当前位置:文档之家› 10kV电力系统谐振过电压的原因及抑制措施_孟繁宏

10kV电力系统谐振过电压的原因及抑制措施_孟繁宏

10kV电力系统谐振过电压的原因及抑制措施_孟繁宏
10kV电力系统谐振过电压的原因及抑制措施_孟繁宏

10 kV电力系统谐振过电压的原因及抑制措施

孟繁宏,李学山,张占胜

摘 要:通过对10 kV中性点不接地运行方式下谐振过电压的分析,说明产生谐振过电压的条件、种类及特点,并提出以下抑制谐振过电压的措施:采用自动调谐接地补偿装置或可控硅多功能消谐装置,在电压互感器的中性点接消弧线圈,或接消谐器等。

关键词:铁路;电力;过电压;抑制措施

Abstract:By analyzing the resonant over-voltage in 10 kV power supply system with its neutral point being unearthed, illustrates the conditions causing the resonance over-voltage and their types and characteristics, and puts forward the following measures to suppressing resonant over-voltage: by adopting automatic tuned earthing compensation device or silicon-controlled resonance suppressor, connecting the arc-extinguishing coil with neutral

point of the voltage transformer or connecting the resonance suppressor.

Key words: Railway; power supply system; over-voltage; suppression measure

中图分类号:U223.6文献标识码:B文章编号:1007-936X(2005)03-0022-04

0 概述

在10 kV配电所的每段母线上都接有1台电压互感器,其一次线圈中性点直接接地。由于电网对地电容与电压互感器的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,是导致电压互感器高压熔丝熔断和电压互感器烧损、避雷器爆炸的主要原因,也是诱发某些重大事故的原因之一。近5年以来,在大同西供电段管内共发生谐振过电压烧坏电压互感器高压保险12次,烧毁10 kV电压互感器1台,烧断电压互感器瓷瓶内部引出线1次。

1 谐振过电压产生的条件

1.1 内部条件

铁路10 kV电力系统是中性点不接地系统,为了监视系统的三相对地电压,该配电所每段母线上均接有1台三相五柱电磁式电压互感器,其电气接线原理图略。

母线电压互感器的高压侧在接成Y型时其中性点是接地的,由于铁路10 kV电力系统中电缆较多,各相对地电容较高,电网对地电容与电压互感

作者简介:孟繁宏.朔黄铁路发展有限公司原平分公司,工程师,山西原平037005,电话:029-93638(路电);

李学山,张占胜.大秦铁路股份有限公司大同西供电段。器的电感相匹配构成谐振条件。当发生谐振时,电压互感器感抗显著下降,励磁电流急剧增大,可达到额定值的数十倍,造成电压互感器烧毁或保险熔断。

1.2 外界激发条件

激发产生谐振过电压的外部条件有以下几种:(1)线路发生单相接地或瞬间接地。(2)不带馈线负荷的情况下向带有三相五柱电磁式电压互感器的母线送电。(3)进行空载线路的投切操作。(4)电力线路有雷电感应。(5)电网负荷轻,电压高,发生传递过电压。

2 过电压种类及特点

2.1 过电压种类

铁路10 kV电力系统过电压主要分为谐振过电压、雷电过电压和操作过电压,其中谐振过电压在正常运行操作中出现频繁,危害性较大;一旦产生过电压,往往造成电气设备损坏和大面积停电事故。运行经验表明,铁路10 kV电力系统中过电压大多数都是由铁磁谐振引起的。在实际运行中,故障形式和操作方式多种多样,谐振性质也各不相同。因此,为了制订防振和消振的对策与措施,应该了解各种不同类型谐振的性质与特点。

2.1.1 基波谐振

通常在配电所全所停电作业完成后向带有电

22

磁式三相五柱电压互感器的空母线送电、充电时发生基波谐振。表现为三相中的一相电压降低,但不为零,另外两相电压升高超过线电压,也称作“虚幻接地”,往往引起电压互感器高压熔丝熔断、电压互感器过热冒油甚至烧损。这种现象一般在馈线送电后就可消失。

2.1.2 分频谐振

分频谐振多由雷电感应引起,在线路较短,电磁式电压互感器较多,正常时中性点不平衡电压较高的系统中发生。发生分频谐振时三相电压表的指示轮流升高,且不稳定,升高数值约为线电压值。容易造成电压互感器温度升高,严重时甚至冒油。

2.1.3 高次谐波谐振

在线路电容足够小且负荷较轻,母线电压较高时发生高次谐波谐振。此时三相电压表指示同时升高,数值基本相同,一般不超过线电压值,即在工频电压的谐波上叠加了高次谐波分量(主要是3次谐波)。发生高次谐波谐振时电压互感器温度升高,相应电压等级的设备绝缘较弱部位会出现放电现象。

2.2 谐振过电压的特点

铁路10 kV电力系统发生单相接地时不影响线电压值,允许维持不超过2 h的运行时间,以减少用户断电。大多数单相接地故障因接地点接触不良而形成高阻接地,在接地点出现瞬燃瞬熄的电弧放电,从而造成电压突变,极易引发电能、磁能振荡。单相接地时接地电弧不能自动熄灭,必然产生弧光过电压,一般为3~5倍相电压甚至更高,致使系统中绝缘薄弱的地方击穿放电,并发展为相间短路,造成开关跳闸和设备损坏事故。对于电缆出线回路,由于电容电流大,单相接地后电弧不能自行熄灭,产生的弧光过电压往往导致相间短路使电缆、中间(终端)头及避雷器击穿。

线路发生单相接地时,系统突变两相电压瞬时升高,线路对地电容与中性点接地的电压互感器绕组形成并联振荡回路,电压互感器三相铁心会高度饱和,各相感抗发生变化,电感值不相同,中性点位移,产生零序电压。由于线路电流持续增大,导致电压互感器铁心饱和,其电感迅速减小,当电感降到满足ωL=1/ωC时,具备了谐振条件,就会产生并联谐振过电压。谐振时,电压互感器一次励磁电流急剧增大,使高压熔丝熔断。如果电流超过了电压互感器额定电流,熔丝却没有及时熔断,电压互感器就会长时间处于过电流状态而烧损。

铁路电力系统由于供电线路长,自闭、贯通线路供电臂一般达到40 km左右,变压器较多,常因电缆及避雷器故障形成单相接地,引起系统谐振,产生间歇性过电压,致使非接地的两相电压升高到线电压,由于不能及时切除故障线路,电缆、避雷器长时间运行在非正常电压下。避雷器流过数倍于正常的泄漏电流,迅速劣化,而电缆的非接地相对地(屏蔽及钢铠)耐压由6 kV提升到10 kV,最终导致避雷器爆炸或电缆击穿。

3 抑制过电压措施

铁磁谐振过电压在铁路10 kV电力系统中频繁发生。这种过电压持续时间长,因而对系统的安全运行威胁极大,它是导致高压熔丝熔断和电磁式电压互感器烧损爆炸的重要原因。铁路10 kV系统一般都是作为沿线各站及区间的信号主备电源,大部分是一级负荷,因此也是重大事故的诱发原因之一。下面就常用的消除谐振过电压的措施分别进行讨论。

