RT G G θm r m r +?=?()

B

θeq B B θ

νp

p K ∏=

总压力p ,也可采用下式计算θK :

()}

{

()B

B

B

B

B B

B B B

K n p

p n y p p νννν∑∑=∏?=?∑∏θ

θ

θ

式中∑B n 为系统中气体的物质的量之和,

∑B ν为参加反应的气态物质化学计量数的代数和。此式只适用于理想气体。 5.

标准平衡常数的定义式

或 θθ

r m exp()K G RT =-?

6.

化学反应的等压方程——范特霍夫方程

微分式 θθ

2r m dln K T H RT =?

积分式 θθθ21r m 2121l n ()()K K H T T R T T =?- 不定积分式 θθr m ln K H RT C =-?+

对于理想气体反应,θr m r m H H ?=?,积分式或不定积分式只适用于r m H ?为常数

的理想气体恒压反应。若r m H ?是T 的函数,应将其函数关系式代入微分式后再积分,即可得到θln K 与T 的函数关系式。

第六章 相平衡 主要公式及其适用条件

1.

吉布斯相律

2+-=P C F

式中F 为系统的自由度数(即独立变量数);P 为系统中的相数;“2”表示平衡系统只受温度、压力两个因素影响。要强调的是,C 称为组分数,其定义为C =S -R -R ′,S 为系统中含有的化学物质数,称物种数;R 为独立的平衡化学反应数;'R 为除任一相中∑=1B x (或1B =ω)。同一种物质在各平衡相中的浓度受化学势相等限制以及R 个独立化学反应的标准平衡常数θK 对浓度限制之外,其

RT G K θm

r θln ?-=

他的浓度(或分压)的独立限制条件数。

相律是表示平衡系统中相数、组分数及自由度数间的关系。供助这一关系可以解决:(a )计算一个多组分多平衡系统可以同时共存的最多相数,即F =0时,P 值最大,系统的平衡相数达到最多;(b )计算一个多组分平衡系统自由度数最多为几,即是确定系统状态所需要的独立变量数;(c )分析一个多相平衡系统在特定条件下可能出现的状况。

应用相律时必须注意的问题:(a )相律是根据热力学平衡条件推导而得的,故只能处理真实的热力学平衡系统;(b )相律表达式中的“2”是代表温度、压力两个影响因素,若除上述两因素外,还有磁场、电场或重力场对平衡系统有影响时,则增加一个影响因素,“2”的数值上相应要加上“1”。若相平衡时两相压力不等,则2+-=P C F 式不能用,而需根据平衡系统中有多少个压力数值改写“2”这一项;(c )要正确应用相律必须正确判断平衡系统的组分数C 和相数P 。而C 值正确与否又取决与R 与R ‘的正确判断;(d )自由度数F 只能取0以上的正值。如果出现F <0,则说明系统处于非平衡态。 2.

杠杆规则

杠杆规则在相平衡中是用来计算系统分成平衡两相(或两部分)时,两相(或两部分)的相对量,如图6-1所示,设在温度为T 下,系统中共存的两相分别为α相与β相。

图6-1 说明杠杆规则的示意图

图中M ,α,β分别表示系统点与两相的相点;B M x ,B x α,B

x β分别代表整个系统,α相和β相的组成(以B 的摩尔分数表示);n ,αn 与β

n 则分别为系统点,α相和β相的物质的量。由质量衡算可得

上式称为杠杆规则,它表示α,β两相之物质的量的相对大小。如式中的组成由

摩尔分数B x α,B M x ,B x β换成质量分数B αω,B

M ω,B βω时,则两相的量相应由物质的量αn 与βn (或αm 与β

m )。由于杠杆规则是根据物料守恒而导出的,所以,无论两相平衡与否,皆可用杠杆规则进行计算。注意:若系统由两相构成,则两相组成一定分别处于系统总组成两侧。

B B B B ()()

a M M

n x x n x x αββ-=-B

B B B ()()

M

M x x n n x x βαβα-=-

第一章 化学热力学基础 公式总结

第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V 2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程 .定温可逆时: Wmax=-Wmin= 4.焓定义式 H = U + PV 在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U 在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H 5.摩尔热容 Cm ( J·K-1·mol-1 ): 定容热容 CV (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程 适用对象 : 任意的气体、液体、固体物质 ) 定压热容 Cp ?=?2 1 ,T T m p dT nC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程 适用对象 : 任意的气体、液体、固体物质 ) 单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4R 1 221ln ln P P nRT V V nRT =n C C m = ?=?2 1 ,T T m V dT nC U

