当前位置:文档之家› 数字信号处理第三版西安电子(高西全丁美玉)2.3.5.6课后答案

数字信号处理第三版西安电子(高西全丁美玉)2.3.5.6课后答案

数字信号处理第三版西安电子(高西全丁美玉)2.3.5.6课后答案
数字信号处理第三版西安电子(高西全丁美玉)2.3.5.6课后答案

西安电子(高西全丁美玉第三版)数字信号处理课后答案

1.2 教材第一章习题解答

1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解:

()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)

x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-

2. 给定信号:25,41()6,040,n n x n n +-≤≤-??

=≤≤??

?其它

(1)画出()x n 序列的波形,标上各序列的值;

(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解:

(1)x(n)的波形如题2解图(一)所示。 (2)

()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)

x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-

(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。 (4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()7

8

x n A n π

π=-,A 是常数;

(2)1

()8

()j n x n e π-=。

解:

(1)3214,7

3

w w

ππ==,这是有理数,因此是周期序列,周期是T=14;

(2)12,168w w

ππ=

=,这是无理数,因此是非周期序列。 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =;

(7)0

()()n

m y n x m ==∑。

解:

(1)令:输入为0()x n n -,输出为

'

000'

0000()()2(1)3(2)

()()2(1)3(2)()

y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=

故该系统是时不变系统。

12121212()[()()]

()()2((1)(1))3((2)(2))

y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+-

1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+- 2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+- 1212[()()][()][()]T ax n bx n aT x n bT x n +=+

故该系统是线性系统。

(3)这是一个延时器,延时器是一个线性时不变系统,下面予以证明。

令输入为1()x n n -,输出为'

10()()y n x n n n =--,因为

'

110()()()y n n x n n n y n -=--=

故延时器是一个时不变系统。又因为

12102012[()()]()()[()][()]T ax n bx n ax n n bx n n aT x n bT x n +=-+-=+

故延时器是线性系统。

(5) 2

()()

y n x n =

令:输入为0()x n n -,输出为'20()()y n x n n =-,因为

2

'

00()()()y n n x n n y n -=-=

故系统是时不变系统。又因为

2

1212122

2

12[()()](()())

[()][()] ()()

T ax n bx n ax n bx n aT x n bT x n ax n bx n +=+≠+=+ 因此系统是非线性系统。

(7) 0

()()

n

m y n x m ==

令:输入为0()x n n -,输出为'

()()n

m y n x m n

==

-∑,因为

'

00

()()()n n m y n n x m y n -=-=

≠∑

故该系统是时变系统。又因为

121

2

120

[()()](()())[()][()]n

m T ax n bx n ax m bx

m aT x n bT x n =+=

+=+∑

故系统是线性系统。

6. 给定下述系统的差分方程,试判断系统是否是因果稳定系统,并说明理由。 (1)1

1()()N k y n x n k N

-==

-∑;

(3)0

0()()n n k n n y n x k +=-=

(5)()

()x n y n e =。

解:

(1)只要1N ≥,该系统就是因果系统,因为输出只与n 时刻的和n 时刻以前的输入有关。如果()x n M ≤,则()y n M ≤,因此系统是稳定系统。

(3)如果()x n M ≤,0

0()()21n n k n n y n x k n M +=-≤

≤+∑

,因此系统是稳定的。系统是非因

果的,因为输出还和x(n)的将来值有关.

(5)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果()x n M ≤,则

()

()

()x n x n M

y n e

e

e

=≤≤,因此系统是稳定的。

7. 设线性时不变系统的单位脉冲响应()h n 和输入序列()x n 如题7图所示,要求画出输出输出()y n 的波形。 解:

解法(1):采用图解法

()()()()()m y n x n h n x m h n m ∞

==*=

-∑

图解法的过程如题7解图所示。

解法(2):采用解析法。按照题7图写出x(n)和h(n)的表达式:

()(2)(1)2(3)1()2()(1)(2)

2

x n n n n h n n n n δδδδδδ=-++-+-=+-+

-

因为

()*()()()*()

()

x n n x n x n A n k A x n

k δδ

=-

=-

所以

1

()()*[2()(

1)(2)]

2

1

2()(1)(

2)

2

y n x n n n n x n x n x n δδδ=+-+-=+-+-

将x(n)的表达式代入上式,得到

()2(2)(1)0.5()2(1)(2) 4.5(3)2(4)(5)

y n n n n n n n n n δδδδδδδδ=-+-+-+-+-+-+-+-

8. 设线性时不变系统的单位取样响应()h n 和输入()x n 分别有以下三种情况,分别求出输出

()y n 。

(1)45()(),()()h n R n x n R n ==;

(2)4()2(),()()(2)h n R n x n n n δδ==--;

(3)5()0.5(),()n

n h n u n x R n ==。

解:

(1) 45()()*()()()m y n x n h n R m R n m ∞

=-∞

==

-∑

先确定求和域,由4()R m 和5()R n m -确定对于m 的非零区间如下:

03,4m n m n ≤≤-≤≤

根据非零区间,将n 分成四种情况求解: ①0,()0n y n <=

②0

03,()11n

m n y n n =≤≤=

=+∑

③3

4

47,()18m n n y n n =-≤≤=

=-∑

④7,()0n y n <= 最后结果为

0, 0,7()1, 038, 47n n y n n n n n <>??

=+≤≤??-≤≤?

y(n)的波形如题8解图(一)所示。 (2)

444()2()*[()(2)]2()2(2) 2[()(1)(4)(5)]

y n R n n n R n R n n n n n δδδδδδ=--=--=+-----

y(n)的波形如题8解图(二)所示. (3)

55()()*()

()0.5

()0.5

()0.5

()

n m

n

m

m m y n x n h n R m u n m R m u n m ∞

--=-∞

=-∞

==

-=-∑

y(n)对于m 的非零区间为04,m m n ≤≤≤。 ①0,()0n y n <=

②11

1

10.5

04,()0.5

0.5

0.5(10.5

)0.520.510.5

n n

n

m

n n n n

m n y n ------=-≤≤==

=--=--∑

③54

1

10.55,()0.5

0.5

0.5310.510.5

n

m

n n

m n y n ---=-≤==

=?-∑

最后写成统一表达式:

5()(20.5)()310.5(5)n

n

y n R n u n =-+?-

11. 设系统由下面差分方程描述:

11()(1)()(1)2

2

y n y n x n x n =

-++

-;

设系统是因果的,利用递推法求系统的单位取样响应。

解:

令:()()x n n δ=

11()(1)()(1)2

2

h n h n n n δδ=

-++

- 2

110,(0)(1)(0)(1)1

22

111,(1)(0)(1)(0)1

2

2

112,(2)(1)22

1

13,(3)(2)()22

n h h n h h n h h n h h δδδδ==-++

-===++====

==

=

归纳起来,结果为

1

1()()(1)()2

n h n u n n δ-=-+

12. 有一连续信号()cos(2),a x t ft π?=+式中,20,2

f H z π

?==

(1)求出()a x t 的周期。

(2)用采样间隔0.02T s =对()a x t 进行采样,试写出采样信号()a x

t 的表达式。 (3)画出对应()a x

t 的时域离散信号(序列) ()x n 的波形,并求出()x n 的周期。

————第二章————

教材第二章习题解答

1. 设()jw

X e 和()jw

Y e 分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换: (1)0()x n n -; (2)()x n -; (3)()()x n y n ; (4)(2)x n 。 解:

(1)00[()]()jw n

n FT x n n x n n e

-=-∞

-=

-∑

令''00,n n n n n n =-=+,则

'

00

()

'

0[()]()()jw n n jw n jw

n FT x n n x n e

e

X e

-+-=-∞-=

=∑

(2)*

*

*

*[()]()[

()]()jw n

jw n jw

n n FT x n x n e

x n e

X e

-∞

-=-∞

=-∞

=

==∑

(3)[()]()jw n

n FT x n x n e

-=-∞

-=

-∑

令'n n =-,则

'

'

'

[()]()()jw n

jw

n FT x n x n e

X e

-=-∞

-=

=∑

(4) [()*()]

()(j w

j w

F T x n y n X e

Y e

= 证明: ()*()

()(m x n y n x m y n m

=-∞=-∑

[()*()][()()]jw n

n m FT x n y n x m y n m e

-=-∞

=-∞

=

-∑∑

令k=n-m ,则

[()*()][

()()] ()() ()()

jw k

jw n

k m jw k

jw n

k m jw

jw

F T x n y n x m y k e

e

y k e

x m e

X e Y e

--=-∞=-∞

--=-∞

=-∞

==

=∑∑

2. 已知0

01,()0,jw

w w X e

w w π

?

求()jw

X e 的傅里叶反变换()x n 。 解: 00

0s i n 1()2w jw n

w w n

x n e

dw n

π

π-=

=

?

3. 线性时不变系统的频率响应(传输函数)()()(),jw jw j w H e H e e θ=如果单位脉冲响应()h n 为实序列,试证明输入0()cos()x n A w n ?=+的稳态响应为

00()()cos[()]jw

y n A H e

w n w ?θ=++。

解:

假设输入信号0

()jw n x n e =,系统单位脉冲相应为h(n),系统输出为

00000

()

()()*()()()()jw n

jw n m jw n

jw m

jw m m y n h n x n h m e

e

h m e

H e

e

∞∞

--=-∞

=-∞

==

==∑

上式说明,当输入信号为复指数序列时,输出序列仍是复指数序列,且频率相同,但幅度和相位决定于网络传输函数,利用该性质解此题。

0000

00

00000

00()

()

1()cos()[]

2

1()[()()]21 [()()]

2jw n

jw n

j j jw n

jw jw n

jw j j jw n

jw j w jw n

jw j w j j x n A w n A e e

e

e

y n A e e H e

e e

H e

A e e

H e

e

e e

H e

e

?

?

?

?

?θ??

?---------=+=+=+=

+

上式中()jw H e 是w 的偶函数,相位函数是w 的奇函数,

00000

()

()

00()(),()()1()()[]2

()cos(())

jw

jw

jw jw n

j w jw n

j w j j jw H e

H e w w y n A H e

e e

e

e

e

e

A H e

w n w θθ?

?

θθ?θ----==--=+=++

4. 设1,0,1()0,n x n =?=??

其它将()x n 以4为周期进行周期延拓,形成周期序列 ()x n ,画出()x n 和 ()x n 的波形,求出 ()x n 的离散傅里叶级数 ()X k 和傅里叶变换。

解:

画出x(n)和()x

n 的波形如题4解图所示。 23

1

42

2

00

4

4

4

4

()[()]()1 ()2cos(

)4

j

kn

j

kn

j

k

n n j

k

j

k

j

k

j

k

X

k D FS x n x

n e e

e

e

e

e k e

ππ

π

π

π

π

π

π

---==---===

=+=+=?∑

∑ ,

()X

k 以4为周期,或者 1

111

1

2222

4

1

1

1

2

4441sin 1()2()1sin

1()

4

j k

j k j k

j k

j

kn

j k

j

k

j k

j k j k

n k

e e e e X

k e

e

k

e

e

e

e

ππππ

πππ

πππππ--------=--==

=

=--∑ ,

()X

k 以4为周期

4

22()[()]()()4

4

()()2

2

cos(

)()

4

2jw

k k j

k

k X e

F T x

n X

k w k X

k w k k e

w k π

ππδπ

πδπ

π

π

δ∞

=-∞

=-∞∞

-=-∞

==-=

-=-

5. 设如图所示的序列()x n 的FT 用()jw X e 表示,不直接求出()jw X e ,完成下列运算: (1)0()j X e ;

(2)

()jw

X e dw π

π

-?

(5)2

()jw

X e

dw π

π

-?

解:

(1)7

3

()()6j n X e x n =-=

=∑

(2)

()(0)24jw

X e

dw x π

π

ππ-=?=?

(5)

7

2

2

3

()2()

28jw

n X e

dw x n π

π

π

π=--==∑

?

6. 试求如下序列的傅里叶变换: (2)211()(1)()(1)2

2

x n n n n δδδ=

+++

-;

(3)3()(),01n

x n a u n a =<<

解: (2)

2211()()12

2

1 1()1cos 2jw

jw n

jw

jw

n jw

jw

X e

x n e e

e

e

e

w

--=-∞

-=

=

++

=+

+=+∑

(3) 30

1

()()

1j w

n j w n

n

j w n

jw

n n X e a u n e a e

ae

---=-∞

==

=

=

-∑

7. 设:

(1)()x n 是实偶函数,

(2)()x n 是实奇函数,分别分析推导以上两种假设下,()x n 的傅里叶变换性质。 解:

令 ()()jw

jw n

n X e x n e

-=-∞

=

(1)x(n)是实、偶函数,()()jw

jw n

n X e x n e

-=-∞

=∑

两边取共轭,得到

*()()()()()jw

jw n

j w n

jw

n n X e

x n e

x n e

X e

---=-∞

=-∞

=

=

=∑

因此*()()jw jw X e X e -=

上式说明x(n)是实序列,()jw X e 具有共轭对称性质。

()()()[cos sin ]jw

jw n

n n X e x n e x n w n j w n ∞

-=-∞

=-∞

=

=

+∑

由于x(n)是偶函数,x(n)sinwn 是奇函数,那么

()sin 0n x n w n ∞

=-∞

=∑

因此()()cos jw

n X e x n w n ∞

=-∞=

该式说明()jw

X e 是实函数,且是w 的偶函数。

总结以上x(n)是实、偶函数时,对应的傅里叶变换()jw

X e 是实、偶函数。 (2)x(n)是实、奇函数。

上面已推出,由于x(n)是实序列,()jw

X e 具有共轭对称性质,即

*()()jw jw

X e

X e

-=

()()()[cos sin ]jw

jw n

n n X e

x n e

x n w n j w n ∞

-=-∞

=-∞

=

=

+∑

由于x(n)是奇函数,上式中()cos x n wn 是奇函数,那么

()cos 0n x n w n ∞

=-∞

=∑

因此()()sin jw

n X e j

x n w n ∞

=-∞

=∑

这说明()jw X e 是纯虚数,且是w 的奇函数。

10. 若序列()h n 是实因果序列,其傅里叶变换的实部如下式: ()1cos jw R H e w =+ 求序列()h n 及其傅里叶变换()jw H e 。 解:

/2

11()1cos 1[()]()2

2

1

,12()1,0

1

,12

0,01,0()(),01,1

2(),00,()()12cos

2

jw

jw

jw

jw n

R e e n e e e jw

jw n

jw

jw n H e

w e

e

FT h n h n e

n h n n n n n h n h n n n h n n w H e

h n e

e

e

--=-∞

---=-∞

=+=+

+

==

?=-??