3.1 自动调谐接地补偿装置

采用自动调谐原理的接地补偿装置,能够较好地解决谐振过电压的问题。

3.1.1 装置组成

目前自动调谐接地补偿装置组成如图1所示,主要由接地变压器、电动式消弧线圈、微机控制部分、阻尼电阻部分、中性点专用互感器和非线性电阻5个部分组成。

图1 自动调谐接地补偿装置

A

C

B

微机控制器

非线性电阻

接地变压器

消弧线圈

阻尼箱

23

3.1.2 作用

接地变压器是作为人工中性点接入消弧线圈,并能够当作所用变压器使用。消弧线圈电流通过有载开关调节并实现远方自动控制。采用预调节方式,即在正常运行方式情况下,根据电网参数的变化而随时将消弧线圈的分接头调到最佳位置。利用微机控制器实现自动跟踪和自动调谐的功能。通过测量位移电压和中性点电流与电压之间的相位,能自动计算、判断、发出指令进行调整,显示有关参数,并且能追忆、报警、自动打印和信号远送,满足无人值班变电所的需要。

自动调谐接地补偿装置能够实现全补偿运行或消弧线圈的脱谐度很小,主要是由于在消弧线圈的一次回路中串入了大功率的阻尼电阻,增大阻尼率,降低中性点谐振过电压的幅值使之达到相电压的5%~10%。当系统的电容电流与消弧线圈工作电流相等时,即在谐振时中性点电压限制在允许值以下,这样就可实现全补偿,这是残流最小的最佳工作方式,接地时残流很小,不会引起弧光过电压。

3.2 可控硅多功能消谐装置

可控硅多功能消谐装置,也是抑制铁磁谐振过电压,保护高压熔丝和电压互感器免遭损坏的理想的自动保护装置。

3.2.1 用途

可控硅多功能消谐装置是单一功能消谐装置的升级换代产品。能消除电网中常见的多种频率铁磁谐振。可有效地防止电压互感器的烧损,确保电网的安全运行。

3.2.2 结构与原理

多功能消谐装置主要由变压器、单(双)向可控硅、选频电路、触发电路、计数显示电路等部分组成。

3.2.3 主要功能特点

集多种功能于一体,电路简单,工作可靠,系统正常时,开口三角电压U0≈0,装置处于备用状态,因此装置功耗可忽略不计,使用寿命长久。

消谐频率范围宽,对电网中常见的17 Hz和25 Hz等各种频率的铁磁谐振均能有效消除。

抗干扰力强,当电网中发生单项接地等异常现象时,装置可靠不动。

3.3 中性点接消弧线圈

对由电压互感器铁心饱和引起的铁磁谐振过电压的限制,目前虽然有多种方式,但效果大多不够理想,这是由于铁磁谐振过电压本身是一个非线性过程,现象比较复杂。分频谐振的频率为基波的1/2、1/3、1/6及1/8等,高频谐振有2、3次,还有工频谐振,有时几种谐振同时发生,一些消谐措施不那么有效。在系统上有多台电磁式电压互感器时,必须要使系统参数发生较大的变化才能将谐振过电压抑制住。

如果在系统的中性点上接入消弧线圈,破坏它的谐振条件,就能够有效地抑制谐振过电压的发生。其原理也很简单,如图1所示。电压互感器的励磁感抗比较大(千欧至兆欧级),而消弧线圈的感抗(百欧级)比较小,这样谐振条件ωL=1/ωC 很难满足,谐振就不会发生。另一方面无消弧线圈时单相接地发生间歇性电弧时电容上多次充放电造成电压互感器烧毁、熔丝熔断;有了消弧线圈后,电容对小感抗放电,电压互感器中电流很小就不会烧毁了。因此在中性点接入消弧线圈,对于由电压互感器铁心饱和引起的铁磁谐振过电压起到很好的限制作用。

3.4 电压互感器中性点经消谐器接地

消谐器是一种特别配置的非线性复合电阻,串接在电压互感器一次侧中性点回路,其接入相当于在电压互感器一次侧各相对地都接入电阻,能够起到抑制电压互感器过电压、过电流、阻尼和抑制谐波的作用。

安装消谐器后,系统感容等效电路可用图2表示。

图2 安装消谐器后压互回路示意图

电压互感器中性点接入消谐器后,可以限制系

YJ

24

25

统在一相接地或弧光接地时流过电压互感器另外两相的高压绕组的过电流。在图2中,当系统C 相(或A 、B 相)发生单相接地时,C 相对地电压:U CX =0,在此情况下,若没装消谐器,则

U AX =U BX =U AC =U BC =U φ

此时流过A 、B 两相高压绕组的电流

LE

3X U I ?=

(1)

式中,X LE 为电压互感器的单相感抗。

即I 为正常值的3倍。因此,即使系统不发生过电压,单相接地时也可能烧坏另外两相的高压绕组。若系统因单相接地而引起过电压,则此电流会更大。

当电压互感器高压侧中性点上安装消谐器后,在C 相单相接地时,流过A 、B 两相高压绕组的电流

LE

2

LE 2LE

2LE

3336113RX X R RX R X U I ++?+

?=

? (2)

只要当6R 2?RX LE >0,即:

28.06

3

LE ≈>X R 时, 式(2)中电流值就小于式(1)中的电流值,即通过A 、B 两相高压绕组的电压受到消谐器R 的限制。而实际上消谐电阻的阻值与感抗之比(R /X LE )远大于0.28。因此消谐器的接入,削弱了单相接地时流过非故障相互感器高压绕组的电流,可有效地防止电压互感器过电压和过电流。 3.5 电压互感器开口三角绕组接电阻

由于电阻接在开口三角绕组两端,必然会导致一次侧电流增大,也就是说电压互感器的容量要相应增大。从抑制谐波方面考虑,R 值越小,效果越显著,但电压互感器的过载现象越严重,在谐振或单相接地时间过长时甚至会导致保险丝熔断或电压互感器烧毁。一般来说接入10 kV 电压互感器开口三角绕组的电阻取16.5~33 ?。 3.6 其他抑制谐振过电压的措施

(1)选用励磁特性好,不易饱和的电压互感器。

(2)在满足系统运行要求的情况下采用防谐

振式电压互感器。

(3)在三相五柱式电压互感器开口三角上接灯泡或接入晶闸管消谐装置,增加阻尼,破坏谐振条件。

4 应用效果

在实际运行中电压互感器开口三角绕组接电阻或电压互感器开口三角绕组接分频消谐装置等方法都不能有效避免谐振的发生及保险熔断。在谐振发生或线路单相接地时电压互感器一次侧电流显著增大及因本身元件故障而失去消谐作用,这是上述2种装置的主要缺陷。

采用在电压互感器中性点加装消谐器的方法,在线路单相接地时能够使电压互感器各相绕组电压均能保持在正常相电压附近而不会饱和,从而很好地抑制铁磁谐振,降低电压互感器一次侧电流,同时亦保持了接地指示装置对零序电压幅值和相位的灵敏度,其优点较为突出。大同西供电段在2000年对部分小负荷10 kV 配电所母线电压互感器进行了改造,在其一次侧中性点上加装了消谐器,改造后效果明显,运行至今未出现过电压互感器保险熔断与“虚幻接地”现象。

随着负荷增加,出线回路增多,线路增长,系统对地电容电流也大幅度增大。近年,部分10 kV 配电所安装了自动调谐式接地补偿装置,装置自投入后运行稳定,对电网的自动跟踪补偿、报警和信号动作准确,取得了满意的效果。在线路故障发生时,有效避免了母线爬弧、避雷器爆炸、电压互感器保险熔断等异常现象。从实际应用情况看,自动调谐式接地补偿装置很好地跟踪补偿了系统的接地电流,有效防止了系统内过电压的危害,提高了系统的连续供电能力和运行可靠性,为保证铁路供电畅通和安全生产起到了重要作用。

参考文献:

[1] 刘肖杰,张 剑.铁路中性点不接地电力系统铁磁谐振的产生原因及特点[J].电气开关,2004,(6).