Cp,m = Cv,m + R 6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结 7.定义:△fHm θ(kJ·mol-1)-- 标准摩尔生成焓 △H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变; △fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。 8.热效应的计算 由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程 △rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1) 10.热机的效率为 对于卡诺热机 12 11Q Q Q Q W R +=- =η dT C p T T ? ?2 1 1 2 1211Q Q Q Q Q Q W +=+=-=η121T T T -=

最新大学物理之热学公式篇

热 学 公 式 1.理想气体温标定义:0 273.16lim TP p TP p T K p →=?(定体) 2.摄氏温度t 与热力学温度T 之间的关系:0 //273.15t C T K =- 华氏温度F t 与摄氏温度t 之间的关系:9325 F t t =+ 3.理想气体状态方程:pV RT ν= 1mol 范德瓦耳斯气体状态方程:2 ()()m m a p V b RT V + -= 其中摩尔气体常量8.31/R J mol K =?或2 8.2110/R atm L mol K -=??? 4.微观量与宏观量的关系:p nkT =,23kt p n ε= ,32 kt kT ε= 5.标准状况下气体分子的数密度(洛施密特数)253 0 2.6910/n m =? 6.分子力的伦纳德-琼斯势:12 6 ()4[()()]p E r r r σ σ ε=-,其中ε为势阱深度, σ= ,特别适用于惰性气体,该分子力大致对应于昂内斯气体; 分子力的弱引力刚性球模型(苏则朗模型):06 000, ()(), p r r E r r r r r φ+∞

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的 pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 pV (m/M )RT nRT 或 pV m p (V /n ) RT 式中p , V , T 及n 单位分别为Pa, m 3, K 及mol 。 V m V /n 称为气体的摩尔体 积,其单位为m 3?mol -1。R=8.314510 J mol -1 K 1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 ( 1) 组成 摩尔分数 式中 n A 为混合气体总的物质的 量。 V m ,A 表示在一定T , p 下纯气体A 的摩 A 尔体积。 y A V mA 为在一定T , p 下混合之前各纯组分体积的总和。 A ( 2) 摩尔质量 述各式适用于任意的气体混合物 (3) y B n B /n p B / p V B /V 式中P B 为气体B ,在混合的T , V 条件下,单独存在时所产生的压力,称为 B 的分压力。V B 为B 气体在混合气体的T , p 下,单独存在时所占的体积。 y B (或 x B ) = n B / n A A 体积分数 B y B V m,B / yAV m,A A y B M B m/n M B / n B B B B 式中 m m B 为混合气体的总质量, n B n B 为混合气体总的物质的量。上 M mix B

叮叮小文库3. 道尔顿定律 p B = y B p, p P B B 上式适用于任意气体。对于理想气体 P B n B RT/V 4. 阿马加分体积定律 V B ri B RT/V 此式只适用于理想气体。 第二章热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 U Q W 或dU 8Q SW 9Q P amb dV SW' 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 H U pV 3. 焓变 (1)H U (PV) 式中(pV)为pV乘积的增量,只有在恒压下(pV) P(V2v1)在数值上等于体积功。 2 (2)H 1n C p,m dT 此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,

河南理工大学传热学公式总结

1,——热传导 )(21t t A Q -= δ λ 2 12111)(h h t t A f f ++-= Φλ δ 导热微分方程: z t y t x t a t ρτ· 222222)(Φ+??+??+??=??/(c a ρλ= 肋效率: =实际散热量/假设整个肋表面处于肋基温度下的散热量( = ) 等截面直肋(肋端绝热) 温度分布: θ=θ0ch(m(x-H))/ch(mH), 肋端: 热量:肋效率: ()()()() ()r o f f f o f r f f o f r f f o o f r f A h t t A h t t A A h t t A A A h t t A A ηηηΦ=-+-+=-+=-+) o o o o f h A t t η=-o η为肋面总效率 (1)、集总参数法(Biv <0.1M,M=1(平板),1/2(圆柱),1/3(圆球)) τρθθVc hA e t t t t -∞ ∞=--=00222 ()()hA hV A cV A V c h V A a Bi Fo V A λττρλρτλ=?=?=? 1、 平壁稳态导热 第一类边界条件:单层: x t t t t w w w δ 1 21-- =;2 21/)(m W t t q w w -=δλ 多层 ∑∑=+=+-= -= n i i n n i i i n R t t t t q 1 ,1 111 1λ λδ 第三类边界条件:传热问题 2112 11 1h h t t q i i f f + +-= ∑=λ单位W/m2 2、 圆筒壁稳态导热 第一类边界条件 单层: 12 11 21r n r r n t t t t w w w =-- ;()12212112212r r n l t t t t r r n l w w w w πλπλ-=-=Φ多层:∑ =++-=Φn i i i i n w w r r n l t t 111,1121 λπ 第三类边界条件:1211112 121 ln 2121+=+++-= ∑n n i i i f f l r h ri r r h t t q ππλπ单位:W/m ——热对流

热力学公式总结汇编

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体

V RT n p /B B = 4. 阿马加分体积定律 */B B V n RT p = 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式 (1)定压热容和定容热容 pV U H +=2 ,m 1 d V U nC T ?=?