==???=?<=??????

====??????>???

=

=+=∑

其它n

12. 设系统的单位取样响应()(),01n h n a u n a =<<,输入序列为()()2(2)x n n n δδ=+-,完成下面各题:

(1)求出系统输出序列()y n ;

(2)分别求出()x n 、()h n 和()y n 的傅里叶变换。 解:

(1)

2

()()*()()*[()2(2)] ()2(2)

n

n

n y n h n x n a u n n n a u n a

u n δδ-==+-=+-

(2)

20

2()[()2(2)]121()()112()()()1jw

jw n

j w

n jw

n jw n

n jw n

jw

n n j w jw

jw

jw

jw

X e n n e

e H e a u n e

a e

ae

e

Y e

H e X e

ae

δδ∞

--=-∞∞

---=-∞

=--=+-=+=

=

=

-+==

-∑

13. 已知0()2cos(2)a x t f t π=,式中0100f H z =,以采样频率400s f H z =对()a x t 进行采

样,得到采样信号 ()a x

t 和时域离散信号()x n ,试完成下面各题:

(1)写出()a x t 的傅里叶变换表示式()a X j Ω;

(2)写出 ()a x

t 和()x n 的表达式; (3)分别求出 ()a x

t 的傅里叶变换和()x n 序列的傅里叶变换。 解: (1)

000()()2cos() ()j t

j t

a a j t

j t

j t

X j x t e dt t e dt

e

e

e

dt

∞∞-Ω-Ω-∞-∞

∞Ω-Ω-Ω-∞

Ω==Ω=

+??

?

上式中指数函数的傅里叶变换不存在,引入奇异函数δ函数,它的傅里叶变换可以

表示成:

00()2[()()])a X j πδδΩ=Ω-Ω+Ω+Ω

(2) 0?()()()2c o s ()()

a a n n x

t x t t nT nT t nT δδ∞

=-∞

=-∞

=-=Ω-∑

0()2cos(), x n nT n =Ω-∞<<∞

0012200, 2.5s

f rad T m s f ππΩ===

=

(3)

001?()()

2 [()()]

a a s k s s k X j X j jk T k k T

πδδ∞

=-∞

=-∞

Ω=Ω-Ω=

Ω-Ω-Ω+Ω+Ω-Ω∑

式中2800/s s f rad s ππΩ==

000000()()2cos()2cos() []2[(2)(2)]

jw

jw n

jw n

jw n

n n n jw n

jw n

jw n

n k X e

x n e nT e

w n e

e

e

e w w k w w k π

δπδπ∞

---=-∞=-∞

=-∞

--=-∞

=-∞

=

=

Ω=

=

+=--++-∑

式中000.5w T rad π=Ω=

上式推导过程中,指数序列的傅里叶变换仍然不存在,只有引入奇异函数函数,才能写出它

的傅里叶变换表达式。

14. 求以下序列的Z 变换及收敛域: (2)2(1)n

u n ----;

(3)2()n u n --;

(6)2[()(10)]n u n u n --- 解:

(2) 1

1

11[2()]2

()2

,12

2

n

n

n

n

n

n n ZT u n u n z

z

z z

-------=-∞

===

=

>

-∑

(3)

1

1

1

1

[2

(1)]2

(1)2

2

211 ,12122

n

n

n

n

n

n

n

n n n ZT u n u n z

z

z

z z z

z

∞∞∞

-----=-∞

=-=-----=

---=

-=

--=

=<

--∑

(6)

9

10101

1

[2

()(10)]2

12

,012n

n

n

n ZT u n u n z

z

z z

---=------=

-=

<≤∞

-∑

16. 已知:

1

1

32

()11212X z z

z

--=

+

--

求出对应()X z 的各种可能的序列的表达式。 解:

有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况: 三种收敛域对应三种不同的原序列。 (1)当收敛域0.5z <时,

1

1()()2n c

x n X Z z

dz j

π

-=

?

令1

1

1

1

1

5757()()(10.5)(12)

(0.5)(2)

n n n

z

z F z X z z

z

z z z z z -------==

=

----

0n ≥,因为c 内无极点,x(n)=0;

1n ≤-,C 内有极点0,但z=0是一个n 阶极点,改为求圆外极点留数,圆外极点有

120.5,2z z ==,那么

0.5

2

()R e [(),0.5]R e [(),2](57)(57) (0.5)

(2)

(0.5)(2)

(0.5)(2)

1 [3()22](1)

2

n

n

z z n n

x n s F z s F z z z

z z

z z z z z z u n ===----=

--

-----=-+--

(2)当收敛域0.52z <<时,

(57)()(0.5)(2)

n

z z

F z z z -=

--

0n ≥,C 内有极点0.5;

1()R e [(),0.5]3()2

n

x n s F z ==

0n <,C 内有极点0.5,0,但0是一个n 阶极点,改成求c 外极点留数,c 外极点只有一

个,即2,

()Re [(),2]22(1)n

x n s F z u n =-=---

最后得到1

()3()()22(1)2

n n

x n u n u n =---

(3)当收敛域2z <时,

(57)()(0.5)(2)

n

z z

F z z z -=

--

0n ≥,C 内有极点0.5,2;

1()R e [(),0.5]R e [(),2]3()222

n n

x n s F z s F z =+=+

n<0,由收敛域判断,这是一个因果序列,因此x(n)=0。

或者这样分析,C 内有极点0.5,2,0,但0是一个n 阶极点,改成求c 外极点留数,c 外无极点,所以x(n)=0。 最后得到

1()[3()22]()2

n n

x n u n =+

17. 已知()(),01n

x n a u n a =<<,分别求: (1)()x n 的Z 变换; (2)()nx n 的Z 变换; (3)()n

a u n --的z 变换。 解:

(1)1

1()[()](),1n

n n

n X z ZT a u n a u n z

z a az

--=-∞

==

=

>-∑

(2)112

[()](),(1)

d az

ZT nx n z

X z z a dz

az --=-=

>-

(3)1

1[()],1n

n

n

n

n

n n ZT a u n a

z

a z z a

az

-∞

----==-=

=

=

<-∑

18. 已知1

1

2

3()252z X z z

z

----=

-+,分别求:

(1)收敛域0.52z <<对应的原序列()x n ; (2)收敛域2z >对应的原序列()x n 。 解:

1

1()()2n c

x n X z z

dz j π-=

?