[2] 索元宏,李学山,赵建平.10 kV 中性点不接地系统铁磁谐振原因分析及消谐措施探讨[J].铁道机车车辆,2002,(6).

收稿日期:2005-03-12

谐波谐振产生的原因及危害分析

谐波谐振产生的原因及危害分析 摘要:在电网运行中,不可避免地会产生谐波和谐振。当谐波谐振发生时,其电压幅值高、变化速度快、持续时间长,轻则影响设备的安全稳定 运行,重则可使开关柜爆炸、毁坏设备,甚至造成大面积停电等严重 事故。本文就其定义、产生原因、危害及预防措施作以介绍,供参考。 1.定义 谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。 谐振是交流电路的一种特定工作状况,是指在含有电阻、电感、电容的交流电路中,电路两端电压与其电流一般是不同相位的,当电路中的负载或电源频率发生变化,使电压相量与电流相量同相时,称这时的电路工作状态为谐振。谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。 2.产生的原因 谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。 谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。谐波也可产生谐振,由谐波源和系统中

的某一设备或某几台设备可能构成某次谐波的谐振电路。 3.造成的危害 3.1谐波的危害 谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的通信系统产生干扰。电力电子设备广泛应用以前,人们对谐振及其危害就进行过一些研究,并有一定认识,但那时谐波污染没有引起足够的重视。近三四十年来,各种电力、电子装置的迅速使用,使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。 (1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热 甚至发生火灾。 (2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重 过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以 至损坏。 (3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。 (4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。 (5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;

全过电压抑制柜、消弧柜、消弧线圈的比较

全过电压抑制柜和消弧线圈、消弧柜的比较(一)消弧线圈 消弧方面:利用电感电流和电容电流相位差为180°的特点,当电网发生接地故障后,消弧线圈提供一电感电流,补偿故障点电容电流,使接地电流减小,达到熄灭电弧的目的。 缺点:1、消弧线圈对工频电容电流能起到一定的补偿作用,对高频电流无法起到补偿作用,而电缆线路发生单相电弧接地时,电弧电流以高频电流为主。 2、消弧线圈的使用还会降低小电流选线的灵敏度。 3、消弧线圈体积大,造价高,受电网规模的影响,不利于电网的长远规划。(二)消弧柜 1、消弧方面:运用快速接地开关迅速将间歇性弧光接地转换成稳定的金属性接地,消弧原理与系统的电容电流大小、频率无关,可以消除任何频率的弧光接地。 2、PT柜功能:系统正常运行时,装置可以作PT柜用不会给系统增加任何额外负担。 3、具备微机消谐功能。 缺点:同一系统内大量使用消弧柜,也会造成弧光接地时多台消弧柜同时动作,形成多点接地。若其中有消弧柜发生相别误判或误动,则会形成严重的相间短路事故。 (三)全过电压抑制柜 1、消弧方面:运用快速接地开关迅速将间歇性弧光接地转换成稳定的金属性接地,消弧原理与系统的电容电流大小、频率无关,可以消除任何频率的弧光接地。 2、根据不同用户的系统进行针对性设计生产,同一系统中不同位置选用不同型号的全过电压限制装置,使装置动作的协调性大大提高,避免出现弧光接地时多台接地开关同时动作形成多点接地或误动引起的相间短路事故。保护功能也更加完善合理,有效消除系统过电压保护死区。 3、可以有效抑制系统中大气过电压、操作过电压,装置中配有特制的尖峰过电压吸收装置,可有效抑制大气过电压、操作过电压等过电压尖峰,缓和过电压波头陡度。内部采用专制的尖峰过电压吸收装置吸收过电压能量大,2ms方波电流可以达到3200A。

10kV电力系统谐振过电压的原因及抑制措施_孟繁宏

10 kV电力系统谐振过电压的原因及抑制措施 孟繁宏,李学山,张占胜 摘 要:通过对10 kV中性点不接地运行方式下谐振过电压的分析,说明产生谐振过电压的条件、种类及特点,并提出以下抑制谐振过电压的措施:采用自动调谐接地补偿装置或可控硅多功能消谐装置,在电压互感器的中性点接消弧线圈,或接消谐器等。 关键词:铁路;电力;过电压;抑制措施 Abstract:By analyzing the resonant over-voltage in 10 kV power supply system with its neutral point being unearthed, illustrates the conditions causing the resonance over-voltage and their types and characteristics, and puts forward the following measures to suppressing resonant over-voltage: by adopting automatic tuned earthing compensation device or silicon-controlled resonance suppressor, connecting the arc-extinguishing coil with neutral point of the voltage transformer or connecting the resonance suppressor. Key words: Railway; power supply system; over-voltage; suppression measure 中图分类号:U223.6文献标识码:B文章编号:1007-936X(2005)03-0022-04 0 概述 在10 kV配电所的每段母线上都接有1台电压互感器,其一次线圈中性点直接接地。由于电网对地电容与电压互感器的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,是导致电压互感器高压熔丝熔断和电压互感器烧损、避雷器爆炸的主要原因,也是诱发某些重大事故的原因之一。近5年以来,在大同西供电段管内共发生谐振过电压烧坏电压互感器高压保险12次,烧毁10 kV电压互感器1台,烧断电压互感器瓷瓶内部引出线1次。 1 谐振过电压产生的条件 1.1 内部条件 铁路10 kV电力系统是中性点不接地系统,为了监视系统的三相对地电压,该配电所每段母线上均接有1台三相五柱电磁式电压互感器,其电气接线原理图略。 母线电压互感器的高压侧在接成Y型时其中性点是接地的,由于铁路10 kV电力系统中电缆较多,各相对地电容较高,电网对地电容与电压互感 作者简介:孟繁宏.朔黄铁路发展有限公司原平分公司,工程师,山西原平037005,电话:029-93638(路电); 李学山,张占胜.大秦铁路股份有限公司大同西供电段。器的电感相匹配构成谐振条件。当发生谐振时,电压互感器感抗显著下降,励磁电流急剧增大,可达到额定值的数十倍,造成电压互感器烧毁或保险熔断。 1.2 外界激发条件 激发产生谐振过电压的外部条件有以下几种:(1)线路发生单相接地或瞬间接地。(2)不带馈线负荷的情况下向带有三相五柱电磁式电压互感器的母线送电。(3)进行空载线路的投切操作。(4)电力线路有雷电感应。(5)电网负荷轻,电压高,发生传递过电压。 2 过电压种类及特点 2.1 过电压种类 铁路10 kV电力系统过电压主要分为谐振过电压、雷电过电压和操作过电压,其中谐振过电压在正常运行操作中出现频繁,危害性较大;一旦产生过电压,往往造成电气设备损坏和大面积停电事故。运行经验表明,铁路10 kV电力系统中过电压大多数都是由铁磁谐振引起的。在实际运行中,故障形式和操作方式多种多样,谐振性质也各不相同。因此,为了制订防振和消振的对策与措施,应该了解各种不同类型谐振的性质与特点。 2.1.1 基波谐振 通常在配电所全所停电作业完成后向带有电 22