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121Λ 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

化工热力学公式总结

化工热力学(第三版)公式知识总结 vdW 方程 p =RT V?b ?a V 2 RK 方程 p = RT V?b ? a √T ?V(V+b) P R方程 P = RT V?b ? a V (V+b )+b(V?b) 对应态原理 P r = 3 8T r V r ?13??3 V r 2 偏心因子 ω=?1?lgP r s ︱ T r =0.7 普遍化vir ial 方程BP c RT c = B (0)+ωB (1) d U=Td S-p dV dH =Td S+Vdp dA=-Sd T-pdV dG=-Sd T+V dp dZ=MdX+Nd Y (?N ?X )Y =?(?M ?Y )X (?T ?V ) S =?(?P ?S ) V (?S ?P ) T =?(?V ?T ) p 偏离函数定义 M ?M 0ig =M (T,p )?M 0ig (T,p 0) 随状态变化 M (T 2,p 2)?M (T 1,p 1)=[M (T 2,p 2)?M ig (T 2,p 0)]?[M (T 1,p 1)?M ig (T 1,p 0)]+ [M ig (T 2,p 0) ? M ig (T 1,p 0)] G?G 0ig RT ?ln P P 0 = 1RT ∫(V ?RT P )P 0dp 逸度定义 G (T,P )?G 0ig (T,P 0)=RTln f P 0 φ=f P lnφ=ln f p =1RT ∫(V ? RT P )P 0 dp (?lnf ?p )=V RT 饱和蒸汽和液体性质关系M =M sl (1?x )+M sv x 偏摩尔性质 M i ???=(?M t ?n i ) T,p,{n } ≠i 偏摩尔性质表示摩尔性质 M =∑n i n M i ???N i =∑x i M i ???N i 摩尔性质与摩尔性质关系M i ???=M +(1?x)dM dx i M 2????=M ?x 1dM dx i Gi bbs -Duhem 方程在T,p 恒定(∑x i dM i ???N i=1) T,p =0 Leiwis-randa ll 规则 f ?i is =f i X i f ?i is ? =H i,Solvent X i 活度系数 γi =f i ?f i X i lnγi ?=lnγi ?lnγi ∞ 超额性质 G E RT =∑X i lnγi N i ?H =H E =?RT 2∑X i ( ?lnγi ?T ) p,{x }N i

(完整word版)统计热力学--小结与习题

第9章 统计热力学初步小结与练习 核心内容:配分函数(q )及其与热力学函数(U,S …)之间的关系 主要内容:各种运动形式的q 及由q 求U,S …的计算公式 一、内容提要 1、微观粒子的运动形式和能级公式 n e r t εεεεεε++++=v 式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能, e ε:电子运动能,n ε:核运动能。 (1)三维平动子 )(8222222 2c n b n a n m h z y x t ++=ε 式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。 对立方容器 )(82 223 22z y x t n n n mV h ++= ε 基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如3 2286mV h t =ε的能级,其简并度g = 3。 (2)刚性转子 双原子分子 )1(822+= J J I h r πε

式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=, μ:分子的折合质量,2 12 1m m m m += μ,0R :分子的平衡键长,能级r ε的 简并度 g r = 2J+1 (3)一维谐振子 νυεh )2 1(v += 式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v = 1 对三维谐振子, νυυυεh z y x )2 3 (v +++= 2 )2)(1(v ++=s s g , 其中s=υx + υy + υz (4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。 2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数 能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级 分布数,每一套能级分布数称为一种分布。 微态数:实现一种分布的方式数。 定域子系统能级分布微态数 ∏=i i n i D n g N W i !!