1

1

1

1

2

33()()2522(0.5)(2)

n

n n z z

F z X z z

z

z

z

z z -------?==

=

-+--

(1)当收敛域0.52z <<时,0n ≥,c 内有极点0.5,

()R e [(),0.5]0.52

n

n

x n s F z -===,0,n <

c 内有极点0.5,0,但0是一个n 阶极点,改求c 外极点留数,c 外极点只有2,

()R e [(),2]2n

x n s F z =-=,

最后得到

()2

()2(1)2

n

n

n x n u n u n --=+--=

(2(当收敛域2z >时,

0,n ≥c 内有极点0.5,2,

()Re [(),0.5]Re [(),2]x n s F z s F z =+

30.5(2)2

2(0.5)(2)0.52

n

n

n

n

z

z z z z -?=+

-

=--=-

0,n

因此()0x n =, 最后得到

()(0.52)()n

n

x n u n =-

25. 已知网络的输入和单位脉冲响应分别为

()(),()(),01,01n

n

x n a u n h n b u n a b ==<<<<,

试:

(1)用卷积法求网络输出()y n ; (2)用ZT 法求网络输出()y n 。 解:

(1)用卷积法求()y n

()()()()()m n m

m y n h n x n b u m a

u n m ∞

-=-∞

=*=

-∑

,0n ≥,

1

1

1

1

1

1()1n n n n n n

n m

m

n

m

m

n

m m a

b

a

b

y n a

b

a

a

b

a

a b

a b

--+++---==--=

===

--∑∑,0n <,()0y n =

最后得到

1

1

()()n n a

b

y n u n a b

++-=

-

(2)用ZT 法求()y n

1

1

11(),()11X z H z az

bz

--=

=

--

()()

1

1

1

()()()11Y z X z H z az bz --==

--

1

1()()2n c

y n Y z z dz j

π-=

?

令()()

1

1

1

1

1

()()()()

11n n n z

z

F z Y z z

z a z b az bz -+---==

=

----

0n ≥,c 内有极点,a b

1

1

1

1

()Re [(),]Re [(),]n n n n a

b

a

b

y n s F z a s F z b a b

b a

a b

++++-=+=

+

=

---

因为系统是因果系统,0n <,()0y n =,最后得到

1

1

()()n n a

b

y n u n a b

++-=

-

28. 若序列()h n 是因果序列,其傅里叶变换的实部如下式:

2

1cos (),112cos jw

R a w H e

a a a w

-=

<+-

求序列()h n 及其傅里叶变换()jw H e 。 解:

2

2

1cos 10.5()()12cos 1()

jw jw

jw

R jw

jw

a w a e

e

H e

a a w a a e e

----+=

=

+-+-+

1

21

1

10.5()

10.5()

()1()

(1)(1)

jw

jw

R a z z a e

e

H z a a z z az az -----+-+=

=

+-+--

求上式IZT ,得到序列()h n 的共轭对称序列()e h n 。

1

1()()2n e R c

h n H z z

dz j

π

-=

?

2

1

1

1

0.50.5()()()()

n n R az z a F z H z z

z

a z a z a ----+-==

---

因为()h n 是因果序列,()e h n 必定是双边序列,收敛域取:1

a z a

-<<。

1n ≥时,c 内有极点a ,

2

1

1

0.50.51()R e [(),]()

()()

2

n n

e az z a h n s F z a z

z a a z a

a z a z a ---+-==

-=

=---

n=0时,c 内有极点a ,0,

2

1

1

1

0.50.5()()()()

n R az z a F z H z z

z

a z a z a ----+-==

---

所以

()R e [(),]R e [(),0]1e h n s F z a s F z =+=

又因为

()()e e h n h n =-

所以

1,0()0.5,00.5,0

n

e n

n h n a n a n -=??=>??

1,0(),0

()2(),0,0()0,00,0e n n

e n h n n h n h n n a n a u n n n =??=????=>=>=??????<

1()1jw

n jw n

jw

n H e

a e

ae

--==

=

-∑

3.2 教材第三章习题解答

1. 计算以下诸序列的N 点DFT,在变换区间01n N ≤≤-内,序列定义为 (2)()()x n n δ=;

(4)()(),0m x n R n m N =<<; (6)2()cos(

),0x n nm m N N

π=<<;

(8)0()sin()()N x n w n R n =?; (10)()()N x n nR n =。 解:

(2)1,,1,0,1)()()(1

1

-===

=

∑∑-=-=N k

n W

n k X N n N n kn

N

δδ

(4)1,,1,0,)

sin(

)

sin(11)()

1(1

-==--=

=

---=∑N k m N

mk N

e

W

W

W

k X m k N

j

k N

km N N n kn N

πππ

1

0,,0,1

1111212

12

1)(2)(2)(2)(21

)(21

)(2-≤≤??

???-≠≠-===????

?

?????

--+--=+

=

+-+----=+--=-∑

N k m N k m k m N k m k N e e e

e e

e

k m N

j N k m N j k m N j N k m N j N n n

k m N

j

N n n

k m N

j

或且ππππππ

(6)kn

N

j mn

N

j N n mn

N

j N n kn

N e

e

e

W mn N k X ππππ221

210

)(2

12cos )(---=-=+=

???? ??=∑

(8)解法1 直接计算

[])(21)()sin()(0008n R

e

e

j

n R n w n x N

n

jw n

jw N --=

=

[]∑∑-=---=-=

=

1

21

80021)()(N n kn

N

j

n

jw n

jw N n kn

N

e

e

e

j

W

n x k X π

???

?

????-----=??????-=

+--=+--∑

)2()2(1

2200

000011112121k N

w j N

jw k N w j N jw N n n N

w j n N w j e e e e j

e e j

π

ππ

π)()( 解法2 由DFT 的共轭对称性求解 因为

[])()sin()cos()()(0070n R n w j n w n R e

n x N N n

jw +==

[])(Im )()sin()(708n x n R n w n x N ==

所以

[][][])()(Im )(7078k X n x j DFT

n jx DFT

=

=

[]

)()(2

1)()(77

70

8k N X k X

j k jX

k X ---=-=*

???

?????-----=????????-----=+-*---)11(1121)11(1121)2()2()(2()2(00

000000k N

w j N

jw k N w j N jw k N N

w j N jw k N w j N jw e e e e j e e e e j π

ππ

π结果与解法1所得结果相同。此题验证了共轭对称性。

(10)解法1

1,,1,0)(1

-==

∑-=N k nW

k X N n kn N

上式直接计算较难,可根据循环移位性质来求解X(k)。 因为 )()(n nR n x N =

所以 )()()())1(()(n R n N n R n x n x N N N =+?--δ 等式两边进行DFT 得到

)()()(k N N W k X k X k

N δ=+-

故 1,2,1,1]1)([)(-=--=

N k W

k N k X k N

δ

当0=k 时,可直接计算得出X (0)

2

)

1()0(1

1

-=

=*=

∑∑

-=-=N N n W n X N n N n N

这样,X (k )可写成如下形式:

???

?