浅谈热电厂谐振过电压及抑制措施

浅谈热电厂谐振过电压及抑制措施 在电力系统中性点经消弧线圈接地系统中包含有很多电感元件和电容元件。在开关操作或发生故障时,这些电感和电容元件可能形成不同自振频率的振荡回路,在外加电源作用下产生谐振现象,引起谐振过电压。谐振往往在电网某一局部造成过电压,从而危及电气设备的绝缘,甚至产生过电流而烧毁设备。本文针对热电厂发生的故障进行了全面的分析论述,并提出解决问题的措施 标签:真空断路器消弧线圈谐振过电压抑制措施 1 问题出现 2008年10月20日15时40分,运行人员启动#3炉磨煤机产生操作过电压,造成已运行的#3炉排粉电机线圈开路,#4炉引风机电缆一相击穿接地,引起运行中高压电压互感器烧毁及一次高压熔丝烧断。#3炉、#4炉、#1机、#3机相继停止运行,终止对外供汽,反送电时间长达六小时之久,造成重大经济损失。 2 事故分析 2.1 我厂磨煤机、排粉电机小车开关是真空断路器。真空断路器由于灭弧能力强、电气寿命長、现场维护方便、技术含量高等优点,在电力系统35kV及以下电压等级中被广泛应用。但是,真空断路器在开断运行过程中出现过电压问题时有发生,已成为不可忽视的重要环节。产生过电压分析如下: 2.1.1 真空断路器由于具有高速灭弧能力,在切断电路时,往往在电流过零前被强行开断,在断弧瞬间储藏在负载内的电感与电容之间的电磁能量转换将在负载上产生过电压,这比一般断路器要突出,尤其在最先断开相触头间,有可能因过电压引起电弧重燃,而产生过电压。 2.1.2 如果由于某种原因引起真空开关真空度降低,将严重影响真空断路器开断过电流的能力,以至承受不住恢复电压发生电弧重燃,回路中出现高频电流,高频电流过零时,出现电弧熄灭、重燃循环过程。由于负载侧存在L-C振荡回路(电机线圈、电缆储能元件),则产生很高过电压。 2.2 消弧线圈运行方式存在问题 我厂共有两组消弧线圈,#1发电机中性点、#2、3发电机中性点各接一组消弧线圈。出现上述事故前是#1、#3发电机,#3、#4炉在运行中,而#1发电机中性点消弧线圈没有投入运行,只有#3发电机中性点投入运行。前述故障发生后,发生过电压,#3发电机循环泵运行中突然停运,备用循环泵联动不成功,汽轮机真空急剧下降,#3发电机被迫停机,也就是说电厂消弧线圈脱离系统,形成谐振,机、炉辅机相继跳闸,全厂停运。

智能过电压综合抑制柜SHK-XGB

智能过电压综合抑治柜SHK-XGB 说明书 上海合凯电力保护设备有限公司 2013年11月

?概述 我国3-35kV系统中存在如下几种过电压:断路器动作过程中产生的操作过电压、电容元件和非线性电感在一定条件下产生的谐振过电压、雷电时产生的大气过电压和单相接地时产生的弧光过电压等。目前尚无针对这些过电压的完整的保护方案,从而会发生电缆放炮、电动机绝缘击穿、避雷器爆炸和电压互感器烧毁等事故。此类事故发生的原因,除了与系统中安装的过电压保护装置的性能有关外,系统本身的复杂性对过电压装置的选择有着重要的影响,对于不同的系统,选择过电压保护时需考虑系统输电线路的类型,输配电线路的网络结构,负载的性能和系统的接地方式等。 针对如此复杂的系统,难以孤立的使用某种或某几种过电压保护装置来全面抑制各种类型的系统过电压,且这些不同厂家生产的过电压保护产品,因保护特性不能相互匹配,而无法彻底有效的抑制系统过电压。 针对目前中压系统过电压防治的现状,我公司研制生产了智能过电压综合抑治柜(简称抑治柜,型号为SHK-XGB),该柜可消除系统中过电压保护元件及装置的保护死区,优化系统过电压的保护特性。 本装置中所有的主要器件由我公司针对消弧工况研发、试验和生产,使用了我公司3项专利。专利号分别为:ZL 2011 2 0205412.0、ZL 2011 2 0203815.1、ZL 2012 2 0721125.X 。 ?产品的功能、特点 ◆主要元器件功能 ?高能容能量吸收器SHK-LEP

高能容能量吸收器(SHK-LEP),能够有效平缓过电压的上升前沿并消平电压尖峰,并能够耐受过电压产生的超大能量,该专用元件与本公司生产的过电压保护器及消弧柜的保护特性相匹配,可以全面消除系统过电压保护的死区。 2ms的方波电流可以达到3200A。 ?半导体自限流强阻尼抑制器SHK-SIDR SHK-SIDR半导体自限流强阻尼抑制器能够消除电压互感器产生的铁磁谐振。限制电压互感器一次绕组的激磁电流突增,防止因电压互感器一次绕组电流增加,熔断器熔断后因能量不足不能灭弧引发的母线短路事故。 装置安装在PT中性点与地之间,采用了正温度技术,利用电阻的阻尼作用,可破坏其谐振条件,使谐振消除。在正常运行状态下电阻为0,不改变PT的零序回路,因此不会影响互感器的测量精度,也不会放大中性点不平衡电压;在谐振发生时,电阻趋于∞,相当于互感器不接地,也就破坏了零序谐振回路。 ?防磁饱和式PT SHK-USPT SHK-USPT系列防磁饱和式电压互感器是一种特殊的变压器,按比例变换电压。它被广泛应用于供电系统中向测量仪表和继电器的电压线圈供电,实现测量仪表、保护设备及自动控制设备的标准化、小型化。同时互感器还可用来隔开高电压系统,以保证人身和设备的安全。 产品采用的励磁技术,其主绝缘为树脂材料,采取真空浇注后再压力注射,保证产品的绝缘性能优良。确保产品各种工况的用户单位。同时产品的抗饱和系数可以做到3.5倍。 产品采用了优质硅钢片,降低工作磁密,从而保证了在最大的过电压下互感器不饱和,不会与输电线路的电容发生谐振。铁芯及线圈采用特殊性设计,

