当前位置:文档之家› 生活饮用水中氟化物测定方法的改进

生活饮用水中氟化物测定方法的改进

生活饮用水中氟化物测定方法的改进
生活饮用水中氟化物测定方法的改进

氟化物测定方法

氟化物 氟化物(F﹣)是人体必需的微量元素之一,缺氟易患龋齿病,饮水中含氟的适宜浓度为0.5—1.0mg/L(F﹣)。当长期饮用含氟量高于1-1.5mg/L的水时,则易患斑齿病,如水中含氟量高于4mg/L时,则可导致氟骨病。 氟化物广泛存在于自然水体中。有色冶金、钢铁和铝加工、焦炭、玻璃、陶瓷、电子、电镀、化肥、农药厂的废水及含氟旷物的废水中常常都存在氟化物。 1.方法的选择 水中氟化物的测定方法主要有:氟离子选择电极法,氟试剂比色法,茜素磺酸锆比色法和硝酸钍滴定法。电极法选择性好,适用范围宽,水样浑浊,有颜色均可测定,测量范围为0.05-1900mg/L。比色法适用于含氟较低的样品,氟试剂法可以测定0.05-1.8mg/L(F﹣);茜素磺酸锆目视比色法可以测定0.1—2.5mg/L(F﹣),由于是目视比色,误差比较大。氟化物含量大于5mg/L时可以用硝酸钍滴定法。对于污染严重的生活污水和工业废水,以及含氟硼酸盐的水样均要进行预蒸馏。 2.水样的采集和保存 应使用聚乙烯瓶采集和贮存水样。如果水样中氟化物含量不高、pH值在7以上,也可以用硬质玻璃瓶贮存。 预蒸馏

通常采用预蒸馏的方法,主要有水蒸气蒸馏和直接蒸馏两种。直接蒸馏法的蒸馏效率较高,但温度控制较难,排除干扰也较差,在蒸馏时易发生暴沸,不安全。水蒸气蒸馏法温度控制严格,排除干扰好,不易发生暴沸。 1.水蒸气蒸馏法 水中氟化物在含高氯酸(或硫酸)的溶液中,通入水蒸气,以氟硅酸或氢氟酸形式而被蒸出。 仪器 蒸馏装置 试剂 高氯酸:70—72%。 步骤 (1)取50ml水样(氟浓度高于2.5mg/L时,可分取少量样品,用水稀释至50ml)于蒸馏瓶中,加10ml高氯酸,摇匀。连接好 装置加热,待蒸馏瓶内溶液温度升到约130℃时,开始通入蒸 汽,并维持温度在130—140℃,蒸馏速度约为5—6ml/min。 待接收瓶中馏出液体积约为200ml时,停止蒸馏,并水稀释 至200ml,供测定用。 (2)当样品中有机物含量高时,为避免与高氯酸作用而发生爆炸,可用硫酸代替高氯酸(酸与样品的体积为1+1)进行蒸馏。控 制温度在145 5℃。 2.直接蒸馏法

电子测量技术论文

电磁兼容测量 ————通信开关电源的电磁兼容性 学院:物理与信息科学学院 专业:电子信息科学与技术 班级:08电信一班 姓名:邢潘龙 学号:271060143 摘要 简要介绍了通信开关电源的电磁兼容性要求、国内外标准、电磁兼容性的成因、研究解决方法及国内通信开关电源的电磁兼容性现状。 关键词:通信开关电源电磁兼容性标准 正文 通信开关电源因具有体积小、重量轻、效率高、工作可靠、可远程监控等优点,而广泛应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常

工作的动力核心。 随着信息技术的发展,信息技术设备遍布大江南北,从发达的中心城市至偏远山区,为人与人之间的沟通交流及信息传输提供了极大的便利。由于城乡间的差异,通信设备的供电网既有稳定的大电网供电方式,也有独立的小水电供电方式。在小水电站供电方式下,因水量的变化、用户用电量的变化较大及发电设备工作的不稳定,造成电网波形失真严重及电压波动大,同时因配电系统的接线不规范,对通信用开关电源形成了严峻的考验。 铁路通信及电力通信正在发展壮大。由于电力机车经过之处,产生很强的感应电压,使地线电压产生很大的波动,从而引起电网电压的很大波动,强大的电场容易引起开关电源设备工作的瞬时不稳定。在高压电网附近运行的通信开关电源,虽然电网电压稳定,但容易受电网负载变化等引起的强电磁场的干扰影响。 用于基站的通信开关电源,由于多安装在较高的建筑物上或山顶,更易受到雷电的袭击。 因此,通信开关电源要有很强的抗电磁干扰能力,特别是对雷击、浪涌、电网电压波动的适应能力,而对静电干扰、电场、磁场及电磁波等也要有足够的抗干扰能力,保证自身能够正常工作以及对通信设备供电的稳定性。 另一方面,因通信开关电源内部的功率开关管、整流或续流二极管及主功率变压器,是在高压、大电流及高频开关的方式下工作,其电压电流波形多为方波。在高压大电流的方波切换过程中,将产生严重的谐波电压及电流。这些谐波电压及电流一方面通过电源输入线或开关电源的输出线传出,对与通信电源在同一电网上供电的其它设备及电网产生干扰,同时对由通信电源供电的设备如程控交换设备、无线基站、光传输设备及有线电视设备等产生干扰,使设备不能正常工作;另一方面严重的谐波电压电流在开关电源内部产生电磁干扰,从而造成开关电源内部工作的不稳定,使电源的性能降低。还有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成干扰,引起其它设备工作异常。 因此,对通信开关电源,要限制由负载线、电源线产生的传导干扰及由辐射传播的电磁场干扰,使处于同一电磁环境中的电信设备均能够正常工作,互不干扰。 2国内外电磁兼容性标准 电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁干扰的能力。 要彻底消除设备的电磁干扰及对外部一切电磁干扰信号不敏感是不可能的。只能通过系统地制订设备与设备之间的相互允许产生的电磁干扰大小及抵抗电磁干扰的能力的标准,才能使电气设备及系统间达到电磁兼容性的要求。国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性制订了约束条件。 国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,早在1934年就开展EMC标准的研究,下设六个分会。其中第六分会(SCC)主要负责制订关于干扰测量接收机及测量方法的标准。CISPR16《无线电干扰和抗扰度测量设备规