???-=--=-=1,2,1,10,2)

1()(N k W N k N N k X k N

解法2

0=k 时,

2

)

1()(1

-=

=

∑-=N N n k X N n

0≠k 时,

N

N W N W

k X W

k X N W N W W W k X W W N W W W k X N n kn

N N n kn

N

kn N

k

N N k

N k

N k

N kn

N k

N N

k N k N k N -=---=--=

--+-+++++=-+++++=∑∑-=-=--1

1

1

)1(432)1(32)1(1)1()()()1()2(320)()1(320)(

所以,

0,1)(≠--=

k W

N k X k N

???

?

???-=--=-=1,2,1,10,2)

1()(N k W N k N N k X k N

2. 已知下列()X k ,求()[()];x n IDFT X k = (1),2(),2

0,j j N e k m N X k e k N m k θ

θ

-?=??

?==-?????

其它;

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

数字信号处理教案

数字信号处理教案 余月华

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

数字信号处理第三版西安电子(高西全丁美玉)2356课后答案

西安电子(高西全丁美玉第三版)数字信号处理课后答案 1.2 教材第一章习题解答 1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解: ()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6) x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+- 2. 给定信号:25,41()6,040,n n x n n +-≤≤-?? =≤≤??? 其它 (1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解: (1)x(n )的波形如题2解图(一)所示。 (2) ()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4) x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+- (3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。 (4)2()x n 的波形是x(n )的波形左移2位,在乘以2,画出图形如题2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。 3. 判断下面的序列是否是周期的,若是周期的,确定其周期。 (1)3()cos()78 x n A n π π=-,A 是常数; (2)1 ()8 ()j n x n e π-=。 解:

数字信号处理技术的最新发展

数字信号处理技术的最新发展 电子与信息工程学院12S005044 郭晓江 摘要:数字信号处理(DSP,digital signal processing)是一门涉及许多领域的新兴学科,在现代科技发展中发挥着极其重要的作用。近年来,随着半导体技术的进步,处理器芯片的处理能力越来越强大,使得信号处理的研究可以主要放在算法和软件方面,不再像过去那样需要过多考虑硬件。由于它的出色性能,DSP目前被广泛应用于数字通信、信号处理、工业控制、图像处理等领域。自从数字信号处理器问世以来,由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用。随着技术成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。数字信号处理(DSP)是广泛应用于许多领域的新兴学科,因其具有可程控、可预见性、精度高、稳定性好、可靠性和可重复性好、易于实现自适应算法、大规模集成等优点,广泛应用于实时信号处理系统中。DSP技术在数据通信、汽车电子、图像处理以及声音处理等领域应用广泛。 DSP国际发展现状 国外的商业化信号处理设备一直保持着快速的发展势头。欧美等科技大国保持着国际领先的地位。例如美国DSP research公司,Pentek公司,Motorola公司,加拿大Dy4公司等,他们很多已经发展到相当大的规模,竞争也愈发激烈。我们从国际知名DSP技术公司发布的产品中就可以了解一些当今世界先进的数字信号处理系统的情况。 以Pentek公司一款处理板4293为例,使用8片TI公司300 MHz的TMS320C6203芯片,具有19 200 MIPS的处理能力,同时集成了8片32 MB的SDRAM,数据吞吐600 MB/s。该公司另一款处理板4294集成了4片Motorola MPC7410 G4 PowerPC处理器,工作频率400/500 MHz,两级缓存256K×64 bit,最高具有16MB 的SDRAM。 ADI公司的TigerSHARC芯片也由于其出色的协同工作能力,可以组成强大的处理器阵列,在诸多领域(特别是军事领域)获得了广泛的应用。以英国Transtech DSP公司的TP-P36N为例,它由4~8片TS101b(TigerSharc)芯片构成,时钟250 MHz,具有6~12 GFLOPS的处理能力。 DSP应用产品获得成功的一个标志就是进入产业化。在以往的20年中,这一进程在不断重复进行,而且周期在不断缩小。在数字信息时代,更多的新技术和新产品需要快速地推上市场,因此,DSP的产业化进程还是需要加速进行。随着竞争的加剧,DSP生产商随时调整发展规划,以全面的市场规划和完善的解决方案,加上新的开发历年,不断深化产业化进程。 2002年1月7日~11日,在美国拉斯维加斯举行的全球最大的消费类电子产品展CES (Consumer Electronic Show),以及2月1 日在英国伦敦科学博物馆开幕“通向未来”科学技术展,展示了最新研究开发的DSP 新技术新产品在通信领域的应用。DSP制造商新推出一系列的产品,并且都瞄准了通信领域的应用。 作为处理数字信号的DSP技术,为人们快速的获取、分析和利用有效信息奠定

数字信号处理教案

数字信号处理教案

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

数字信号处理技术及发展趋势

数字信号处理技术及发展趋势 贵州师范大学物电学院电子信息科学与技术 罗滨志 120802010051 摘要 数字信号处理的英文缩写是DSP,而数字信号处理又是电子设计领域的术语,其实现的功能即是用离散(在时间和幅度两个方面)所采样出来的数据集合来表示和处理信号和系统,其中包括滤波、变换、压缩、扩展、增强、复原、估计、识别、分析、综合等的加工处理,从而达到可以方便获得有用的信息,方便应用的目的【1】。而DPS实现的功能即是对信号进行数字处理,数字信号又是离散的,所以DSP大多应用在离散信号处理当中。 从DSP的功能上来看,其发展趋势日益改变着我们的科技的进步,也给世界带来了巨大的变化。从移动通信到消费电子领域,从汽车电子到医疗仪器,从自动控制到军用电子系统中都可以发现它的身影【2】。拥有无限精彩的数字信号处理技术让我们这个世界充满变化,充满挑战。 In this paper Is the abbreviation of digital signal processing DSP, the digital signal processing (DSP) is the term in the field of electronic design, the function of its implementation is to use discrete (both in time and amplitude) sampling represented data collection and processing of signals and systems, including filtering, transformation, compression, extension, enhancement, restoration, estimation, identification, analysis, and comprehensive processing, thus can get useful information, convenient for the purpose of convenient application [1]. And DPS the functions is to digital signal processing, digital signal is discrete, so most of DSP applications in discrete signal processing. From the perspective of the function of DSP, and its development trend is increasingly changing our of the progress of science and technology, great changes have also brought the world. From mobile communication in the field of consumer electronics, from automotive electronics to medical equipment, from automatic control to the military electronic systems can be found in the figure of it [2]. Infinite wonderful digital signal processing technology to let our world full of changes, full of challenges