真空断路器操作过电压的抑制方法

真空断路器操作过电压的产生与抑制方法 一、真空开关有两个方面的操作过电压: 1、合闸操作过电压 2、分闸操作过电压(截流过电压) 二、操作过电压的抑制方法 1、对于合闸操作过电压,可以采用永磁操动机构进行同步合闸,使 变压器在空载合闸过程中避免了操作过电压的产生和涌流的出现。 2、众所周知,真空断路器在开断短路电流时,一般不会出现操作过 电压,因为在开断短路电流过程中不会产生截流现象,多数情况是出 现在过载电流时的开断或正常时的开断。在了解抑制合闸操作过电压 (截流过电压)方法之前,我们先了解分闸操作过电压的产生原因和 影响过电压的因素,从中找出抑制过电压的有效方法: 3、分闸(截流)过电压的产生过程 图1为空载高压感应变压器的单相等值电路,其中L0为电源电感,C0为母线对地电容,L为变压器的漏感,C为变压器为地电容,Lk为C0—C回路中连线电感。QF为断路器。当通过QF断开高压感应变压器时,由于断路器的灭弧能力是按断开大电流设计的,可能在电流到达零之前,发生强制熄灭,这就是断路器的载流现象。图2为电流被截断的情况,图中I0为载断电流,由于断路器的截流,在变压器漏抗中将储存有?LI20的磁能,如截流瞬间 电机上的相电太为U0,此时在电机的等值电空中储存的电能为?CU20,电流被截流后,电容、电感回路中发生高频振荡,即产生截流过电压。近图1 单相等值回路可列出回路方程

du 1 C --- + -- ∫udt= 0 (1) dt L d2u 1 即----- + ---- = 0 由此方程得 dt2 LC U = a1sinω0t + a2cosω0t (2) QF为断路器。当通过QF断开高压感应电动机时,由于断路器的灭弧能力 1 是按断开ω0 = ---- ,若t = 0时,u(0) = u0 √LC du 由(2)得a2= -u0,i1 = -C--- = -C[a1ω0cosω0t–a2ω0sinω0t] (3) dt L 若t = 0时,i(0) = I0,由(3)式得a1= -I0√--- . C L 则电动机的端电压为u L = -I0√----sinω0t–u0cosω0t (4) C L 其中,-I0√---sinω0t为电感上中的磁场能量引起的过渡振荡分量c ,也就是截流过电压,-u0cosω0t为电容C中电场能量引起的过渡振荡分量,它与第一项相位差90°所以高频振荡电压的最大幅值 L 为Um = √I02--- 。实际上由于回路中是有损耗的,电感中储存的磁能 C 不能全部变成电场能量,实测值要小于计算值。

电磁式电压互感器谐振过电压分析及抑制措施

电磁式电压互感器谐振分析及抑制措施研究 (江建明四川省电力工业调整试验所610072) 电力系统接地系统为直接接地系统和不接地系统。直接接地系统易发生并联谐振,不接地系统在单相接地时易发生串联谐振,有并联电容器的断路器易发生串联谐振。长期以来,电力系统谐振过电压严重威胁着电网的安全。特别是对中性点不接地系统,铁磁谐振所占的比例较大。随着电网的日益发展,中性点直接接地系统的铁磁谐振问题越来越严重,出现的概率也越来越大。近年,在四川发生过多次铁磁谐振引起过电压的案例,应引起高度重视。本文将介绍产生铁磁谐振的机理、原因、现象以及应采取的措施。 1.产生铁磁谐振的原因 铁磁谐振存在三种情况:直接接地系统对地电容引发的铁磁谐振;不接地系统的单相接地引起的铁磁谐振;断路器端口并联的电容形成的铁磁谐振。 电力系统中许多元件是属于电感性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC震荡回路,在一定的能量作用下特定参数配合的回路就会出现谐振现象。由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱和,极易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感与线路的对地电容C,当C大到一定值且电压互感器不饱和时,感抗X L大于容抗X C;而

当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗X L小于容抗X C,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振: (1)当投入电力系统的电力线路长度发生变化时,线路对地电容与线路电阻发生改变。如空载线路投切操作,对空母线充电,尤其是短母线进行倒母线时,易产生对地电容引起的并联谐振。 (2)当系统运行状态突变,在暂态激发条件下,TV铁芯饱和,其电感量L处于非线性变化。如有线路瞬间接地,雷电感应侵入电网,尤其系统出现单相接地,易产生串联谐振。 (3)直接因突然投入系统的电容变化而引起谐振。如补偿电容器的投入,断路器断口打开时的并联电容易产生并联谐振。 (4)由于线路分合或运行状态突变时,会产生多次或分次谐波,从而使ω发生变化。如拉合刀闸、跌落式熔断器动作等,可能引起并联或串联谐振。 2.产生铁磁谐振的机理 由于电压互感器的中性点位移现象,常常在中性点不接地绝缘系统中引起铁磁谐振过电压。在正常运行条件下,励磁电感三相相等,三相负荷相等,电网的中性点电位为零。当线路中出现瞬时单相故障时,其它两相电压升高,三相电压互感器两相电压升高而饱和,其励磁电感相应减小,电网中性点出现位移电压,当三相总导纳之和为零时,便会发生串联谐振,中性点电压将急剧上升。由于铁芯的磁饱和会引起电流、电压波形的畸变,即产生了谐波,使上述谐振回路还会

过电压保护

电力电子器件的保护 一 、过电压保护 电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。 内因过电压主要来自电力电子装置内部器件的开关过程,包括: (1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。 (2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。 电力电子电路常见的过电压有交流测过电压和直流测过电压。常用的过电压保护措施及配置位置如图1-1所示。 S F RV RCD T D C U M RC 1 RC 2 RC 3 RC 4 L B S DC 图9-10 过电压保护措施及装置位置 F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容 1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路

过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。由于电容两端电压不能突变,所以能有效抑制尖峰过电压。串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。 视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。 + -+ -a) b) 网侧 阀侧 直流侧 C a R a C a R a C dc R dc C dc R dc C a R a C a R a 图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相 二、过电流保护 过电流分为过载和短路两种情况。过流保护常采用的有快速熔断器、直流快速断路器、过电流继电器保护措施,以晶闸管变流电路为例,其位置配置如图2-1所示。