水样氨氮的测定方法

氨氮的测定 氨氮的测定方法,通常有纳氏比色法、苯酚—次氯酸盐(或水杨酸—次氯酸盐)比色法和电极法等。纳氏比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。以下是纳氏试剂比色法的测定方法。 一、纳氏试剂比色法的原理 碘化钾和碘化汞的碱性溶液与氨反应生成淡红棕色胶态化和物,其色度与氨氮含量成正比,通常可在410-425nm范围内测其吸光度,计算其含量。 本法最低检出浓度为0.025mg/L(光度法),测定上限为2 mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。 二、仪器 1、带氮球的定氮蒸馏装置:500 mL凯氏烧瓶、氮球、直形冷凝 管。 2、分光光度计 3、PH计 三、试剂 做次实验配制试剂均应用无氨水配制。 1、无氨水。配制可选用以下任意一种方法制备: (1)蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸

馏,弃去50mL初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。 (2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 2、1mol/L的盐酸溶液 3、1mol/L的氢氧化钠溶液 4、轻质氧化镁:将氧化镁在500℃下加热,以除去碳酸盐。 5、0.05%溴百里酚蓝指示计(PH6.0-7.6)。 6、防沫剂:如石蜡碎片 7、吸收剂:①硼酸溶液:称取20g硼酸溶于水,稀释至1L。②0.01mol/L硫酸溶液。 8、纳氏试剂。可选用下列方法之一制备: (1)称取20g碘化钾溶于约25mL水中,边搅拌边分次加入少量的二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色不易降解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2)称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。 另称取7g碘化钾和碘化汞溶于水,然后将次溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。

实验 4 水中氟化物的测定--离子选择电极法

实验四水中氟化物的测定—离子选择电极法水中氟化物的含量是衡量水质的重要指标之一,生活饮用水水质限值为 1.0mg·L-1 。测定氟化物的方法有氟离子选择电极法、离子色谱法、比色法和容量滴定法,前两种方法应用普遍。本实验采用氟离子选择电极法测定游离态氟离子浓度,当水样中含有化合态(如氟硼酸盐)、络合态的氟化物时,应预先蒸馏分离后测定。 一.实验目的和要求 1.掌握用离子活度计或pH计、晶体管毫伏计及离子选择电极测定氟化物的原理和测定方法,分析干扰测定的因素和消除方法。 2.复习教材第二章中的相关内容;在预习报告中列出被测原电池,简要说明测定方法原理和影响测定的因素。 二.仪器 1.氟离子选择电极(使用前在去离子水中充分浸泡)。 2.饱和甘汞电极。 3.精密pH计或离子活度计、晶体管毫伏计,精确到 0.1mV。 4.磁力搅拌器和塑料包裹的搅拌子。 5.100mL、50mL容量瓶。 6.10.00mL、 5.00mL移液管或吸液管。 7.100mL聚乙烯杯。

三.试剂 所用水为去离子水或无氟蒸馏水。 1.氟化物标准贮备液: 称取 0.2210g基准氟钠(NaF)(预先于105~110℃烘干2h或者于500~650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100μg。 2.乙酸钠溶液: 称取15g乙酸钠(CH 3COONa)溶于水,并稀释至100mL。 3.盐酸溶液:2mol·L-1。 4.总离子强度调节缓冲溶液(TISAB): 称取 58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL容量瓶中,稀释至标线,摇匀。 5.水样①,②。 四.测定步骤 1.仪器准备和操作: 按照所用测量仪器和电极使用说明,首先接好线路,将个开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。 2.氟化物标准溶液制备:

电子测量与仪器论文11

电子测量原理论文 模拟式万用表在电子测量中的应用 班级:电子信息工程 学号:20114075163 姓名:于运佳 日期:2014.4.5

模拟式万用表与数字万用表的比较,数字式万用表为何不能取代模拟表。本文重点介绍模拟式万用表在的电工电子测量中的相关应用和原理。 万用表是身边必备的测量器具之一。在电工测量仪表中,最大众化的万用表是一种集元器件的检验、电路的导通试验、电源电压检验等多功能于一体的仪表,应用起来十分便利。万用表具有直流电压、直流电流、交流电压、交流电流(模拟万用表中没有)以及电阻等五种基本测量功能。还可以具有蓄电池检验、温度测量和晶体三极管hFE特性检验等测量功能。 万用表中,有指针型的模拟式万用表和数字显示的数字式万用表。 1指针表和数字表 1.1指针表和数字表的比较和选用 (1)指针表读取精度较差,但指针摆动的过程比较直观,其摆动速度幅度有时也能比较客观地反映了被测量的大小;数字表读数直观,但数字变化的过程看起来很杂乱,不太容易观看。 (2)指针表内一般有两块电池,一块低电压的 1.5V,一块是高电压的9V 或15V,其黑表笔相对红表笔来说是正端。数字表则常用一块6V或9V的电池。在电阻档,指针表的表笔输出电流相对数字表来说要大很多,用R×1Ω档可以使扬声器发出响亮的“哒”声,用R×10kΩ档甚至可以点亮发光二极管(LED)。 (3)指针表内阻一般在20KΩ/V左右,相对数字表来说比较小,测量精度相比较差。某些高电压微电流的场合甚至无法测准,因为其内阻会对被测电路造成影响。数字表电压档的内阻很大,一般在11M,使流入仪表的电流近似为零,其电池内阻引起的电压降可以忽略。但极高的输出阻抗使其易受感应电压的影响,在一些电磁干扰比较强的场合测出的数据可能是虚的。 (4)模拟式指针表的标尺盘上很多,使用时也要注意档位转换和测量量程的切换,使用复杂。数字式表使用简单,即使没有电学知识亦可以放心使用总之,在相对来说大电流高电压的模拟电路测量中适用指针表,比如电视机、音响功放。在低电压小电流的数字电路测量中适用数字表,比如BP机、手机等。不是绝对的,可根据情况选用指针表和数字表。图片如下:

水质氨氮的测定

水质氨氮的测定 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值和水温。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 氨氮的测定方法主要有纳氏比色法、气相分子吸收法、苯酚——次氯酸盐(或水杨酸——次氯酸盐)比色法和电极法等。本节将主要介绍纳氏比色法和蒸馏——酸滴定法。 当水样带色或浑浊以及含有其他一些干扰物质,影响氨氮的测定。为此,在分析时需作适当的预处理。对较清洁的水,可采用絮凝沉淀法(加适量的硫酸锌于水样中,并加氢氧化钠使成碱性,生成氢氧化锌沉淀,再经过滤除去颜色和浑浊);对污染严重的水或工业废水,则用蒸馏法消除干扰(调节水样的pH值使在6.0-7.4的范围,加入适量氧化镁使成微碱性,蒸馏释放出的氨被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定法时,以硼酸溶液为吸收液;采用水杨酸——次氯酸盐比色法时,则以硫酸溶液为吸收液)。 本实验的主要目的: 1 掌握水样预处理的方法; 2 掌握氨氮的测定原理及测定方法的选择 3 掌握分光光度计的使用方法,学习标准系列的配制和标准曲线的制作 一、纳氏试剂光度法(A1) 1 实验原理 碘化汞和碘化钾与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长内具强烈吸收。通常测量用410~425nm范围。 2 实验仪器 2.1 分光光度计 2.2 pH计 2.3 20mm比色皿 2.4 50mL比色管 1本方法与GB7479-87等效。

3 实验试剂 3.1 纳氏试剂:可任择以下两种方法中的一种配制。 3.1.1 称取20g碘化钾溶于约100ml水中,边搅拌边分次少量加入二氯化汞结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不易溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,充分冷却至室温后,将上述溶液在搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜。将上清液移入聚乙烯瓶中,密塞保存待用。 3.1.2 称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。 另称取7g碘化钾和10g碘化汞溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存待用。 3.2 酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100ml水中,加热煮沸以去除氨,放冷,定容100ml。 3.3 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 3.4 铵标准使用液:移取5.00ml铵标准贮备液(3.3)于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 4 实验步骤 4.1 标准曲线的制作 4.1.1 吸取0、0.50、1.00、3.00、 5.00、7.00和10.00ml铵标准使用液(3.4)于50ml 比色管中,加水至标线,加1.0ml酒石酸钾钠溶液(3.2),摇匀。加1.5ml纳氏试剂(3.1.1或3.1.2),混匀。放置10min后,在波长420nm出,用光程20mm比色皿,以水为参比,测量吸光度。 4.1.2 由测得的吸光度减去空白的吸光度后,得到校正吸光度,以氨氮含量(mg)对校正吸光度的统计回归标准曲线。 4.2 水样的测定 4.2.1 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml 比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。以下同标准曲线的制作(4.1)。 4.2.2 分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢

大气固定污染源氟化物的测定离子选择电极法方法确认

大气固定污染源氟化物的测定离子选择电极法 HJ/T67-2001方法确认 1.目的 通过离子选择电极法测定吸收液中氟离子的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格 2.适用范围 本标准适用于大气固定污染源有组织排放中氟化物的测定。不能测定碳氟化物,如氟利昂。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验 结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果 4.分析方法 4.1 测量方法简述 4.1.2 样品的采集和保存 污染源中尘氟和气态氟共存时,采样烟尘采样方法进行等速采样,在采样管的出口串联三个装有75ml吸收液的大型冲击式吸收瓶,分别捕集尘氟和气态氟。 若污染源中只存在气态氟时,可采用烟气采样方法,在采集管出口串联两个装有50ml吸收液的多孔玻板吸收瓶,以0.5~2.0L/min的流速采集5~20min。 采样管与吸收瓶之间的连接管,选用聚四氟乙烯管,并应尽量短。 注:连接管液可使用聚乙烯塑料管和橡胶管。 采样点数目,采样点位设置及操作步骤,按GB/T 16157-1996《固定污染源排气中颗粒物的测定和气态污染物采样方法》有关规定进行。采样频次和时间,按GB 16297-1996 《大气污染物综合排放标准》有关规定进行。 采样结束后,将滤筒取出,编号后放入干燥洁净的器皿中,并按照采样要求,做好记录。吸收瓶中的样品全部转移至聚乙烯瓶中,并用少量水洗涤三次吸收瓶,洗涤液并入聚乙烯瓶中。编号做好记录。采样管与连接管先用50ml吸收液洗涤,再用400ml 水冲洗,全部并入聚乙烯瓶中,编号做好记录。样品常温下可保存一周。 4.1.3 分析步骤 取6个50ml聚乙烯烧杯,按表1配制标准系列,也可根据实际样品浓度配制,

中华人民共和国国家标准生活饮用水水质标准

中华人民共和国国家标准生活饮用水卫生标准 为贯彻“预防为主”的方针,向居民供应符合卫生要求的生活饮用水,保障人民的身体健康,特制订本标准。 1范围 本规范规定了生活饮用水水质规范和卫生要求以及对水源选择、水源卫生防护、水质监测的要求。 本规范适用于城市生活饮用水集中式供水,包括自建集中式供水及二次供水。 2引用标准 GB 5750-85《标准检验法》。 GB 17051-1997《二次供水设施卫生规范》。 WHO Guidelines for Drinking Water Quality 1993。 3定义 本规范采用下列定义: 3.1生活饮用水:由集中式供水单位直接供给居民作为饮用和生活的水,该水的水质必须确保居民终生饮用安全。 3.2城市:国家按行政建制设立的直辖市、市、镇。 3.3集中式供水:由水源集中取水,经统一净化处理和消毒后,由输水管网送到用户的供水方式。 3.4自建集中式供水:除城建部门建设的各级自来水厂外,由各单位自建的集中式供水。 3.5二次供水:用水单位将来自城市集中式供水系统的生活饮用水加压、贮存、再处理(如过滤、软化、矿化、消毒等)后,经管道输送给用户的供水方式。 4生活饮用水水质规范和卫生要求 4.1生活饮用水水质应符合下列基本要求: 4.1.1水中不得含有病原微生物。 4.1.2水中所含化学物质及放射性物质不得危害人体健康。 4.1.3水的感官性状良好。

4.2生活饮用水水质规定 本规定适用于供水单位的出厂水和管网水 4.2.1生活饮用水水质常规检验项目 生活饮用水水质常规检验项目及限值见表1。 表1 生活饮用水水质常规检验项目及限值 项目限值 感官性状和一般化学指标色 色度 不超过15度,并不得呈现其它异色 浑浊度 不超过1度(NTU)①,特殊情况下不超过5度(NTU)臭和味不得有异臭、异味 肉眼可见物不得含有 PH 6.5~8.5 总硬度(以CaCO3计) 450 (mg/L) 铝 0.2 (mg/L) 铁 0.3 (mg/L) 锰 0.1 (mg/L) 铜 1.0 (mg/L) 锌 1.0 (mg/L) 挥发酚类(以笨酚计)0.002 (mg/L) 阴离子合成洗涤剂 0.3 (mg/L) 硫酸盐 250 (mg/L) 溶解性总固体 1000(mg/L) 耗氧量(以O2计) 3 (mg/L),特殊情况下不超过5mg/L② 毒理学指标 砷 0.05(mg/L) 镉 0.005 (mg/L) 铬(六价) 0.05(mg/L) 氰化物 0.05(mg/L) 氟化物 1.0 (mg/L) 铅 0.01(mg/L) 汞 0.001 (mg/L) 硝酸盐(以N计)20(mg/L) 硒 0.01(mg/L) 四氯化碳 0.002 (mg/L) 氯仿 0.06(mg/L)