热力学公式总结

第一章气体的pVT关系 主要公式及使用条件 1. 理想气体状态方程式 pV =(m/M )RT =nRT 或pV m = p(V/n) = RT 式中p, V, T及n单位分别为Pa, m3, K及mol。V m =V /n称为气体的摩尔体 积,其单位为m3.mol-1。R=8.314510 J mol-1-K-1,称为摩尔气体常数。 此式适用丁理想气体,近似地适用丁低压的真实气体。 2. 气体混合物 (1)组成 摩尔分数y B (或X B) = n B/,n A A 体积分数 B = y B V m,B y A V "m,A 式中£ n A为混合气体总的物质的量。V*m,A表示在一定T, p下纯气体A的摩A 尔体积。z y A V%A为在一定T, p下混合之前各纯组分体积的总和。A (2)摩尔质量 M mix = Y B M B=m/n = L M B/' n B B B B 式中m=£m B为混合气体的总质量,n=£n B为混合气体总的物质的量。上述各式适用丁任意的气体混合物。 (3)y B =n B / n = P B / p = V;/V 式中p B为气体B,在混合的T, V条件下,单独存在时所产生的压力,称为 B 的分压力。V B*为B气体在混合气体的T, p下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p, p = % P B B 上式适用丁任意气体。对丁理想气体 P B =A B RT/V 4. 阿马加分体积定律 ..*

V B = n B RT / p 此式只适用丁理想气体。 第二章热力学第一定律 主要公式及使用条件 1.热力学第一定律的数学表示式 U =Q W 或 d U = a Q+a W =a Q-a 网V ' W 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W'为非体积功。上式适用丁封闭体系的一切过程。 2.焰的定义式 H =U pV 3.焰变 (1) H = U (pV) 式中以P V)为P V乘积的增量,只有在包压下A(P V) = P。-V1)在数值上等丁体积功。 2 (2) H = 1 nC p,m dT 此式适用丁理想气体单纯pVT变化的一切过程,或真实气体的包压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4.热力学能(乂称内能)变 2 U = 1 nC v,m dT 此式适用丁理想气体单纯pVT变化的一切过程。 5.包容热和包压热 Qv = U ( dV = 0W =' 0 Q p = H (d p =0,W' =0) 6.热容的定义式 (1)定压热容和定容热容 C p = aQp/dT =(州 /钉)p C v =8Q V /dT =(印 /可)V (2) 摩尔定压热容和摩尔定容热容

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学公式大全

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相 对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的 平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。 2.常用公式 状态参数:1 2 1 2 x x dx- = ? ?=0 dx 状态参数是状态的函数,对应一定的状态,状态参数都有唯一确定的数值,工质在热力过程中发生状态变化时,由初状态经过不同路径,最后到达

热力学公式总结

热力学公式总结 Revised as of 23 November 2020

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R = J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑* A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 */B B V n RT p = 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0)V W == pV U H +=2 ,m 1 d V U nC T ?=?

热力学第二定律 概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

热力学公式总结

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B *=V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,*V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 4. 阿马加分体积定律 此式只适用于理想气体。 第二章 热力学第一定律

主要公式及使用条件 1. 热力学第一定律的数学表示式 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2,m 1 d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 6. 热容的定义式 (1)定压热容和定容热容 (2)摩尔定压热容和摩尔定容热容 上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容) 式中m 和M 分别为物质的质量和摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。 7. 摩尔蒸发焓与温度的关系 或 vap m vap ,m (/)p p H T C ???=? 式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。 8. 体积功 pV U H +=2,m 1d V U nC T ?=?

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * ===

式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 pV U H +=

第一章 化学热力学基础 公式总结

第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V 2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程 .定温可逆时: Wmax=-Wmin= 4.焓定义式 H = U + PV 在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U 在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H 5.摩尔热容 Cm ( J·K-1·mol-1 ): 定容热容 CV (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程 适用对象 : 任意的气体、液体、固体物质 ) 定压热容 Cp ?=?2 1 ,T T m p dT nC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程 适用对象 : 任意的气体、液体、固体物质 ) 单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 1 221ln ln P P nRT V V nRT =n C C m = ?=?2 1 ,T T m V dT nC U

多原子理想气体: Cv,m = 3R , Cp,m = 4R Cp,m = Cv,m + R 6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结 7.定义:△fHm θ(kJ·mol-1)-- 标准摩尔生成焓 △H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变; △fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。 8.热效应的计算 由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程 △rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1) 10.热机的效率为 对于卡诺热机 dT C p T T ? ?2 1 1 2 1211Q Q Q Q Q Q W +=+=-=η

热力学公式

1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体

V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 1. 热力学第一定律的数学表示式 W Q U +=? 或 'a m b δδδ d δd U Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ?为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1 d p H nC T ?= ? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0V W == p Q H =? (d 0,'0)p W == pV U H +=2 ,m 1 d V U nC T ?=?

相关主题
文本预览
相关文档 最新文档