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 (10级) 编号:40023600 英文名称:Digital Signal Processing 适用专业:通信工程;电子信息工程 责任教学单位:电子工程系通信工程教研室 总学时:56 学分:3.5 考核形式:考试 课程类别:专业基础课 修读方式:必修 教学目的:数字信号处理是通信工程、电子信息工程专业的一门专业基础课,通过本课程的学习使学生建立数字信号处理的基本概念、掌握数字信号处理的基本理论、基本分析方法和数字滤波器的基本设计方法,具有初步的算法分析和运用MATLAB编程的能力,了解数字信号处理的新方法和新技术。为学习后续专业课程和从事数字信号处理方面的研究工作打下基础。 主要教学内容及要求: 1.绪论 了解数字信号处理的特点,应用领域,发展概况和发展局势。 2.时域离散信号和时域离散系统 了解连续信号、时域离散信号和数字信号的定义和相互关系;掌握序列的表示、典型序列、序列的基本运算;掌握时域离散系统及其性质,掌握时域离散系统的时域分析,掌握采样定理、连续信号与离散信号的频谱关系。 3.时域离散信号和系统的频域分析 掌握序列的傅里叶变换(FT)及其性质;掌握序列的Z变换(ZT) 、Z变换的主要性质;掌握离散系统的频域分析;了解梳状滤波器,最小相位系统。 4.离散傅里叶变换(DFT) 掌握离散傅里叶变换(DFT)的定义,掌握DFT、ZT、FT、DFS之间的关系;掌握DFT的性质;掌握频域采样;掌握DFT的应用、用DFT计算线性卷积、用DFT分析信号频谱。 5.快速傅里叶变换(FFT) 熟悉DFT的计算问题及改进途经;掌握DIT-FFT算法及其编程思想;掌握IDFT的高效算法。 6.数字滤波网络 了解滤波器结构的基本概念与分类;掌握IIR-DF网络结构(直接型,级联型,并联型);掌握FIR-DF网络结构(直接型,线性相位型,级联型,频率采样型,快速卷积型)。 7.无限冲激响应(IIR)数字滤波器设计 熟悉滤波的概念、滤波器的分类及模拟和数字滤波器的技术指标;熟悉模拟滤波器的设计;掌握用冲激响应不变法设计IIR数字滤波器;掌握用双线性变换法设计IIR数字滤波器。 8.有限冲激响应(FIR)数字滤波器设计 熟悉线性相位FIR数字滤波器的特点;掌握FIR数字滤波器的窗函数设计法;掌握FIR数字滤波器的频率抽样设计法;了解FIR数字滤波器的切比雪夫最佳一致逼近设计法。 本课程与其他课程的联系与分工:先修课程:信号与系统,复变函数与积分变换,数字电路;后续课程有:DSP原理及应用,语音信号处理,数字图像处理等。

《数字信号处理》第三版高西全版课后习题答案

数字信号处理课后答案 高西全、丁美玉版 1.2 教材第一章习题解答 1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解: ()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6) x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+- 2. 给定信号:25,41()6,040,n n x n n +-≤≤-?? =≤≤??? 其它 (1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解: (1)x(n)的波形如题2解图(一)所示。 (2) ()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4) x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+- (3)1()x n 的波形是x(n )的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。 3. 判断下面的序列是否是周期的,若是周期的,确定其周期。 (1)3()cos()7 8x n A n π π=-,A是常数; (2)1 ()8 ()j n x n e π-=。 解: (1)3214 , 73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w w π π==,这是无理数,因此是非周期序列。 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。 (1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()n m y n x m ==∑。 解: (1)令:输入为0()x n n -,输出为 '000' 0000()()2(1)3(2) ()()2(1)3(2)() y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--= 故该系统是时不变系统。 12121212()[()()] ()()2((1)(1))3((2)(2)) y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+-

数字信号处理(电子信息工程)

线性卷积结果序列 n=0:3; x=[(n+1)]; h=[(4-n)]; y=conv(x,h); subplot(221); stem(x); title('原序列1'); subplot(222); stem(h); title('原序列2'); subplot(223); stem(y); title('线行卷积结果序列'); 12340 1234原序列1 1234 1234原序列2 02468 10 20 30线行卷积结果序列 n=0:3; x=[(n+1)]; h=[(4-n)]; N1=5; N2=6; N3=7; N4=8; z1=circonv(x,h,N1); z2=circonv(x,h,N2); z3=circonv(x,h,N3); z4=circonv(x,h,N4); subplot(331); stem(x); title('原序列1'); subplot(332);

title('原序列2'); subplot(333); stem(z1); title('N=5 循环卷积结果序列'); subplot(334); stem(z2); title('N=6 循环卷积结果序列'); subplot(335); stem(z3); title('N=7 循环卷积结果序列'); subplot(336); stem(z4); title('N=8 循环卷积结果序列'); Circonv 调用函数程序代码 function y=circonv(x1,x2,N) x1=[x1,zeros(1,N-length(x1))]; x2=[x2,zeros(1,N-length(x2))]; xn2=[x2(1),fliplr(x2)]; xn2(length(xn2))=[]; C=xn2; R=x2; M=toeplitz(C,R); y=x1*(M); 2 4 24原序列1 2 4 02 4原序列2 5 010 20 30N=5 循环卷积结果序列05100 20 40N=6 循环卷积结果序列05100 20 40N=7 循环卷积结果序列0510 2040N=8 循环卷积结果序列

数字信号处理技术的应用和发展

数字信号处理技术的应用和发展 摘要互联网信息化技术的不断进步和应用范围的持续拓宽加速了数字时代的到来。数字信号处理技术是将声音、图片或者是视频进行信息的模拟再将其转化为数字信息,该技术也是数字时代的标志性技术,目前已经在仪器仪表、通信、计算机以及图像图形处理等领域得到了广泛应用。本文结合数字处理技术的特点,就其应用现状和发展方向进行了思考。【关键词】数字信号处理数字时代计算机技术发展 计算机、机械制造、通讯等技术的进步为数字信号处理技术的发展提供了基础。数字信息护理技术可以对更大层面的数据信息进行分析处理,作为数字信号处理环节中实用性较强的应用型技术综合了数字信号处理理论、硬件技术、软件技术等。分析数字信号技术的发展现状对于技术和优化和应用水平的提高有着重要的理论意义和现实意义。 1 数字信号处理技术概述 1.1 数字信号处理技术的特点 数据提取和转化是数字信号处理技术的本质特征,该技术就是将各类信号从复杂的环境中提取出来并将其转化为更加容易识别和利用的形式。高速的运算能力和高准确性的运算结果是数字信号处理技术的显著特征。通过独特的寻址模式和流水线结构是数字信号处理技术的主要运算方法。在一个指令周期内分别进行一次乘法和一次加法就是硬件乘法累加操作,该技术应用在实际的操作中速度可以达到800Mb/s。除此之外数字信号处理技术的稳定性也十分出色,通过二值逻辑的采用使得数字信号处理技术可以保证较强的环境使用能力。在软件的作用下数字处理技术可以实现参数的修改,保证较强的灵活性。 1.2 数字信号处理技术应用的意义