实验一 水中微量氟的测定

实验一水中微量氟的测定(离子选择性电极法) 一、实验目的 1.了解氟离子选择电极测定水中微量氟的原理和方法; 2.掌握离子计的使用方法。 二、实验原理 离子选择电极是一种电化学传感器,它将溶液中特定离子的活度换成相应的电位。当氟离子选择电极(简称氟电极)插入溶液时,其敏感膜对Fˉ产生响应,在膜和溶液间产生一定的膜电位: j n= K-2.303RT/FlgɑF- 在一定条件下膜电位?膜与Fˉ活度的对数成直线关系。当氟电极与饱和甘汞电极插入被测溶液中组成原电池时,电池的电动势E在一定条件下与Fˉ活度的对数成直线关系:E= K'-2.303RT/FlgɑF- 式中K'为常数,通过测量电池电动势可以求出Fˉ的活度。当溶液的总离子强度不变时,离子活度系数为一定值,则有 E= K''-2.303RT/Flgc F- E与Fˉ的浓度c F-的对数成直线关系。因此,为了测定Fˉ的浓度,常在标准溶液与试样溶液中同时加入相等的足够量的中性电解质作总离子强度,调节缓冲溶液(TISAB),保持较高的离子强度,使它们的总离子强度近似一致,不再受样品或标准溶液中原有离子含量的影响。因而样品溶液和标准溶液中待测离子的活度系数可认为相等。 当Fˉ浓度在1.0~1.0?10-6mol/L范围时,氟电极电位与pF成直线关系,可用标准曲线法或标准加入法进行测定。 氟电极只对游离的Fˉ有响应。在酸性溶液中,H+与部分Fˉ形成HF或HF2ˉ,会降低Fˉ的浓度。在碱性溶液中,LaF3薄膜与OHˉ发生交换作用而使测定结果偏高。因此,溶液的酸度对测定有影响。氟电极适宜于测定的pH范围为5-7. 氟电极的最大优点是选择性好。能与Fˉ生成稳定配合物或生成沉淀的元素(如Al、Fe、Zr、Th、Ca、Mg、Li及稀土元素)会干扰测定,通常可用柠檬酸、DCTA、EDTA、磺基水杨酸及磷酸盐等掩蔽。其他阴离子(如Clˉ、Brˉ、Iˉ、SO42ˉ、NO3ˉ、Acˉ、C2O42ˉ等)均不干扰测定。加入总离子强度调节缓冲液,可以起到控制一定的总离子强度和酸度,以及掩蔽干扰离子等多种作用。 三、仪器与试剂 仪器:国产PXD-270型数字离子计(见附图),氟离子选择性电极,饱和甘汞电极,电磁搅拌器,塑料烧杯(50ml),容量瓶(50ml),移液管(25ml),吸量管(10、1ml)。 试剂: ①100.0μg?mL-1氟标准溶液:准确称取于1200C干燥2h并冷却的分析纯NaF0.2210g,溶于去离子水中,转入1000mL容量瓶中,稀释至刻度,贮于聚乙烯瓶中。 ②10.0μg?mL-1氟标准溶液:吸取上述溶液10.0ml,用去离子水稀释成100mL即得。 ③总离子强度调节缓冲溶液:于1000mL烧杯中,加入500mL去离子水和57mL冰醋酸、58gNaCl、12g柠檬酸钠(Na3C6H5O7?2H2O),搅拌至溶解。在冷水溶液中缓慢加入6.0mol?L-1NaOH溶液约125mL,用1%溴甲酚绿作指示剂滴至呈蓝绿色,冷却至室温,稀释至1L。 ④去离子水:用普通蒸馏水经离子纯水器交换一次而得去离子水,用电导仪测量电阻值在1MΩ以上。 1%溴甲酚绿溶液,NaOH(0.1mol?L-1), HNO3(0.1mol?L-1)。

电子测量技术结课论文

《电子测量技术》课程实验 姓名: 学号: 班级: 指导老师: 日期:

简单一阶电路频率响应的测量 一、 实验目的 1) 学习并熟练掌握各种仪器的操作使用方法。 2) 简单一阶电路频率响应的测试及特征阻抗的测量。 3) 《电子测量技术》课程考试,对课本知识的综合运用与考查。 二、 实验器材 信号发生器、示波器、万用表、电阻、电容、混合模拟示波器、PC 机一台。 三、 实验原理 1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变化的情况。用矢量形式表示: 其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。在本次实验中,由于输入信号的幅度都是一样的,故利用的是输出信号幅度与输入信号频率的关系来反映电路的幅度频率响应。 2、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差()?ω。 当响应超前激励时为正,当响应落后激励时为负。频响特性的测量可分别测量幅频特性 和相频特性,幅频特性的测试采激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差()?ω。 2T τ π? 当响应超前激励时为()?ω正,当响应落后激励时为()?ω负。但本次实验由于条件的 限制,并没有测量电路的相频特性,重点放在了幅频特性上。 3、特性阻抗:又称“特征阻抗”,它不是直流电阻,属于长线传输中的概念。在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源或地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一个电流I ,而如果信号的输出电平为V ,在信号传输过程中,传输线就会等效成一个电 () ()()j H j H j e ?ωωω=()()()Y j H j X j ωωω=