关于谐振过电压及预防的技术措施

关于谐振过电压及预防的技术措施 发表时间:2019-04-11T13:54:14.127Z 来源:《河南电力》2018年19期作者:唐振华 [导读] 谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中 唐振华 (福建省万维新能源电力有限公司福建福州 350003) 摘要:谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中,由于故障的形式和操作方式是多种多样的,谐振性质也各不相同。因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,并制订防振和消振的对策与措施。 关键词:谐振过电压;预防;技术措施 1.谐振的危害性 在电力供电电网上,谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以免形成严重的串联谐振回路;或采取适当的防止谐振的措施。 目前变电站大部分采用中性点不接地方式运行,而最常见的谐振过电压就是发生在中性点不接地系统中。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、PT高压中性点增设电阻或单只PT等,但始终没有从根本上得到解决,PT烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2小时,不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。 2.产生谐振过电压的因素 2.1互感器铁磁谐振过电压的因素 电压互感器伏安特性的影响。铁芯电感的伏安特性愈好,即铁芯饱和得愈慢,也即谐振所需要的阻抗参数XC0/XL愈大;反之,谐振所需XC0/XL愈小。考虑到电力系统中运行着的电压.互感器及系统的具体情况总与模拟情况有差异,因此,对于不同型号、不同出厂日期、不同厂家制造的电压互感器,其谐振区域应根据实际试验加以确定。 电压互感器损耗的影响。运行着的互感器,一般损耗较大,例如,35kV的互感器其阻尼系数r/XL为>15/10000.损耗电阻大,可以吸收一部分能量,对谐振有一定的抑制作用,特别是对1/2频谐振,这种抑制作用很明显。 电压互感器结构的影响。现场运行着的电压互感器,既有三台单相电压互感器组,也有三相五柱电压互感器,它们在谐振激发上是不同的。试验研究表明,单相电压互感器组的起振电压较三相五柱电压互感器的低,也就是说,单相电压互感器组容易激发谐振。这主要是由于两者碰路结构的差异,造成零序阻抗不同所致。 单相互感器组零序磁通的磁路和正序磁通的磁路一样,每相都有自己的闭合回路,因而零序阻抗等于正序阻抗。对三芯玉柱电压工感器,由于零序磁通经过两个边往返回,所以其磁路长,而且铁芯截面小,因而其零序磁通磁阻较单相互感器组要大得多。由上所述,谐振是由于零序磁通造成的,三芯五柱互感器零序磁通遇到的磁阻大,谐振就不容易产生。 应当指出,由于磁路的差异,计算和测量这两类电压互感器零序阻抗时所用的电压是不同的。由于电网发生谐振时,作用在电压互感器上的电压是正序电压与零序谐振电压的选加,对于单相互感器组,正序电压和零序电压合成下的服抗值接近干线电压下的阻抗值,因此,XL为额定线电压下的激磁感抗。对于三芯玉柱互感器,零序电压接近于相电压,正序电压对零序电压阻抗影响不大,所以应取相电压下的相应感抗值。 2.2电网零序电容的影响 实践可知,谐振区域与阻抗比XC0/XL有直接关系,对于1/2分频谐振区,阻抗XC0/XL约为0.01~0.08;基波谐振区,XC0/XL约为0.08~0.8;高频谐振区,XC0/XL约为0.6~3.0.当改变电网零序电容时,XC0/XL 随之改变,回路中可能出现由一种借振状态转变为另一种谐振状态。如果零序电容过大或过小,就可以脱离谐振区域,谐振就不会发生。在现场,一般可以测量出电网的对地电容电流,进而计算出对地电容,由XC0/XL估算该电网是否处于谐振区。若在诸振区,再进一步判定可能是哪一种谐振。除上述情况外,电网零序电容还对谐振过电压、过电流的大小和谐振频率有一定影响。 2.3其他影响因素 激发程度。实际激发试验表明,即使阻抗参数XC0/XL落在诸振区域内,也并不是每次都能激发起稳定的谐振。这是因为谐振的产生不仅与XC0/XL有关,还与电压冲击、涌流大小、合闸相角等激发因素有关。激发程度不同时,互感器饱和程度有异,因此谐振特性就不相同。 回路的阻尼作用。当激发起中性点不稳定过电压后,元论是基波、三次谐波还是1/2分次谐波谐振,总是由电源供给谐振所需的能量。如果输入和输出的能量得以平衡,诸波将维持下去;如果能量平衡关系一旦被破坏,则谐振便会自动消除。根据谐振原理,增大回路电阻可使诸振区域缩小,维持谐振所需的电压提高,从而能阻尼振荡。 电网频率的变动。电网频率的变化,使谐振回路中的阻抗参数发生变化,是导致谐振现象不稳定的重要原因。 电网频率变动可能使谐振现象突然发生;突然消失;也可能使谐振由一种状态转变为另一种状态。 3.采取措施 一是防止电压互感器铁磁谐振措施。选择励磁特性好的电压互感器,使其工作点在伏安特性的线性部分,当有激发因素时,铁芯不饱

几种限制过电压的措施介绍

https://www.doczj.com/doc/0515126562.html, 几种限制过电压的措施介绍 如何降低切空线路过电压的措施,我们来讨论一下几种 第一:提高断路器灭弧性能,因为切除空载线路过电压的主要原因是断路器开断后触头间电弧的重燃,因此限制这种过电压的最有效措施是改善断路器的结构,提高触头间介质的恢复强度和灭弧能力,以减少或避免电弧重燃。近年来,已经广泛采用的压缩空气断路器,带压油式灭弧装置的少油断路器以及SF6断路器都大大改善了灭弧性能,在切除空载线路时,基本上不重燃。 第二:采用带并联电阻的断路器,这种断路器有两个触头,主触头K1并联一个电阻R,K2是辅助触头。断路器的动作分为两步进行。分闸时先断开主触头K1,线路仍通过R与电源相连,线路上的残余电荷可通过R向电源释放。这时R上的电压即为K1上的恢复电压;只要R不太大,主触头间就不会发生电弧的重燃。在经过1.5~2个工频周期后,辅助触头K2断开,因R消耗了部分能量,线路残余电压较低,故触头K2上的恢复电压不高,K2上不易发生电弧重燃。即使发生重燃,因R串在回路中仰制了振荡,过电压也显著降低,实际值只有2.28倍左右。从K1断开不易发生重燃的目的出发,希望R值小些;从仰制振荡和使K2不易发生重燃的角度看又希望R值大些,对一般开关1000~3000Ω,这样的电阻称为中值并联电阻。 此外,在线路首端或末端装设ZnO或阀型避雷器也有助于降低切除空载线路过电压。 我国在几十条110~220kV线路上进行了实测,结果表明,切除空载线路过电压的随机变量,其统计分布近似正常分布。按断路器性能分类有如下结果:使用重燃次数较多的断路器时,出现3.0倍过电压的概率为0.86%;使用重燃次数较少的空气断路器时,出现

电力系统分析 第三版 (于永源 杨绮雯 著) 中国电力出版社 课后答案.解析

Chapter 一 1-1、电力系统和电力网的含义是什么?答:电力系统指生产、变换、输送、分配电能的 设备如发电机、变压器、输配电线路等, 使用电能的设备如电动机、电炉、电灯等,以及测量、保护、控制装置乃至能量管理系统所组成的统一整体。一般电力系统就是由发电设备、输电设备、配电设备及用电设备所组成的统一体。 电力系统中,由各种电压等级的电力线路及升降压变压器等变换、输送、分配电能设备 所组成的部分称电力网络。 1-2、电力系统接线图分为哪两种?有什么区别? 答:电力系统接线图分为地理接线图和电气接线图。地理接线图是按比例显示该系统 中各发电厂和变电所的相对地理位置,反映各条电力线 路按一定比例的路径,以及它们相互间的联络。因此,由地理接线图可获得对该系统的宏观印象。但由于地理接线图上难以表示各主要电机、电器之间的联系,对该系统的进一步了解。还需阅读其电气接线图。 电气接线图主要显示系统中发电机、变压器、母线、断路器、电力线路等主要电力元件之间的电气接线。但电气接线图上难以反映各发电厂、变电所的相对位置,所以阅读电气接线图时,又常需参考地理接线图。 1-3、对电力系统运行的基本要求是什么? 答:对电力系统运行通常有如下三点基本要求: 1)保证可靠地持续供电; 2)保证良好的电能质量; 3)保证系统运行的经济性。 1-4、电力系统的额定电压是如何确定的?系统各元件的额定电压是多少?什么叫电力线路的平均额定电压? 答:各部分电压等级之所以不同,是因三相功率S 和线电压U、线电流I 之间的关系为 UI。当输送功率一定时,输电电压愈高,电流愈小,导线等截流部分的截面积愈小, 投资愈小;但电压愈高,对绝缘的要求愈高,杆塔、变压器、断路器等绝缘的投资也愈大。综合考虑这些因素,对应于一定的输送功率和输送距离应有一个最合理的线路电压。但从设备制造角度考虑,为保证生产的系列性,又不应任意确定线路电压。另外,规定的标准电压等级过多也不利于电力工业的发展。考虑到现有的实际情况和进一步的发展,我国国家标准规定了标准电压,即为额定电压。 各元件的额定电压:

敏感用户电压暂降甩负荷原因分析及防范措施

敏感用户电压暂降甩负荷原因分析及防范措施 发表时间:2018-08-13T15:58:52.753Z 来源:《电力设备》2018年第8期作者:葛凯梁1 钟明祥2 王学思3 [导读] 摘要:在本文中,将对敏感用户电压暂降甩负荷这类情况出现的原因进行分析,电压暂降甩负荷在传统工业当中是比较常见的,而在传统工业当中出现电压暂降甩负荷主要由最常见的四种。 (国网浙江省电力有限公司宁波供电公司浙江省宁波市 315000)摘要:在本文中,将对敏感用户电压暂降甩负荷这类情况出现的原因进行分析,电压暂降甩负荷在传统工业当中是比较常见的,而在传统工业当中出现电压暂降甩负荷主要由最常见的四种。因此,在本文中,笔者将针对这四种工业当中常出现的电压暂降率负荷情况,进行针对性的原因分析并提出针对性的预防措施,希望能为广大工作者提供参考。 关键词:敏感用户;电压暂降;甩负荷;原因及预防 1.前言 当然,甩负荷事件并不是偶然发生的,自从2014年底,我国多地就已经发生了低压甩负荷事件,不仅仅为社会造成了极大影响,而且还引起了巨大的经济损失。引起第二次复合的原因有很多,最常见的是因为系统短路,或者是雷击,或者是大容量感应电机突然间启动导致。针对以上几点原因,再坚固的网架结构也不能够避免,因此电压暂降问题,也引起了越来越多的学者专家关注。如何能在保证电力条件的情况下,让电力供应保持持续和优质,成为了一项急需解决的问题。 2.电压暂将甩负荷出现的原因 当传统工业电网在运营过程当中出现电压暂降时,受到影响的主要是电子类设备,这些设备将无法正常工作,进而影响到由这些设备所控制的工业生产流程。而在传统工业当中,引起电压暂降敏感负荷,主要是由以下几个行业所造成的,其中分别是电解铝,钛合金,碳化硅,电石,晶硅,钢铁以及水泥。这几个行业在实际运营以及生产过程当中,都可能会引起电压暂降甩负荷问题。要不要个行各业的企业具有不同的生产特点,以及生产工业,所以导致的电压暂降以及甩负荷现象表现出都大不相同。在下文将对这些行业引起电压增加甩负荷的原因进行详细分析。 对导致电压暂降敏感负荷发生的机理以及发展的程度进行分析,对于工厂内电气设备的改进和对电压暂降,敏感负荷采取抑制性措施,都具有非常重要的作用。根据调查的情况,我们可以知道,电压暂降对于敏感用户所产生的影响机理在很大程度上都是相同的,而造成电压暂降甩负荷所出现的原因,主要可以分为以下四种:第一种是用户使用400伏进线断路器,当断路器失压动作出现跳闸的时候,就很可能造成低压甩负荷现象。第二种情况是工厂能使用D低压辅机对回路交流接触器进行控制,而因为辅机的原因出现控制失误,导致失压跳闸,这时候接触器没有能够按时复归,使电机出现了停运的情况。第三种情况是,设备软件启动装置自身失压保护动作出现,使电机出现了停运的状况。第四种情况下,工厂内设备安装的变频调速器,只能够判断设备是否出现电压跌落,当设备出现跌落时,变频调速器就会判定出现了异常动作,进而应该立刻停止工作,也就是跳闸。 对于电压暂降,变电站能够通过电网电压波动所产生的影响,而感受到出现故障的部位。出现这样的故障是一般会形成多次电压波动冲击,而每次冲击又保持在毫秒级,并且整个事件过程不会超过两秒。在工厂内使用最多的是低压400伏系统,对这种系统来说,其电机自身存在保护逻辑,这个逻辑需要特定动作来进行处罚。而跳闸是因为电机内存在的控制回路内部交流接触器欠励跳闸,这种跳闸将会导致电机出现跳闸。按照国家标准,在启动器中所安装的,或者是进行单独使用的电磁式接触器,在其控制电压的85%和110%内,在任何数值都能够可靠闭合,而接触器所释放和能够完全断开时电压的极限值是额定控制电压的20%-75%之间。在电压暂降甩负荷事件当中,出现电压暂降的电压跌落幅度可能会达到接触器控制电源电压的50%,因为电压跌落幅度较大,已经达到了用户欠压脱扣和低压保护动作所规定的电压值。首先用户的欠压脱扣和低电压保护动作并没有延时瞬时动作,所以就会导致水循环以及空压机等负荷停止运转,进而导致其他关联的生产负荷设备都出现运行停止运转的状况。由此可以看出,当交流接触器控制的范围越大,将出现电压暂降甩负荷情况时,会影响到更多数量的设备,导致的影响也就越大。 3.预防措施 为了能够对电压暂降甩负荷事件进行预防以及防治,需要采取以下措施: 3.1对400V系统进线断路器进行改造 对进线断路器进行改造,现在最主流的一种方法就是在进线侧增加动态电压恢复器,这种方法是现如今国内外都采用的一种普遍方法。通过这种装置能够对动态以及稳态电压所出现的各种波动,例如跌落,浪涌,闪变等进行有效的补偿控制。当敏感负荷增加动态电压恢复器之后,若出现电压骤降现象,在1/4个周期内,该装置就能够对骤降情况进行及时的应对,保证电压达到系统所需要的水平。还有一种方法是对400伏系统总进线断路器进行改造,采用这种方法进行改造,主要是针对三种智能断路器,分别是欠压以及不欠压脱扣功能断路器,另一种是失去压瞬时脱扣断路器。 3.2对交流接触器进行改造 在现场当中,低压电机控制工作运用了非常多的交流接触器,这些接触器在电网出现波动的情况下,会出现跳闸,这些跳闸现象会导致敏感用户的辅机叫刘艳娟,并关联主设备出现跳闸现象,导致整个生产线出现停止运营的。对交流接触器进行改造第一种方法是对其控制回路进行改造。因为在现场,你所使用的是400伏系统的交流电源,当电网出现波动情况时,控制电源也会出现波动,进而导致控制回路的交流接触器出现跳闸的现象,当电压重新恢复之后,许多电机设备还需要进行重新启动,需要几长时间进行恢复,不能够满足生产线继续运行的要求,最终导致主设备停止运转。若是控制电源所选择的电源是不间断电源,那么利用置电源进行供电,当整个电网出现电压波动的时候,控制电源并不会出现波动。为了能够保证在实际的运行过程当中,电机的主要回路在进行长时间的低压运行状态下当出现问题时,能够及时断开,需要增加继电器对主回路电压进行监视。当主回路电压出现异常状况时,低压继电器开始工作,进行延时调整。第二种状况是对带低压延时脱扣功能的接触器进行更换。具有低压延时脱扣电功能的接触器,能够在雷击或者是短路重合的状况下,使供电系统瞬间失去电压,而且失去电压的时候又不脱扣,当停电时间超过一定限度时,电源电压会降低到接触器维持电压限度以下,这时接触器的主触控头,会出现延时释放的现象,使正在电压波动的时候接触器不会发生脱扣的现象,保证个设备能够在平板电源状态下进行生产活动。 3.3对变频调速器系统进行改造