各类新技术的出现与发展对于社会生产和人类生活产生了巨大的影响,数字信号处理技术作为一项发展较快且适用性强的技术,其发展迅速在各个领域的应用水平也不断提高,销售价格也随之降低。目前应用中的数字信号处理技术的总线、资源及技术结构的标准化程度不断提高,一方面这会加剧我国的电子产品行业的竞争,另一方面也会促进电子产品和其他相关行业的进步与发展。 2 数字信号处理技术的应用思考 2.1 通信领域的应用 目前数字信号技术已经在众多领域得到了应用,通信领域中信号处理技术的应用推动了通信技术的发展和通信行业的变革。数字信号处理技术显著提高了通信信号和信息的处理效率和处理质量,为通信技术的进步与变革提供了基础,数字信号处理技术已经成为了通信理论中的一个新的学科,加快了无线系统成为主流通信方式的进程,数字信号处理技术对于通信行业的发展有着重要的支撑和引导作用,可视电话以及通信扩频等都需要数字信号处理技术参与的情况下才可以实现。 2.2 图像图形技术领域的应用 数字信号处理技术在图像图形技术领域的应用主要集中在有线电视机高品位卫星广播中,除此之外在MPEG2编码器和译码器、DVD活动中的图像压缩和解压中也发挥着重要的作用。数字信号处理技术的应用有效推动了信息处理速度和处理功能的提高,科技的不断进步加快了活动影像解压技术的快速发展。 2.3 仪器仪表领域中的应用 目前仪器仪表领域中相关测量工作中也有着数字信号处理技术的应用,于此同时该技术有取代高档单片机成为主流仪器仪表测量方式的趋势。在仪器仪表的开发和测量中应用数字信号处理技术有利于产品档次的提高,相较于传统的信息处理技术数字信号处理技术的内在资源

数字信号处理技术的发展及其思考

龙源期刊网 https://www.doczj.com/doc/fe5854391.html, 数字信号处理技术的发展及其思考 作者:陈文灵 来源:《电子技术与软件工程》2015年第01期 当前我国的科学技术正处在不断发展阶段,一些较为先进的技术已经在人们的生活中得到了广泛应用,其中数字信号处理技术在这一进步中就表现的较为突出。数字信号处理技术是当前数字化时代的一个比较重要的技术,它主要就是将视频以及图片和声音等进行模拟信息转换成数字信息的一种技术,。本文主要就是对这一数字信号的处理技术的发展现状进行深入的分析研究,希望通过此次的努力能够对实际起到一定的指导作用。 【关键词】数字信号处理技术发展 在进入新的世纪以来,我国的通讯以及计算机等先进技术得到了飞速的发展,所涉及的领域也愈来愈大,从大的角度分析来看,当前的数字信号处理技术已经将理论转换成了实用性较强的应用型技术,其组成部分主要包含了数字信号处理理论以及硬件技术和软件技术等方面,数字信号处理技术对人们的生活已经产生了很重要影响。 1 数字信号处理技术的基本概述 1.1 数字信号处理技术的特点分析 对于数字信号处理技术其最为本质的就是对数据的转换以及提取,也就是把信息从各种复杂的环境当中加以提取,随之再进行对其转换,从而能够成为方便于人识别的这样一种形式。在数字信号处理技术自身有着较为鲜明的特点,其中最为主要的有高速度以及高准确率的运算能力。这一技术的主要运算方法便是通过流水线结构以及较为独特的寻扯模式等。在硬件乘法累加操作方面主要就是指在一个指令周期内进行实现一次乘法和一次加法,而在实际的操作中其速度高达800Mb/s。另外就是这一技术有着稳定性的特点,这一技术是采取二值逻辑所以在环境的适应能力方面相对较强。还能够在软件的作用下对处理的参数进行修改,所以在灵活性方面也较强。 1.2 数字信号处理技术的重要性分析 在当前的发展过程中,由于新技术的进步,对于现阶段的诸多领域的生产生活都起到了重要的作用,而数字信号处理技术的发展也比较的迅速,在销售价格方面也在不断的降低,当前所采用的技术结构以及总线和资源都已经逐渐的形成标准化的趋势,这将会给我国的电子产品这一行业带来新的竞争和发展,也会促进我国的其它相关行业的进步。 2 数字信号处理技术的实际应用及发展思考探究 2.1 数字信号处理技术的实际应用探究

数字信号处理GUI

西安工业大学北方信息工程学院毕业设计(论文)开题报告 题目:数字信号处理实验教学平台设计 系别光电信息系 专业光电信息工程 班级 B100106 姓名彭牡丹 学号 B10010638 导师稀华 2013年11月20日

1 毕业设计(论文)综述 1.1 题目背景和意义 自 20 世纪 60 年代以来,随着计算机和信息学科的飞速发展,数字信号处理技术应运而生并迅速发展,目前已经形成为一门独立且成熟重要的新兴学科。如今已广泛地应用于通信、语音、图像、遥感、雷达、航空航天、自动控制和生物医学[1]等多个领域。特别在教学方面,此课程已普遍成为大学本科电子通信专业必修的主干课和重要的专业基础课,已成为信息化建设不可缺少的环节。 “数字信号处理”课程主要包括离散时间信号及系统、离散傅立叶变换DFT、快速傅立叶变换FFT、数字滤波器设计及实现和数字信号系统的应用等内容,如何帮助学生理解与掌握课程中的基本概念、分析方法以及综合应用能力,是教学所要解决的关键问题,但是该课程理论性强,公式繁琐,需要实验辅助学生理解。因此研究数字信号处理虚拟实验技术能够有效地弥补数字信号处理理论教学的不足,所以本课题需要借助一些软件平台来完成数字信号处理课程中重要的实验内容的仿真分析。 1.2 国内外相关研究状况 对于教学平台设计,现在教学方面有很多研究方法,不同的的科研目标用的是不同的软件平台,国内外也提出了多种研究方法。 例如,在做交互式教学实验平台设计时,周强、张兰、张春明[2]等人运用的是Tornado 软件。此设计以 Tornado 专业课程为例,提出教学网络化的预期目标,结合课程内容的实践性特点,依据分层教学的指导理念,以先进的网站开发技术(Dreamweaver、B/S、ASP 等)为支撑手段,对面向 Tornado 的交互式教学实验平台进行设计与实现。通过小范围测试,基本实现了教师发布教学信息、上机实验、问题互助解答、学生在线自测、师生交互平台等教学功能,并在此基础上凸显出对学生进行分级以提供个性化教学的特色。在研究网络的教学实验平台设计,赵迎新、徐平平、夏桂斌[3]等人用的是无线传感器网络的研究方法。此设计研究并开发了一种应用MSP430微控制器芯片和CC2420无线收发模块架构的无线传感器网络的教学实验平台,设计并实现了系统的总体架构、硬件电路、软件接口与数据汇聚模式,根据实践教学要求,设计了基于该平台系统的基本实验要求与操作步骤,给出了对不同层次实践教学的目标要求,最后给出教学实践效果的评价。还有谢延红[4]提出的开放式 Linux 实验教学平台设计与实现。此研究针对 Linux 实验教学中存在的实验环境不够灵活、实验学习时间受限和无法实时沟通的问题,此研究提出了“个网络平台,条技术路线,

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试 成功!! 电子科技大学微电子与固体电子学钢教授著 数字信号处理课后答案 1.2 教材第一章习题解答 1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解: ()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6) x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+- 2. 给定信号:25,41()6,040,n n x n n +-≤≤-?? =≤≤??? 其它 (1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解: (1)x(n)的波形如题2解图(一)所示。 (2) ()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4) x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-

(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。 (4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。 (1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()n m y n x m ==∑。 解: (1)令:输入为0()x n n -,输出为 '000' 0000()()2(1)3(2) ()()2(1)3(2)() y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--= 故该系统是时不变系统。 12121212()[()()] ()()2((1)(1))3((2)(2)) y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+- 1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+- 2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+- 1212[()()][()][()]T ax n bx n aT x n bT x n +=+ 故该系统是线性系统。