纳氏试剂测定氨氮技巧

纳氏试剂比色法测定水体中氨氮常见问题与解决办法 纳氏试剂比色法是测定水中氨氮的国家标准方法,文献[2]介绍了纳氏试剂比色法的等效方法。标准方法和等效方法对氨氮测定的介绍较为详细,但实际工作中情况复杂,很多问题需要分别深入探讨并加以解决。不少专家学者和专业技术人员对纳氏试剂比色法测定氨氮作了研究,我们根据工作经验,对纳氏试剂比色法测定水体中氨氮常见问题进行了总结,以期更好的指导实际工作。 1实验原理 1.1纳氏试剂配制原理纳氏试剂的正确配制,影响方法的灵敏度。了解纳氏反应机理,是正确配制纳氏试剂的关键。纳氏试剂由Nessler于1856年发明,有2种配制方法,常用HgCl2与KI反应的方法配制,其反应过程如下: 显色基团为[HgI4]2-,它的生成与I-浓度密切相关。开始时,Hg2+与I-按反应(1)式生成红色沉淀HgI2,迅速与过量I-按反应(2)式生成[HgI4]2-淡黄色显色基团;当红色沉淀不再溶解时,表明I-不再过量,应立即停止加入HgCl2,此时可获得最大量的显色基团。若继续加入HgCl2,反应(3)式和(4)式就会显著进行,促使显色基团不断分解,同时产生大量HgI2红色沉淀,从而引起纳氏试剂灵敏度的降低。 1 2氨氮反应原理 了解氨氮反应原理对我们理解反应过程,控制反应条件有重要意义。纳氏试剂与氨氮反应的情况较为复杂,随反应物质含量不同而分别按方程式(5)~(9)进行。 一般情况,纳氏试剂主要用于微量氨氮测定,其反应式为(5)式和(8)式。(9)式表明NH3与NH4+在水溶液中可相互转化,主要受溶液pH的影响。 1.3酒石酸钾钠掩蔽原理 水体中常见金属离子有Ca2+、Mg2+、Fe2+、Mn2+等,若含量较高,易与纳氏试剂中OH-或I-反应生成沉淀或浑浊,影响比色。因而在加入纳氏试剂前,需先加入酒石酸钾钠,以掩蔽这些金属离子,其掩蔽原理如下: 2氨氮实验的影响因子及解决方法 2.1商品试剂纯度 纳氏试剂比色法实验所用试剂主要有KNaC4H6O6·4H2O、KI、HgCl2、KOH。某些市售分析纯试剂常达不到要求,从而给实验造成较大影响,据我们的经验,影响实验的试剂主要是KNaC4H6O6·4H2O和HgCl2。 不合格酒石酸钾钠会导致实验空白值高和引起实际水样浑浊,影响测定。不纯试剂从外

烟气中氟化物测定

烟气中氟化物测定 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

1 适用范围 本标准适用于测定烟道气中的气态及尘态氟化物。 2 引用标准 《空气和废气监测分析方法》。 3 原理 用滤筒捕集尘态氟化物、氢氧化钠溶液吸收气态氟化物,加硝酸溶液处理后制备成样品溶液,用氟离子电极测定。 4 试剂 吸收液 L氢氧化钠溶液; %溴甲酚绿指示剂称取100mg溴甲酚绿于研钵中,加少量(1+4)乙醇,研细,用(1+4)乙醇配成100mL溶液; L、L盐酸溶液; L硝酸溶液; L、L氢氧化钠溶液; 总离子强度缓冲溶液(TISAB)称取柠檬酸钠(3C)、20.0g硝酸钾,置于1000mL烧杯中,加300mL水溶解,加%溴甲酚绿指示剂1mL,用盐酸溶液及氢氧化钠溶液调节至溶液刚转变为蓝绿色为止,pH为(也可在酸度计上,用酸、碱溶液调节至),移入1000mL容量瓶,用水稀释至标线,摇匀; 氟化钠标准储备溶液称取2.210g氟化钠(优级纯,经110℃烘干2h),溶解于水,移入1000mL容量瓶中,用水稀释至标线,摇匀,保存于聚乙烯塑料瓶中。此溶液每毫升含 1000μg氟; 氟化钠标准溶液临用时将氟化钠标准储备液用水稀释成每毫升含μg及100μg氟的标准溶液。 5 仪器 多孔玻板吸收瓶; 聚乙烯塑料杯; 氟离子选择电极; 甘汞电极; 磁力搅拌器用聚乙烯或聚四烯乙烯包裹的搅拌子; 离子活度计或精密酸度计(精度±1mv); 小型超声波清洗器; 烟尘采样装置; 超细玻璃纤维滤筒。 6 采样 当烟气中共存尘氟和气态氟时,需按照烟尘采样方法进行等速采样。在加热式滤筒采样管的出口,串联两个装有50~70mL吸收液的多孔玻板吸收瓶,分别捕集尘氟和气态氟。 当烟气中不含尘氟或只测定气态氟时,可按照气态污染物采样方法,串联两个装有50~ 70mL吸收液的多孔玻板吸收瓶,以~2 L/min 的流量采样5~20min。 编制:刘峰审核:王博批 准:邹阳 7 分析步骤 标准曲线的绘制