谐振接地系统中单相接地引起的过电压分析

谐振接地系统中单相接地引起的过电压分析 摘要: 单相接地故障是电力系统中主要的故障形式,由其引发的各种过电压事故很多。本文描述了单相接地的各种现象,分析了谐振接地系统中单相接地引起的弧光接地过电压和铁磁谐振过电压,特别是两种不同工作方式的消弧线圈自动调谐装置对消除铁磁谐振过电压的影响。 关键词:单相接地弧光接地过电压消弧线圈铁磁谐振 前言 配电网中性点经消弧线圈接地方式,又称为谐振接地方式,在谐振接地系统中有三种过电压对其影响最大,即雷击过电压、弧光接地过电压和铁磁谐振过电压。前两种过电压可以采用比较明确有效的措施来进行防护,如对于雷击过电压,可以采用避雷器等防雷保护措施来限制其危害性。对于弧光接地过电压,通常采用消弧线圈进行有效的抑制。但对于铁磁谐振过电压,虽然目前可采用的防治措施很多,但实际效果和评价各不相同,铁磁谐振过电压在实际运行中仍然经常引发严重的事故。长期运行经验表明,单相接地故障是电力系统中主要的故障形式,约占60%以上。当电网发生单相接地时, 容易产生间歇性弧光接地, 此时产生的弧光接地过电压和由此激发的铁磁谐振过电压将会导致弱绝缘的击穿,甚至发展为相间短路故障而引发跳闸。我厂的6kV配电网为谐振接地系统,且单相接地时有发生,因此对谐振接地系统中单相接地引起的弧光接地过电压和铁磁谐振过电压进行分析是十分必要的。 1单相接地的各种现象 运行中单相接地一般是间歇性电弧接地→稳定电弧接地→金属性接地。根据实测, 间歇性电弧接地, 持续时间可达0.2~2S, 频率可达300~3000Hz;然后呈稳定电弧接地, 持续时间可达2~10s,最后, 故障点导线被烧熔成为金属性接地, 即所谓永久性故障接地。另一种情况是暂时性的单相电弧接地如(雷击、鸟害等),当系统电容电流超过一定数值时,电弧难以自动熄灭。然而这个电流又不至于大到形成稳定电弧的程度,因此可能出现电弧时燃时灭的不稳定状态。两种间歇性的电弧导致系统中电感-电容回路的电磁振荡过程,产生遍及全系统的的弧光接地过电压。 2消弧线圈自动调谐对弧光接地过电压的抑制 间歇性电弧接地流过故障点的电流中包含两个分量,即工频分量和高频分量。在谐振接地系统中,现行所有消弧线圈设计的自动调谐都是在电网工频下完成的,不能补偿高频分量,因此消弧线圈自动调谐不能消除弧光接地过电压。

AXY过电压抑制柜技术规格书(固定式)10kV

AXY过电压保护及PT柜技术规格书 1.1 设备使用条件 1.1.1 电源系统标称电压: 10kV±10% 1.1.2 额定频率: 50Hz 1.1.3 操作及控制电压: DC220V 1.1.4 照明电压: AC220V 1.1.5 使用环境: 极端最高温度: 40℃(户内) 极端最低温度: 1℃(户内) 累计年平均气温: 21.1℃ 1.1.6 月平均相对湿度最高值: 74.8% 月平均相对湿度最低值: 36% 累计年平均相对湿度: 55% 1.1.7 海拔高度: 2000m(及以下) 1.1.8 地震烈度: 7度 1.1.9 安装场所: 户内 2 技术规格 2.1 AXY过电压保护及PT柜(以下简称装置)的工作原理及性能 2.2.1工作原理 装置内采用过电压吸收器(APB-Z),能解决系统过电压类产品解决不彻底的过电压,有效平缓过电压的上升前沿并削平过电压尖峰,并且能够耐受一定的过电压所产生的大量能量,该产品与过电压保护器及消弧柜的保护特性相配合,可以更好地消除系统过电压保护,把过电压限制在系统绝缘水平范围内。 装置正常运行时,柜内32位微机控制器实时不间断检测PT提供的电压信号,一旦系统发生PT 断线、过电压、低电压、失压、谐振,微机控制器可根据PT提供的电压信号,利用高速仿真技术快速准确的处理能力实现对波形的实时采集,实施傅立叶级分析,准确地判析系统的故障情况,并显示出故障类别,输出相应的开关量接点信号。 当系统出现PT断线,过电压、低电压、失压故障,则装置输出相应的开关量接点信号,用于报警; 当系统出现谐振,装置控制器根据系统谐振的不同频率实现快速动作,并输出相应的开关量接点,用于报警,如是接地产生的铁磁谐振,激磁涌流过大,瞬间切断激磁涌流,不至于PT保险

电网谐振过电压的防治

电网谐振过电压的防治 刘志清山东诸城市供电公司(262200)电网谐振过电压与系统结构、容量、参数、运行方式及各种自动装置的特性有关。谐振过电压,一般因操作或故障引起系统元件参数出现不利组合而产生。诸城市电网10~35kV系统为不接地或经消弧线圈接地系统,电网中存在大量星形接线的电压互感器,其一次绕组直接接地,成为电网对地电容电流、高次谐波电流的充放电途径,此电流必然通过电压互感器一次绕组,使电压互感器铁心深度饱和,在电网接地、倒闸操作、运行方式变化等情况下,将出现电网电压不稳定,甚至出现谐振。另外,近年来热电厂联网数量不断增多,发电机电感参数周期性变化将引起发电机自励磁(参数谐振)过电压。 谐振过电压对电网造成危害极大,诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等等,所以加强对其防治非常必要。 诸城金安热电厂并网发电后,数月时间在其并网的35kV系统内连续发生3次谐振过电压。谐振时,相电压最高达到41kV、最低16kV,持续时间15min左右。谐振期间,采用切除电容器等操作电网手段改变电网参数后,只能使谐振暂时消除几分钟,然后再次谐振,所幸未导致电网设备损坏。 谐振发生后,经过分析论证热电厂联网发电机是该区域35kV电网谐振源,该区域35kV电压互感器一次绕组中性点接地点多达9

个,电网抗谐振过电压能力薄弱且无任何防治措施,致使电网具备了发生谐振过电压的条件。为此,应从技术上采取措施。 为防止并网运行发电机电感参数周期性变化引起的自励磁过电压,要求并网发电热电厂必须采取如下措施: ·尽量避免发电机直接空充线路,无法避免时应确保发电机容量大于并网空载线路的充电功率; ·避免发电机带空载线路启动,或避免以全电压向空载线路合闸; ·要求并网运行的热电厂发电机采用快速励磁自动调节器,限制发电机同步励磁过电压; ·并网发电的热电厂35、10kV母线上的星形接线电压互感器,其中性点一次侧加装消谐器。二次侧开口三角加装二次消谐器或合适消谐电阻。 为防止不接地系统或经消弧线圈接地系统中,因合闸充电或在运行时接地故障消除等原因的激发,使中性点接地的电压互感器过饱和可能产生的谐振过电压,采取如下措施: ·优先选用励磁特性饱和点较高的抗谐振型电压互感器; ·减少同一系统中电压互感器高压侧中性点接地数量,除电源侧电压互感器高压侧中性点接地外,其它电压互感器中性点尽可能不接地; ·在电压互感器开口三角绕组装设二次消谐器或消谐电阻; ·在电压互感器一次绕组中性点装设一次消谐器。 采用性能良好的设备,提高运行维护水平,避免下列条件下的铁

相关主题
文本预览
相关文档 最新文档