西安电子科技大学数字信号处理大作业

数字信号处理大作业 班级:021231 学号: 姓名: 指导老师:吕雁

一写出奈奎斯特采样率和和信号稀疏采样的学习报告和体会 1、采样定理 在进行A/D信号的转换过程中,当采样频率fs.max大于信号中最高频 率fmax的2倍时(fs.max>2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定 理又称奈奎斯特定理。 (1)在时域 频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各 采样值完全恢复原始信号。 (2)在频域 当时间信号函数f(t)的最高频率分量为fmax时,f(t)的值可由一系列 采样间隔小于或等于1/2fo的采样值来确定,即采样点的重复频率fs ≥2fmax。 2、奈奎斯特采样频率 (1)概述 奈奎斯特采样定理:要使连续信号采样后能够不失真还原,采样频率必须 大于信号最高频率的两倍(即奈奎斯特频率)。 奈奎斯特频率(Nyquist frequency)是离散信号系统采样频率的一半,因哈里·奈奎斯特(Harry Nyquist)或奈奎斯特-香农采样定理得名。采样定理指出,只要离散系统的奈奎斯特频率高于被采样信号的最高频率或带宽,就可 以真实的还原被测信号。反之,会因为频谱混叠而不能真实还原被测信号。 采样定理指出,只要离散系统的奈奎斯特频率高于采样信号的最高频率或 带宽,就可以避免混叠现象。从理论上说,即使奈奎斯特频率恰好大于信号带宽,也足以通过信号的采样重建原信号。但是,重建信号的过程需要以一个低 通滤波器或者带通滤波器将在奈奎斯特频率之上的高频分量全部滤除,同时还 要保证原信号中频率在奈奎斯特频率以下的分量不发生畸变,而这是不可能实 现的。在实际应用中,为了保证抗混叠滤波器的性能,接近奈奎斯特频率的分 量在采样和信号重建的过程中可能会发生畸变。因此信号带宽通常会略小于奈 奎斯特频率,具体的情况要看所使用的滤波器的性能。需要注意的是,奈奎斯 特频率必须严格大于信号包含的最高频率。如果信号中包含的最高频率恰好为

(完整word版)关于数字信号处理技术的应用与发展

关于数字信号处理技术的应用与发展 摘要:在现代化科学技术发展的过程中,数字化信 号处理技术已经深入应用到各行各业的发展之中,例如工业控制、医疗卫生事业等,都有所涉猎,甚至在国防军事方面也得到了一定的应用,可以说在当前社会发展的进程中,已经完全不能脱离开数字信号处理技术的应用了。正是因为如此,本文对其应用以及今后的发展予以一定的阐述,希望在今后的应用中可以得到更加广阔的发展空间。 关键词:数字信号处理技术;实现方法;应用;发展前景 在我国近几年的发展进程中,数字信号的相关处理技术已经得到了质的的飞跃,这是一种对数字以及符号进行转化,并且排列成为有效序列的一种技术,这一技术主要应用在计算机以及其他相关设备中,并且在计算方法上具有特殊之处,主要是采用了数值计算法,可以达到方便信息应用的效果。本文主要探讨了这一技术在图形处理以及机器人控制等方 面的应用,希望在未来的时代发展中,这一技术可以具有更加广泛的应用。 1、数字信号处理技术所具有的特点以及实现方式 在数字信号的处理上,主要可以通过三种途径得以实现。

第一种途径是采用软件得以实现的,这种方式主要应用在编程的过程中,这套程序既能通过处理者的开发得到应用,也可以通过现有的程序进行处理。第二种实现方式是运用专用硬件,例如加法器或者乘法器等,将其构成一个专用的数字网络,以实现对信号处理的能力。第三种实现途径是将前两种方式进行有效的结合。这种方式目前较为普遍,广泛应用在数字信号处理的过程中。 从这一技术的优势上来看,数字信号处理的相关技术合理的应用了计算机设备,针对不同的系统具有不同的处理功能,满足各行业的需要,所以与其他技术相比具有一定的优越性。除此之外,在系统的稳定性上,这一技术得到了进一步的提升,经过对数据的耦合,有效的降低了电路中产生阻抗匹配的情况,并且在安全性方面也得到了进一步的提升,更有助于在大规模生产中的应用。同时在其他方面也具有一定的优越性,所以受到各界人士的广泛好评。 2、数字信号处理技术在当前行业中的应用 2.1图形图像领域 首先,这一技术可以应用在图形图像领域,DVD的主要工作原理是运用了图像压缩技术,将活动图像进行压缩与转码,最终呈现在人们的眼前,在采用了这一技术后,整个过程得到了明显的进步,同时还可以应用在对大气甚至气象云图的研究方面。只要是与图形图像相关的领域中,都可以运

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 课程编号: 11322617,11222617,11522617 课程名称:数字信号处理 英文名称:Digital Signal Processing 课程类型: 专业核心课程 总学时:56 讲课学时:48 实验学时:8 学分:3 适用对象: 通信工程专业、电子信息科学与技术专业 先修课程:信号与系统、Matlab语言及应用、复变函数与积分变换 执笔人:王树华审定人:孙长勇 一、课程性质、目的和任务 《数字信号处理》是通信工程、电子信息科学与技术专业以及电子信息工程专业的必修课之一,它是在学生学完了信号与系统的课程后,进一步学习其它专业选修课的专业平台课程。本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础。 二、课程教学和教改基本要求 数字信号处理是用数字或符号的序列来表示信号,通过数字计算机去处理这些序列,提取其中的有用信息。例如,对信号的滤波,增强信号的有用分量,削弱无用分量;或是估计信号的某些特征参数等。总之,凡是用数字方式对信号进行滤波、变换、增强、压缩、估计和识别等都是数字信号处理的研究对象。 本课程介绍了数字信号处理的基本概念、基本分析方法和处理技术。主要讨论离散时间信号和系统的基础理论、离散傅立叶变换DFT理论及其快速算法FFT、IIR和FIR数字滤波器的设计以及有限字长效应。通过本课程的学习使学生掌握利用DFT理论进行信号谱分析,以及数字滤波器的设计原理和实现方法,为学生进一步学习有关信息、通信等方面的课程打下良好的理论基础。 本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础,应当达到以下目标: 1、使学生建立数字信号处理系统的基本概念,了解数字信号处理的基本手段以及数字信号处理所能够解决的问题。 2、掌握数字信号处理的基本原理,基本概念,具有初步的算法分析和运用MATLAB编程的能力。 3、掌握数字信号处理的基本分析方法和研究方法,使学生在科学实验能力、计算能力和抽象思维能力得到严格训练,培养学生独立分析问题与解决问题的能力,提高科学素质,为后续课程及从事信息处理等方面有关的研究工作打下基础。 4、本课程的基本要求是使学生能利用抽样定理,傅立叶变换原理进行频谱分析和设计简单的数字滤波器。 三、课程各章重点与难点、教学要求与教学内容

相关主题
文本预览
相关文档 最新文档