毕业论文(设计)--电子测量课程论文电子测量技术的发展及应用

电子测量技术的发展及应用 (中国地质大学,测控系,班级232121) 摘要:本文分析了电子测量技术的应用优点,介绍了电子测量技术的发展状况和 电子测量技术在今后的发展趋势中在软件平台技术、总线接口技术、虚拟测试技 术方面的应用,并介绍了虚拟示波器的主要特点和性能。 关键词:电子测量技术;发展方向;虚拟示波器;软件 Electronic measurement technology development and application (CUG,measure control technology and instrument ,class:232121) Abstract:This paper analyzes the advantages of application of electronic measurement technology, and introduces the development of electronic measurement technology.This paper also introduces the development trends of electronic measurement technology in the future:bus interface technology, virtual test technology applications software platform.This paper introduces virtual oscilloscope’s main features and performance. Keyword:electronic measurement technology ; development direction ; virtual oscilloscope;application 0.引言: 电子测量技术长期以来在电子行业占据着十分重要的地位, 被称为电子行 业的基础,可以毫不夸张地说一个时代的测量技术标志着这个时代电子技术发展 的水平。进入新世纪以来,随着计算机技术、电子技术、自动化技术和通信技术 的整体进步,电子测量技术已经形成了一个较为成熟的发展环境,并在实际的生 产中得到了广泛的应用。电子测量技术由于其本身具有的应用优点在整个现代化

氨氮检测方法

氨氮是指水中以游离氨(NH3)和铵离子(NH4)形式存在的氮。动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氨。 氨氮主要来源于人和动物的排泄物,生活污水中平均含氮量每人每年可达2.5~4.5公斤。 雨水径流以及农用化肥的流失也是氮的重要来源。 另外,氨氮还来自化工、冶金、石油化工、油漆颜料、煤气、炼焦、鞣革、化肥等工业废水中。 当氨溶于水时,其中一部分氨与水反应生成铵离子,一部分形成水合氨,也称非离子氨。 非离子氨是引起水生生物毒害的主要因子,而氨离子相对基本无毒。国家标准Ⅲ类地面水,非离子氨的浓度≤0.02毫克/升。 氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。 纳氏试剂比色法 1 原理 碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色 度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量. 本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地 面水,地下水,工业废水和生活污水中氨氮的测定. 2 仪器 2.1 带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管. 2.2 分光光度计 2.3 pH计 3 试剂 配制试剂用水均应为无氨水 3.1 无氨水可选用下列方法之一进行制备:

3.1.1 蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存. 3.1.2 离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱. 3.2 1mol/L盐酸溶液. 3.3 1mol/L氢氧化纳溶液. 3.4 轻质氧化镁(MgO):将氧化镁在500℃下加热,以出去碳酸盐. 3.5 0.05%溴百里酚蓝指示液:pH6.0~7.6. 3.6 防沫剂,如石蜡碎片. 3.7 吸收液: 3.7.1 硼酸溶液:称取20g硼酸溶于水,稀释至1L. 3.7.2 0.01mol/L硫酸溶液. 3.8 纳氏试剂:可选择下列方法之一制备: 3.8.1 称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改写滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液. 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存. 3.8.2 称取16g氢氧化纳,溶于50mL水中,充分冷却至室温. 另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化纳溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存. 3.9 酒石酸钾纳溶液:称取50g酒石酸钾纳KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100Ml. 3.10 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含 1.00mg氨氮. 3.11 铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮. 4 测定步骤 4.1 水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,家数滴溴百里酚蓝指示液,用氢氧化纳溶液或演算溶液调节至pH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导 管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL. 采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液.

氟化物测定作业指导书

氟化物测定作业指导书 ( 依据标准: HJ/T67-2001 离子选择电极法) 技术依据:HJ/T67-2001 离子选择电极法 1 范围 1.1 适用范围 本标准适用于大气固定污染源有组织排放中氟化物的测定。不能测定碳氟化物,如氟利昂。 1.2 测定范围 当采样体积为150L时,检出限为6×10-2mg/m3;测定范围为1~1000 mg/m3。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的正式条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方,应探讨使用下列标准最新版本的可能性。 GB 16297-1996 大气污染物综合排放标准 GB/T 16157-1996 固定污染源排气中颗粒物的测定和气态污染物采样方法。 3 定义 氟化物系指气态氟与尘氟的总合。本标准中的气态氟用氢氧化钠溶液吸收,尘氟指溶于盐酸溶液的与颗粒物共存的氟化物。 4 原理 使用滤筒、氢氧化钠溶液为吸收液采集尘氟和气态氟,滤筒捕集尘氟和部分气态氟,用盐酸溶液浸溶后制备成试样,用氟离子选择电极测定;当溶液的总离子强度为定值而且足够大时,其电极电位与溶液中氟离子活度的对数成线性关系。

本标准所用试剂除另有说明外均为分析纯试剂,所用水为去离子水。 5.1 盐酸(HCL):ρ=1.18g/ml 5.1.1 盐酸溶液0.25mol/L 取21.0ml盐酸(5.1)用水稀释到1000ml。 5.1.2 盐酸溶液1.0mol/L 取84.0ml盐酸(5.1)用水稀释到1000ml。 5.2 氢氧化钠(NaOH) 5.2.1 氢氧化钠溶液0.3mol/L 将氢氧化钠(5.2)12g溶于水并稀释至1000ml。作为吸收液。 5.2.2 氢氧化钠溶液1.0mol/L 将氢氧化钠(5.2)40g溶于水并稀释至1000ml。 5.3 氟化钠标准贮备液1.000mg/ml0 称取0.2210g氟化钠(优级纯,于110℃烘干2h放在干燥器中冷却至室温)溶解于水,移入100ml容量瓶中,用水定容至标线,贮存于聚乙烯瓶中。在冰箱内保存,临用时放至室温再用。 5.4 氟化物标准溶液 将氟化钠标准贮备液(5.3)用水稀释成2.5μg/ml、5.0μg/ml、10.0μg/ml、25.0μg/ml、50.0μg/ml、100.0μg/ml的标准溶液,临用现配。上述溶液均贮存于聚乙烯瓶中。 5.5 溴甲酚绿指示剂0.1g/100ml 称取100mg溴甲酚绿于研钵中,加少量1+4(V/V)乙醇研细,移入100ml容量中,用1+4(V/V)乙醇定容至标线。 5.6 总离子强度缓冲液(TISAB) 称取59.0g柠檬酸钠(Na2C6H5O2?2H2O),20.0g硝酸钾(KNO3),置于1000ml烧杯中,加300ml水溶解,加溴甲酚绿指示剂(5.5)1ml,用盐酸(5.1)(约11ml)调节至溶液刚刚转变为蓝绿色为止,此时pH为5.5左右,移入1000ml容量瓶中,用水稀释至标线,摇匀。

氨氮测定方法

氨氮 氮是有好几个指标:氨氮,总氮,硝酸盐氮,亚硝酸盐氮,凯式氮等 氨氮比较简便准确,精密度尚可的就是纳氏试剂比色法,不过一般根据水样浑浊程度,确定采用哪种预处理方法,一般较浑浊的用蒸馏法预处理,较清洁的用絮凝沉降预处理。预处理过的水样,测定氨氮一般用纳氏试剂法测定,含量高点也 可以用滴定法。都是国标。 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测

量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=。 步骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和— 25%

生活饮用水水质标准(最新)

生活饮用水水质标准(最新)

生活饮用水水质标准(最新) 文章出处:网责任编辑:作者:人气:101834发表时间:2013-08-26 10:50:00 前言 本标准全文强制。 本标准自实施之日起代替GB5749-85《生活饮用水卫生标准》。 本标准与GB5749-85相比主要变化如下: ——水质指标由GB 5749-85的35项增加至106项,增加了71项;修订了8项;其中: ——微生物指标由2项增至6项,增加了大肠埃希氏菌、耐热大肠菌群、贾第鞭毛虫和隐孢子虫;修订了总大肠菌群; ——饮用水消毒剂由1项增至4项,增加了一氯胺、臭氧、二氧化氯; ——毒理指标中无机化合物由10项增至21项,增加了溴酸盐、亚氯酸盐、氯酸盐、锑、钡、铍、硼、钼、镍、铊、氯化氰;并修订了砷、镉、铅、硝酸盐; 毒理指标中有机化合物由5项增至53项,增加了甲醛、三卤甲烷、二氯甲烷、1,2-二氯乙烷、1,1,1-三氯乙烷、三溴甲烷、一氯二溴甲烷、二氯一溴甲烷、环氧氯丙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、六氯丁二烯、二氯乙酸、三氯乙酸、三氯乙醛、苯、甲苯、二甲苯、乙苯、苯乙烯、2,4,6-三氯酚、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯、邻苯二甲酸二(2-乙基己基)酯、丙烯酰胺、微囊藻毒素-LR、灭草松、百菌清、溴氰菊酯、乐果、2,4-滴、七氯、六氯苯、林丹、马拉硫磷、对硫磷、甲基对硫磷、五氯酚、莠去津、呋喃丹、毒死蜱、敌敌畏、草甘膦;修订了四氯化碳; ——感官性状和一般理化指标由15项增至20项,增加了耗氧量、氨氮、硫化物、钠、铝;修订了浑浊度; ——放射性指标中修订了总α放射性。 ——删除了水源选择和水源卫生防护两部分内容。 ——简化了供水部门的水质检测规定,部分内容列入《生活饮用水集中式供水单位卫生规范》。 ——增加了附录A。 ——增加了参考文献。 本标准的附录A为资料性附录。 为准备水质净化和水质检验条件,贾第鞭毛虫、隐孢子虫、三卤甲烷、微囊藻毒素-LR等4项指标延至2008年7月1日起执行。 本标准由中华人民共和国卫生部提出并归口 本标准负责起草单位:中国疾病预防控制中心环境与健康相关产品安全所 本标准参加起草单位:广东省卫生监督所、浙江省卫生监督所、江苏省疾病预防控制中心、 北京市疾病预防控制中心、上海市疾病预防控制中心、中国城镇供 水排水协会、中国水利水电科学研究院、国家环境保护总局环境标 准研究所。 本标准主要起草人:金银龙、鄂学礼、陈昌杰、陈西平、张岚、陈亚妍、蔡祖根、甘日华、 申屠杭、郭常义、魏建荣、宁瑞珠、刘文朝、胡林林。

相关主题
文本预览
相关文档 最新文档